A variety of surgical instruments include an end effector for use in conventional medical treatments and procedures conducted by a medical professional operator, as well as applications in robotically assisted surgeries. Such surgical instruments may be directly gripped and manipulated by a surgeon or incorporated into robotically assisted surgery. In the case of robotically assisted surgery, the surgeon may operate a master controller to remotely control the motion of such surgical instruments at a surgical site. The controller may be separated from the patient by a significant distance (e.g., across the operating room, in a different room, or in a completely different building than the patient). Alternatively, a controller may be positioned quite near the patient in the operating room. Regardless, the controller may include one or more hand input devices (such as joysticks, exoskeletal gloves, master manipulators, or the like), which are coupled by a servo mechanism to the surgical instrument. In one example, a servo motor moves a manipulator supporting the surgical instrument based on the surgeon's manipulation of the hand input devices. During the surgery, the surgeon may employ, via a robotic surgical system, a variety of surgical instruments including an ultrasonic blade, a tissue grasper, a needle driver, an electrosurgical cautery probes, etc. Each of these structures performs functions for the surgeon, for example, cutting tissue, coagulating tissue, holding or driving a needle, grasping a blood vessel, dissecting tissue, or cauterizing tissue.
In one example, the end effector of the surgical instrument includes a blade element that vibrates at ultrasonic frequencies to cut and/or seal tissue (e.g., by denaturing proteins in tissue cells). These instruments include one or more piezoelectric elements that convert electrical power into ultrasonic vibrations, which are communicated along an acoustic waveguide to the blade element. The precision of cutting and coagulation may be controlled by the operator's technique and adjusting the power level, blade edge angle, tissue traction, and blade pressure. The power level used to drive the blade element may be varied (e.g., in real time) based on sensed parameters such as tissue impedance, tissue temperature, tissue thickness, and/or other factors. Some instruments have a clamp arm and clamp pad for grasping tissue with the blade element. Examples of ultrasonic surgical instruments and related concepts are disclosed in U.S. Pub. No. 2006/0079874, entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; and U.S. Pub. No. 2008/0200940, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein.
Examples of robotic systems, at least some of which have ultrasonic features and/or associated articulatable portions, include U.S. patent application Ser. No. 16/556,661, entitled “Ultrasonic Surgical Instrument with a Multi-Planar Articulating Shaft Assembly,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,667, entitled “Ultrasonic Transducer Alignment of an Articulating Ultrasonic Surgical Instrument,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,625, entitled “Ultrasonic Surgical Instrument with Axisymmetric Clamping,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,635, entitled “Ultrasonic Blade and Clamp Arm Alignment Features,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,727, entitled “Rotatable Linear Actuation Mechanism,” filed on Aug. 30, 2019; and/or U.S. Pat. App. No. 62/930,638, entitled “Articulation Joint with Helical Lumen,” filed on Nov. 5, 2019. The disclosure of each of these applications is incorporated by reference herein.
Some instruments are operable to seal tissue by applying radiofrequency (RF) electrosurgical energy to the tissue. Examples of such devices and related concepts are disclosed in U.S. Pat. No. 7,354,440, entitled “Electrosurgical Instrument and Method of Use,” issued Apr. 8, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 7,381,209, entitled “Electrosurgical Instrument,” issued Jun. 3, 2008, the disclosure of which is incorporated by reference herein.
Some instruments are capable of applying both ultrasonic energy and RF electrosurgical energy to tissue. Examples of such instruments are described in U.S. Pat. No. 9,949,785, entitled “Ultrasonic Surgical Instrument with Electrosurgical Feature,” issued Apr. 24, 2018, the disclosure of which is incorporated by reference herein; and U.S. Pat. No. 8,663,220, entitled “Ultrasonic Surgical Instruments,” issued Mar. 4, 2014, the disclosure of which is incorporated by reference herein.
While several surgical instruments and systems have been made and used, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.
While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.
The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
For clarity of disclosure, the terms “proximal” and “distal” are defined herein relative to a human or robotic operator of the surgical instrument. The term “proximal” refers the position of an element closer to the human or robotic operator of the surgical instrument and further away from the surgical end effector of the surgical instrument. The term “distal” refers to the position of an element closer to the surgical end effector of the surgical instrument and further away from the human or robotic operator of the surgical instrument. It will be further appreciated that, for convenience and clarity, spatial terms such as “front,” “rear,” “clockwise,” “counterclockwise,” “longitudinal,” “transverse,” “upper,” and “lower” also are used herein for reference to relative positions and directions. Such terms are used below with reference to views as illustrated for clarity and are not intended to limit the invention described herein.
I. Exemplary Surgical Instrument
Ultrasonic surgical instrument (10) of the present example comprises a body assembly, such as a base assembly (12), a shaft assembly (14), and an end effector (16). Base assembly (12) includes a housing (18), a button (22), and a pair of latch clasps (24). Button (22) is operatively connected to an electrical base power controller (not shown) and configured to selectively power ultrasonic surgical instrument (10) for use. In addition, housing (18) of the present example includes a front housing cover (26) and a rear housing cover (28) removably secured together via latch clasps (24). More particularly, latch clasps (24) removably secure front housing cover (26) to rear housing cover (28) such that front housing cover (26) may be removed for accessing an interior space (30) (see
To this end, with respect to
A. Exemplary End Effector and Acoustic Drivetrain
As best seen in
In addition to pivoting relative to blade (46), clamp arm (44) of the present example is further configured to rotate about blade (46) relative to blade (46) and also relative to shaft assembly (14) as indicated by an arrow (53). In one example, clamp arm (44) rotates in the clockwise or counterclockwise directions completely around blade (46) and may be selectively fixed in any angular position relative to blade (46) for directing clamp arm (44) from the open position to the closed position for clamping tissue. In another example, clamp arm (44) may have rotational stops (not shown) configured to limit rotational movement of clamp arm (44) relative to blade (46) in one or more predetermined positions.
Blade (46) of the present example is operable to vibrate at ultrasonic frequencies in order to effectively cut through and seal tissue, particularly when the tissue is being compressed between clamp pad (48) and blade (46). Blade (46) is positioned at a distal end of an acoustic drivetrain. This acoustic drivetrain includes a transducer assembly (not shown) and an acoustic waveguide (56), which includes a flexible portion (58) discussed below in greater detail. It should be understood that waveguide (56) may be configured to amplify mechanical vibrations transmitted through waveguide (56). Furthermore, waveguide (56) may include features operable to control the gain of the longitudinal vibrations along waveguide (56) and/or features to tune waveguide (56) to the resonant frequency of the system. Various suitable ways in which waveguide (56) may be mechanically and acoustically coupled with transducer assembly (not shown) will be apparent to those of ordinary skill in the art in view of the teachings herein.
Those of ordinary skill in the art will understand that, as a matter of physics, a distal end of blade (46) is located at a position corresponding to an anti-node associated with resonant ultrasonic vibrations communicated through flexible portion (58) of waveguide (56). When transducer assembly (not shown) is energized, the distal end of blade (46) is configured to move longitudinally in the range of, for example, approximately 10 to 500 microns peak-to-peak, and in some instances in the range of about 20 to about 200 microns at a predetermined vibratory frequency f, of, for example, 55.5 kHz. When transducer assembly (not shown) of the present example is activated, these mechanical oscillations are transmitted through waveguide (56) to reach blade (46), thereby providing oscillation of blade (46) at the resonant ultrasonic frequency. Thus, when tissue is secured between blade (46) and clamp pad (48), the ultrasonic oscillation of blade (46) may simultaneously sever the tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread. In some versions, end effector (16) is operable to apply radiofrequency (RF) electrosurgical energy to tissue in addition to applying ultrasonic energy to tissue. In any case, other suitable configurations for an acoustic transmission assembly and transducer assembly (54) will be apparent to one of ordinary skill in the art in view of the teachings herein. Similarly, other suitable configurations for end effector (16) will be apparent to those of ordinary skill in the art in view of the teachings herein.
B. Exemplary Shaft Assembly and Articulation Section
As shown in
Articulation section (64) is configured to selectively position end effector (16) at various lateral deflection angles relative to longitudinal axis (61) defined by proximal shaft portion (60). Articulation section (64) may take a variety of forms. In the present example, articulation section (64) includes a proximal link (68), a distal link (70), and a plurality of intermediate links (72) connected in series between proximal and distal links (68, 70). Articulation section (64) further includes a pair of articulation bands (74) extending along a pair of respective channels (76) collectively defined through links (68, 70, 72). Links (68, 70, 72) are generally configured to pivot relative to each other upon actuation of articulation bands (74) to thereby bend articulation section (64) with flexible portion (58) of waveguide (56) therein to achieve an articulated state. By way of example only, articulation section (64) may alternatively or additionally be configured in accordance with one or more teachings of U.S. Pat. No. 9,402,682, entitled “Articulation Joint Features for Articulating Surgical Device,” issued Aug. 2, 2016, the disclosure of which is incorporated by reference herein. As another merely illustrative example, articulation section (64) may alternatively or additionally be configured in accordance with one or more teachings of U.S. Pat. No. 9,393,037, issued Jul. 19, 2016, entitled “Surgical Instruments with Articulating Shafts,” the disclosure of which is incorporated by reference herein and U.S. Pat. No. 9,095,367, issued Aug. 4, 2015, entitled “Flexible Harmonic Waveguides/Blades for Surgical Instruments,” the disclosure of which is incorporated by reference herein. In addition to or in lieu of the foregoing, articulation section (64) and/or may be constructed and/or operable in accordance with at least some of the teachings of U.S. Pat. No. 10,034,683, entitled “Ultrasonic Surgical Instrument with Rigidizing Articulation Drive Members,” issued on Jul. 31, 2018. Alternatively, articulation section (64) may be constructed and/or operable in any other suitable fashion.
Links (68, 70, 72) shown in
Distal link (70) further includes a pair of opposing notches (82) with a pin (84) therein configured to receive distal end portions of respective articulation bands (74). More particularly, pins (84) extend through a hole in each respective articulation bands (74) while distal end portions of respective articulation bands (74) are coupled within notches (82). Slots (86) in each of intermediate and proximal links (72, 68) longitudinally align with each other and notches (82) to collectively define channels (76) configured to receive articulation bands (74) while allowing articulation bands (74) to slide relative to links (68, 70, 72). To this end, when articulation bands (74) translate longitudinally in an opposing fashion, this will cause articulation section (64) to bend, thereby laterally deflecting end effector (16) away from the longitudinal axis (61) of proximal shaft portion (60) from a straight configuration as shown in
II. Exemplary Shaft Assembly with Force Limiter for Limiting Clamp Compression Force
With respect to
As shown in the present example, proximal actuator portion (116) extends from base assembly (12) with robotic driven interface (32) for selectively directing proximal and distal movement of clamp actuator (112). Alternatively, proximal actuator portion (16) may extend from a handle assembly (not shown) of a handheld surgical instrument (not shown). In this respect, proximal actuator portion (16) may extend from any body for robotic and/or handheld operation, and the invention is not intended to be unnecessarily limited to robotic applications. This body, and more particularly base assembly (12) in the present example, does not include a resiliently biased element, such as a wave spring, contained therein to limit clamp force closure. Rather, force limiter (110) includes a resilient portion associated with shaft assembly (14) and positioned longitudinally between base assembly (12) and end effector (16). In the present example, force limiter (110) is more particularly shown proximally positioned relative to articulation section (64). In another example, force limiter (110) may be positioned in articulation section (64). In still another example, force limiter (110) may be distally positioned relative to articulation section (64).
To this end, force limiter (110) further includes a distal securement (128) and a proximal securement (130) to retain spacer (122) in compression about spring (120) such that spacer (122), in turn, holds spring (120) in tension. In the present example, distal securement (128) includes a pair of upper and lower pins (132) extending through upper and lower holes (134) in spacer (122) and distal actuator portion (118). Pins (132) thus affix spacer (122) relative to distal actuator portion (118) such that no distal or proximal movement occurs between spacer (122) and distal actuator portion (118) during translation of clamp actuator (112) while moving clamp arm (44) regardless of force applied through force limiter (110) during use. In contrast, proximal securement (130) of the present example includes a retaining ring (136) received in an annular channel (138) about proximal actuator portion (116). Retaining ring (126) thereby provides a proximal stop to compress spacer (122) between retaining ring (126) and pins (132) when spacer (122) is seated against retaining ring (126).
Unlike pins (132), retaining ring (126) allows spacer (122) to unseat from retaining ring (126) when spring (120) extends in response to applications of force during use that exceed the predetermined force for limiting clamp compression. While the present example shows distal securement (128) affixing spacer (122) to distal actuator portion (118) and proximal securement (128) allowing some movement of spacer (122) relative to proximal actuator portion (116), it will be appreciated that such securements (128, 138) may be reversed such that proximal securement (130) affixes spacer (122) to proximal actuator portion (116) and distal securement (128) allows some movement of spacer (122) relative to distal actuator portion (118). Also, alternative securements, such as welds, threaded members, and turnbuckles, may be similarly used to provide for spacing of spring (120) and related adjustment of such spacing as discussed above. The invention is thus not intended to be unnecessarily limited to the particular securements of the present example.
In use, with respect to
In conjunction with
As discussed briefly above, with respect to
While the present example of end effector (16) shows clamp arm (44) and blade (46) as respective jaws for compressing tissue while closing clamp arm (44) relative to blade (46) and prying apart tissues while opening clamp arm (44) relative to blade (46), it will be appreciated that such force limiter (110) may be used in other surgical instruments that incorporate alternative jaw arrangements with or without ultrasonic features. The invention is thus not intended to be unnecessarily limited to ultrasonic surgical instruments, whether robotic or hand held, as described herein.
IV. Exemplary Combinations
The following examples relate to various non-exhaustive ways in which the teachings herein may be combined or applied. It should be understood that the following examples are not intended to restrict the coverage of any claims that may be presented at any time in this application or in subsequent filings of this application. No disclaimer is intended. The following examples are being provided for nothing more than merely illustrative purposes. It is contemplated that the various teachings herein may be arranged and applied in numerous other ways. It is also contemplated that some variations may omit certain features referred to in the below examples. Therefore, none of the aspects or features referred to below should be deemed critical unless otherwise explicitly indicated as such at a later date by the inventors or by a successor in interest to the inventors. If any claims are presented in this application or in subsequent filings related to this application that include additional features beyond those referred to below, those additional features shall not be presumed to have been added for any reason relating to patentability.
A surgical instrument, comprising: (a) an end effector, comprising: (i) a jaw, and (ii) a clamp arm configured to move relative to the jaw between an open position and a closed position; and (b) a shaft assembly proximally and longitudinally extending from the end effector and including: (i) a clamp actuator operatively connected to the clamp arm and configured to selectively move longitudinally to selectively direct the clamp arm between the open and closed positions, wherein the clamp actuator includes: (A) a proximal actuator portion, (B) a distal actuator portion, and (C) a force limiter longitudinally connected between the proximal and distal actuator portions and configured to transfer movement from the proximal actuator portion to the distal actuator portion up to transferring a predetermined force therethrough, wherein at least a portion of the force limiter is configured to deflect upon exceeding the predetermined force such that the proximal actuator portion is configured to longitudinally move relative to the distal actuator portion and thereby limit a clamping force between the jaw and the clamp arm.
The surgical instrument of Example 1, wherein the force limiter is configured to secure the proximal actuator portion relative to the distal actuator portion while transferring movement from the proximal actuator portion to the distal actuator portion up to transferring the predetermined force therethrough.
The surgical instrument of any one or more of Examples 1 through 2, wherein the force limiter includes a resilient portion, and wherein the resilient portion, the proximal actuator portion, and the distal actuator portion are singularly and unitarily formed together.
The surgical instrument of Example 3, wherein the resilient portion is set in tension.
The surgical instrument of any one or more of Examples 1 through 4, wherein the clamp actuator is configured to selectively move a first longitudinal direction to selectively direct the clamp arm toward the closed position, wherein the clamp actuator is configured to selectively move a second longitudinal direction to selectively direct the clamp arm toward the open position, wherein the second longitudinal direction is opposite the first longitudinal direction.
The surgical instrument of Example 5, wherein the force limiter is configured to transfer movement in the first longitudinal direction from the proximal actuator portion to the distal actuator portion up to transferring the predetermined force therethrough such that the at least the portion of the force limiter deflects upon exceeding the predetermined force.
The surgical instrument of any one or more of Examples 5 through 6, wherein the force limiter is configured to transfer movement in the second longitudinal direction from the proximal actuator portion to the distal actuator portion such that the at least the portion of the force limiter does not deflect upon exceeding the predetermined force.
The surgical instrument of any one or more of Examples 5 through 7, wherein the first longitudinal direction is a proximal direction, and wherein the second longitudinal direction is a distal direction.
The surgical instrument of any one or more of Examples 5 through 8, wherein the force limiter further includes a resilient portion and a spacer, wherein the spacer is secured relative to the resilient portion to retain the resilient portion in tension.
The surgical instrument of any one or more of Example 9, wherein the force limiter further includes a first securement and a second securement, wherein the resilient portion has first and second opposing end portions, wherein the first securement is affixed to the first end portion of the resilient portion and configured to inhibit movement of the first end portion of the resilient portion relative to the spacer toward one of the first or second longitudinal directions, and wherein the second securement is affixed to the second end portion of the resilient portion and configured to inhibit movement of the second end portion of the resilient portion relative to the spacer toward each of the first and second longitudinal directions.
The surgical instrument of Example 10, wherein the spacer is compressed between the first and second securements while the force transferred through the resilient portion is less than the predetermined force such that that the spacer is against the first securement.
The surgical instrument of any one or more of Examples 10 through 11, wherein the spacer is offset from the first securement and remains affixed to the second securement while the force transferred through the resilient portion is greater than the predetermined force to accommodate deflection of the resilient portion.
The surgical instrument of any one or more of Examples 10 through 12, wherein the spacer is adjustable relative to the resilient portion to select a predetermined load tension in the resilient portion for adjusting the limit on the clamping force between the jaw and the clamp arm.
The surgical instrument of any one or more of Examples 1 through 13, wherein the jaw includes an ultrasonic blade and the shaft assembly includes an acoustic waveguide, and wherein the acoustic waveguide is operatively connected to the ultrasonic blade.
The surgical instrument of any one or more of Examples 1 through 14, further comprising a body, wherein the shaft assembly distally extends from the body to the end effector, and wherein the force limiter is positioned between the body and the end effector.
The surgical instrument of any one or more of Examples 1 through 15, wherein the shaft assembly further includes an outer sheath and an inner tube, and wherein the clamp actuator is incorporated into the inner tube.
A surgical instrument, comprising: (a) an end effector, comprising: (i) an ultrasonic blade, and (ii) a clamp arm configured to move relative to the ultrasonic blade between an open position and a closed position; and (b) a shaft assembly proximally and longitudinally extending from the end effector and including: (i) a clamp actuator operatively connected to the clamp arm and configured to selectively move longitudinally to selectively direct the clamp arm between the open and closed positions, wherein the clamp actuator includes: (A) a proximal actuator portion, (B) a distal actuator portion, and (C) a force limiter having a resilient portion longitudinally connected between the proximal and distal actuator portions and configured to transfer movement from the proximal actuator portion to the distal actuator portion up to transferring a predetermined force therethrough, wherein the resilient portion is configured to deflect upon exceeding the predetermined force such that the proximal actuator portion is configured to longitudinally move relative to the distal actuator portion and thereby limit a clamping force between the ultrasonic blade and the clamp arm, wherein the resilient portion, the proximal actuator portion, and the distal actuator portion are singularly and unitarily formed together.
The surgical instrument of Example 17, wherein the force limiter is configured to secure the proximal actuator portion relative to the distal actuator portion while transferring movement from the proximal actuator portion to the distal actuator portion up to transferring the predetermined force therethrough.
The surgical instrument of any one or more of Examples 17 through 18, wherein the clamp actuator is configured to selectively move a first longitudinal direction to selectively direct the clamp arm toward the closed position, wherein the clamp actuator is configured to selectively move a second longitudinal direction to selectively direct the clamp arm toward the open position, wherein the second longitudinal direction is opposite the first longitudinal direction.
The surgical instrument of any one or more of Examples 17 through 19, further comprising a body, wherein the shaft assembly distally extends from the body to the end effector, and wherein the force limiter is positioned between the body and the end effector.
A surgical instrument, comprising: (a) an end effector, comprising: (i) a jaw, and (ii) a clamp arm configured to move relative to the jaw between an open position and a closed position; and (b) a shaft assembly proximally and longitudinally extending from the end effector and including: (i) a clamp actuator operatively connected to the clamp arm and configured to selectively move longitudinally to selectively direct the clamp arm between the open and closed positions, wherein the clamp actuator includes: (A) a proximal actuator portion, (B) a distal actuator portion, and (C) a force limiter longitudinally connected between the proximal and distal actuator portions and configured to transfer movement from the proximal actuator portion to the distal actuator portion up to transferring a predetermined force therethrough, wherein the force limiter includes a resilient portion and a spacer, wherein the spacer is secured relative to the resilient portion to retain the resilient portion in tension.
A method of limit a clamping force between a jaw and a clamp arm of a surgical instrument, the surgical instrument including (a) an end effector, having: (i) a jaw, and (ii) a clamp arm configured to move relative to the jaw between an open position and a closed position; and (b) a shaft assembly proximally and longitudinally extending from the end effector and including (i) a clamp actuator operatively connected to the clamp arm and configured to selectively move longitudinally to selectively direct the clamp arm between the open and closed positions, wherein the clamp actuator includes: (A) a proximal actuator portion, (B) a distal actuator portion, and (C) a force limiter longitudinally connected between the proximal and distal actuator portions and configured to transfer movement from the proximal actuator portion to the distal actuator portion up to transferring a predetermined force therethrough, wherein at least a portion of the force limiter is configured to deflect upon exceeding the predetermined force such that the proximal actuator portion is configured to longitudinally move relative to the distal actuator portion and thereby limit a clamping force between the jaw and the clamp arm, the method comprising: (a) closing the clamp arm against a tissue between the clamp arm and the tissue with a clamping force; and (b) deflecting at least a portion of the force limiter thereby limiting the clamping force to no greater than a predetermined maximum clamping force.
V. Miscellaneous
Any one or more of the teaching, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the teachings, expressions, embodiments, examples, etc. described in U.S. patent application Ser. No. 17/128,275, entitled “Ultrasonic Surgical Instrument with a Clamp Arm Clocking Assembly,” filed on Dec. 21, 2020; U.S. patent application Ser. No. 16/556,661, entitled “Ultrasonic Surgical Instrument with a Multi-Planar Articulating Shaft Assembly,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,667, entitled “Ultrasonic Transducer Alignment of an Articulating Ultrasonic Surgical Instrument,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,625, entitled “Ultrasonic Surgical Instrument with Axi symmetric Clamping,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,635, entitled “Ultrasonic Blade and Clamp Arm Alignment Features,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 16/556,727, entitled “Rotatable Linear Actuation Mechanism,” filed on Aug. 30, 2019; U.S. patent application Ser. No. 17/077,067, entitled “Surgical Instrument and Carrier KART Supporting Ultrasonic Transducer,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,086, entitled “Carrier KART and Jaw Closure of an Ultrasonic Surgical Instrument,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,130, entitled “Surgical Instrument with Clamping Sensor Feedback and Related Methods,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,136, entitled “Surgical Instrument with Non-clamping Sensor Feedback and Related Methods,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,250, entitled “Ultrasonic Surgical Instrument with a Carrier KART and Reusable Stage,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,373, entitled “Surgical Instrument with a Carrier KART and Various Communication Cable Arrangements,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,139, entitled “Ultrasonic Surgical Instrument with a Fixed Transducer Grounding,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,146, entitled “Ultrasonic Surgical Instrument with a Shaft Assembly and Elongated Waveguide Support Arrangement,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,152, entitled “Damping Rings for an Ultrasonic Surgical Instrument,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/077,110, entitled “Ultrasonic Surgical Instrument with a Mid-Shaft Closure System and Related Methods,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/076,956, entitled “Surgical Instrument with an Articulatable Shaft Assembly and Dual End Effector Roll,” filed on Oct. 22, 2020; U.S. patent application Ser. No. 17/076,959, entitled “Ultrasonic Surgical Instrument with a Distally Grounded Acoustic Waveguide,” filed on Oct. 22, 2020; and/or U.S. patent application Ser. No. 17/077,098, entitled “Ultrasonic Surgical Instrument with a Multiplanar Articulation Joint,” filed on Oct. 22, 2020. The disclosure of each of these applications is hereby incorporated by reference herein.
It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Versions described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by an operator immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.