1. Field of the Invention
The invention relates to electrical connectors for coaxial cable. More particularly the invention relates to a coaxial connector with outer conductor gripping features for assisting interconnection and/or increasing the strength of the connector to coaxial cable interconnection.
2. Description of Related Art
A positive stop type coaxial connector, for example as disclosed in commonly owned U.S. Pat. No. 6,793,529 titled: “Coaxial Connector with Positive Stop Clamping Nut Attachment”, by Larry Buenz, issued Sep. 21, 2010, hereby incorporated by reference in its entirety, has a connector body and a back nut configured for threaded interconnection. As the connector body and back nut are threaded together, a flared leading edge of the outer conductor of the coaxial cable is clamped between the connector body and the coupling body in a secure electro-mechanical interconnection. To indicate proper threading completion and avoid damage to the connector and/or coaxial cable from overtightening, a positive stop between the connector body and the back body may be applied wherein the threading between the back body and connector body bottoms at a specific axial location at which the desired maximum tightening compression/torque force occurs, definitively signaling the installer that the proper amount of tightening has been reached. To allow for thermal expansion cycling and/or variances in manufacture of the connector and/or the outer conductor dimensions, a compression element is inserted between internal contacting surfaces of the outer conductor, back body and/or the connector body.
Prior positive stop type coaxial connector designs typically require flaring of the outer conductor to enable a sandwich clamp action between the connector body, the leading edge of the outer conductor and the back nut. Although a corrugated outer conductor coaxial cable provides a suitable outer diameter grip surface for a user during the flaring procedure, the smooth outer diameter of a smooth wall outer conductor coaxial cable may be difficult to easily grip during flaring.
A current market trend is to replace traditional copper material coaxial cables with aluminum material coaxial cables to save materials cost and lower the weight per unit length of the coaxial cable. Further, smooth wall outer conductor cables provide inherent materials cost and cable weight advantages compared to corrugated outer conductor coaxial cable configurations.
Aluminum has lower mechanical strength properties including cold work properties (bending) compared to copper. Aluminum is susceptible to creep and may weaken at a single contact point with extreme contact pressure due to bending, pulling and/or twisting.
Smooth wall cable is less flexible compared to corrugated cable; however users used to working with corrugated coaxial cable may not recognize the lower bend capability of smooth wall cable. Users attempting to apply improper bend radii may overstress a conventional coaxial connector and cable interconnection.
Competition within the coaxial cable and connector industry has focused attention upon improving electrical performance as well as reducing manufacturing, materials and installation costs.
Therefore, it is an object of the invention to provide a method and apparatus that overcomes deficiencies in such prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
For clarity, similar elements between different embodiments utilize the same notations and some notations appearing on the different figures may not be specifically identified on each figure.
One skilled in the art will appreciate that the connector end 1 and the cable end 3 are descriptors used herein to clarify longitudinal locations and/or contacting interrelationships between the various elements of the coaxial connector(s). In addition to the identified positions in relation to adjacent elements along the longitudinal axis of the coaxial connector 5, each individual element has a connector end side and a cable end side, i.e. the sides of the respective element that are facing the respective connector end 1 and the cable end 3 of the coaxial connector 5.
A first embodiment of a coaxial connector, as shown in
A slip ring 23 positioned at a connector end 1 of the coupling body 19 is dimensioned to drive an annular compression body 25, for example a helical coil spring, against the clamp sidewall 13 to clamp the leading edge of the outer conductor 17 therebetween in a secure electro-mechanical interconnection. As best shown in
As best shown in
As the coupling body 19 is inserted in and threaded into the connector body 7, an outer diameter of the distal end of the coupling spring finger(s) 31 engages a compression sidewall 41 angled outward from the bottom of the coupling groove 11, the decreasing diameter of the compression sidewall 41 driving the coupling spring finger(s) 31 radially inward toward the clamp sidewall 13 and outer conductor 17. Thereby, as best shown in
The compression body 25 may be seated within an annular compression body groove 43 provided on an inner diameter of the distal end of the coupling spring finger(s) 31. The compression body groove 43 may be formed with the coupling spring finger(s) 31 extending towards the cable end 3 farther than the compression body 25, providing a cradle for the compression body 25 which guides deformation of the compression element against the leading edge of the outer conductor 17 to clamp against the clamp sidewall 13 as the coupling body 19 is axially advanced into the connector body 7 by threading.
A compression force generated by the axial advance of the coupling body 19 to clamp the leading edge of the outer conductor 17 between the compression body 25 and the clamp sidewall 13 and also a radial displacement of the grip surface 33 against the outer diameter of the outer conductor 17 may be limited by the application of a surface to surface positive stop 45 (
The threading between the connector body 7 and the coupling body 19 (
An axial play between the coupling shoulder 27 and the retention groove 29 of the coupling body 19 may be utilized to compress a gasket 49 seated between a cable end 3 of the slip ring 23 and an inward projecting gasket shoulder 51 of the coupling body bore 21. Thereby, the outer conductor 17 may be easily inserted through the gasket 49 while in an uncompressed state and then, as the coupling body 19 is advanced towards the connector body 7, the slip ring 23 is driven towards the cable end 3 of the retention groove 29, which compresses the gasket 49 against the gasket shoulder 51, deforming it radially inward into secure sealing engagement with the outer diameter of the outer conductor 17.
One skilled in the art will appreciate that the combination of leading edge outer conductor clamping with outer conductor gripping via the grip surface 33 may provide improved interconnection strength and/or additional strain relief by distributing stress from the front edge of the outer conductor 17 across the outer diameter of the outer conductor 17. Further a cable pull strength and anti rotation strength of the interconnection may be improved, stabilizing the interconnecting surfaces with one another to improve the IMD characteristic of the interconnection.
In further embodiments, for example as shown in
One skilled in the art will appreciate that the benefits of the slip ring 23 with grip surface 33 may also be realized in coaxial connector configurations wherein the connector body 7 threads into the coupling body 19, for example as shown in
To simplify manufacture, the slip ring 23 may be provided in a c-shaped configurations, for example as shown in
Although the disclosed embodiments are particularly suited for smooth wall solid outer conductor cable, these may also be applied to other solid outer conductor configurations, such as annular corrugated solid outer conductor, as shown for example in
One skilled in the art will appreciate that providing the slip ring pre-attached to the coupling body, significantly decreases the chances for loosing separate elements of the connector prior to assembly and/or improper assembly.
Where in the foregoing description reference has been made to ratios, integers or components having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/184,573 “Coaxial Connector for Solid Outer Conductor Coaxial Cable” filed Jun. 5, 2009 by Nahid Islam and Al Cox, currently pending and hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/037491 | 6/4/2010 | WO | 00 | 11/21/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/141880 | 12/9/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3963320 | Spinner | Jun 1976 | A |
4046451 | Juds et al. | Sep 1977 | A |
4676577 | Szegda | Jun 1987 | A |
4824400 | Spinner | Apr 1989 | A |
6217384 | Strasser et al. | Apr 2001 | B1 |
6234838 | Wong | May 2001 | B1 |
6793529 | Buenz | Sep 2004 | B1 |
6994587 | Buenz et al. | Feb 2006 | B2 |
7607942 | Van Swearingen | Oct 2009 | B1 |
7635283 | Islam | Dec 2009 | B1 |
7857661 | Islam | Dec 2010 | B1 |
20050079761 | Rodrigues | Apr 2005 | A1 |
20060014427 | Islam et al. | Jan 2006 | A1 |
20070224880 | Wlos et al. | Sep 2007 | A1 |
20090053931 | Islam | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120064764 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61184573 | Jun 2009 | US |