The present invention relates to an ultrasonic processing apparatus, and more specifically relates to a clamp type ultrasonic processor and application thereof.
Currently, functional apparatus for ultrasonic cavitation, including those ultrasonic cleaning apparatus utilizing liquid phase as transfer agent, adopt a form of trough or tank as the structure of their ultrasonic irradiation receivers. However, if these apparatus have to process gas, liquid or mixture of gas, liquid and solid materials flowing in a tube, they would encounter unsolvable problems.
An object of the present invention is to solve the problems now existing in the ultrasonic processing of gas, liquid or mixture of gas, liquid and solid materials. To attain the above object, the present invention provides a clamp type ultrasonic processor and application thereof. The present invention could significantly enhance the effect of ultrasonic processing, and it is not required to alter many aspects of the existing apparatus, and it could operate even without interrupting a continuous working status. Furthermore, technical features additionally provided to the existing apparatus according to the present invention require only a small amount of space.
A clamp type ultrasonic processor according to the present invention comprises a transducer assembly and a functional gripper; the transducer assembly comprises a transducer and an amplitude transformation shaft; the transducer and the amplitude transformation shaft are connected with each other; and at least one set of the transducer assembly is used and connected with the functional gripper.
The functional gripper may comprise an irradiation front line shaft-approximal block and an irradiation front line tube-supporting block; a functional gripper chamber is formed inside the irradiation front line shaft-approximal block and the irradiation front line tube-supporting block for accommodating an ultrasonic irradiation receiver; the irradiation front line shaft-approximal block and the irradiation front line tube-supporting block are clamped tightly to grip the ultrasonic irradiation receiver tightly; the irradiation front line shaft-approximal block is connected with the amplitude transformation shaft.
The amplitude transformation shaft and the irradiation front line shaft-approximal block are connected via a connection screw.
The irradiation front line shaft-approximal block and the irradiation front line tube-supporting block are connected and fixed with each other via at least one screw.
The functional gripper chamber formed by the irradiation front line shaft-approximal block and the irradiation front line tube-supporting block contact tightly and fit perfectly to be clamped against with an outer wall of the ultrasonic irradiation receiver.
A connecting part between the irradiation front line shaft-approximal block and the amplitude transformation shaft may adopt a flat, raised or sunken shape in order to achieve good resonance effect when connected with the amplitude transformation shaft.
Two or more of the amplitude transformation shafts may be provided; a screw is provided for connection between two amplitude transformation shafts; and a flange could also be provided at a connecting part between two amplitude transformation shafts for consolidation purpose.
The functional gripper may adopt a rectangular shape, a circular shape, an oval shape or a triangular shape etc. The functional gripper chamber formed inside the functional gripper may adopt a rectangular shape, a circular shape, an oval shape or a triangular shape etc. according to the shape of the ultrasonic irradiation receiver being clamped.
An application of a clamp type ultrasonic processor, in which at least one clamp type ultrasonic processor is provided on an outer wall of an ultrasonic irradiation receiver; and a functional gripper chamber formed by a functional gripper of the clamp type ultrasonic processor is clamped against an outer wall of the ultrasonic irradiation receiver.
An application of a clamp type ultrasonic processor in metal production, in which a graphite rod is used as a transfer agent of ultrasonic waves; one end of the graphite rod is immersed into molten metal liquid phase; at least one of the clamp type ultrasonic processor is provided on the graphite rod; and a functional gripper of the clamp type ultrasonic processor clamps at an outer wall of the graphite rod.
According to the present invention, an outer wall of an ultrasonic irradiation receiver to be processed by ultrasonic waves could be tightly fitted with and clamped against a functional gripper, wherein one, two or more sets of transducer assembly/assemblies that match(es) with the functional gripper and each comprising a transducer and an amplitude transformation shaft is/are disposed on the functional gripper. Accordingly, the transducer assembly and the ultrasonic irradiation receiver with flowing liquid phase, thick liquid materials and vaporized materials inside could be tightly connected as a whole, and continuous or pulse type ultrasonic irradiation could also be provided continuously towards the materials inside the receiver. As a result, ultrasonic irradiation function could be significantly enhanced. Furthermore, conventional existing apparatus could be technically improved and modified easily by additional features provided according to the present invention without altering many aspects of the existing apparatus and even without interrupting a continuous working status during a production process. Furthermore, the technical features additionally provided to the existing apparatus according to the present invention require only a small amount of space, and they are also easy to position. Therefore, the present invention provides a very practical apparatus for modification and application of ultrasonic processing.
The clamp type ultrasonic processor and application thereof according to the present invention are described in detail below with reference to the accompanying drawings.
As shown in
Basic structural formation of the functional griper of the clamp type ultrasonic processor should be highly adaptable to different sizes of ultrasonic irradiation receivers to which it is acted upon, and it should therefore subject to corresponding structural adaptation. The principle of adaptation lies in prioritizing the effect of resonance. As shown in
In view of steric hindrance resulted from the overall disposition of the functional gripper and the ultrasonic irradiation receiver that requires processing, and in view of the prioritization of resonance, the irradiation front line shaft-approximal block 3 and irradiation front line tube-supporting block 4 of the functional gripper could be made correspondingly in different shapes. The functional gripper could adopt a rectangular shape, a circular shape, a ring shape, a circular short chain shape, an oval shape, a triangular shape or a circular truncated cone shape etc. As shown in
The irradiation front line shaft-approximal block 3 and the irradiation front line tube-supporting block 4 of the functional gripper are connected through tightening screws 6 and tightly grip an outer wall of the ultrasonic irradiation receiver which requires processing. Two tightening screws 6 could be used on a left side and a right side of the functional gripper, with one screw at one side. This kind of disposition specifically in respect of additional features coupled to a conventional apparatus is beneficial to the improvement and modification of operation since only an assembly between the irradiation front line shaft-approximal block 3 and the irradiation front line tube-supporting block 4 assembled by two tightening screws 6 is required at a selected position on the ultrasonic irradiation receiver in use. For some other additionally disposed apparatus, specifically those clamping apparatus fitted onto a small ultrasonic irradiation receiver (diameter: 5-150 mm), use of one tightening screw 6 as illustrated in
As shown in
Two or more amplitude transformation shafts 2 could be provided. The amplitude transformation shafts 2 are connected with one another by tightening screws. A flange 10 could be used at a connecting part between two amplitude transformation shafts 2 for consolidation purpose. As shown in
As shown in
As shown in
Application of the clamp type ultrasonic processor is described below: at least one set of the clamp type ultrasonic processor is provided around a functional gripper chamber in which an ultrasonic irradiation receiver is accommodated. A functional gripper of the clamp type ultrasonic processor clamps on an outer wall of the ultrasonic irradiation receiver. The clamp type ultrasonic processor of the present invention could treat a cylindrical tank of the existing conventional supercritical extraction apparatus as a tubular ultrasonic irradiation receiver and arrange the clamp type ultrasonic processors to be mounted in an orderly manner at an outer wall of such supercritical cylindrical tank, as illustrated in
An application of the clamp type ultrasonic processor in metal production is described below: as shown in
The clamp type ultrasonic processor of the present invention has the following advantages and scopes of applications:
1. The existing direct immersion type of ultrasonic processor immerses directly into material being acted upon. Therefore, when this kind of processor is used in liquid phase material, metal particles of an immersed portion of the processor will diffuse into the material and therefore pollute the material. On the contrary, the present invention does not have the same problem because ultrasonic irradiation of the present invention is transmitted to the material under separation of the processor and the material by an outer wall of a container.
2. The present invention benefits clamp type and tubular type external installations since it is obviously convenient to install and highly adaptable to existing apparatus for technical improvement and modification. Furthermore, installation of the present invention causes less steric hindrance, resulting in more flexible use of space.
3. The present invention produces good effect when it is applied to plastic extrusion machines or injection molding machines.
4. The present invention could be applied to ultrasonic vibration of thick liquid materials to speed up homogenization, refinement and dispersion, so that these materials for coating apparatus become smooth and flat. Application of the present invention particularly in respect of preparation of thick liquid coating materials for positive and negative terminals of batteries is very effective, and thus improving the craftsmanship thereof.
5. Application of the present invention in respect of preparing bio-diesel could facilitate transesterification, reduce by-products, and alleviate the pressure from the demand for processing procedures such as separation and gasification etc. of materials at a downstream portion of a manufacturing process. As such, the percentage of material utilization increases.
6. Application of the present invention in respect of ultrasonic wine aging could facilitate the wine to meet a target standard quickly and effectively.
7. Application of the present invention in respect of ultrasonic extraction of Chinese medicine could speed up extraction of effective ingredients from plants and animal bodies for medicinal and health care uses. Compared with ultrasonic extraction in a form of cleaning trough, a better extraction effect could be attained by using the present invention.
8. Application of the present invention in wood-plastic composite industry has excellent effect on removing organic materials such as protein, pectin, oligosaccharides and esters in powder of natural fillers such as wood powder and bamboo powder.
9. Application of the present invention has excellent effect on inactivating organisms such as rupturing of plant cells, rupturing of Ganodorma Lucidum (Lingzhi) spores, terminating living cyanobacteria (blue-green algae) and micro-organisms. The present invention could also be used for inactivating organisms in ballast water of a vessel.
10. Application of the present invention in respect of sewage treatment combined with the use of ultraviolet and nano TiO2 (titanium dioxide) solid catalyst could lead to quick reaction, degradation, chain scission, and molecular isomerization etc. of pollutant particles until hydrolysis chemical reaction occurs quickly to achieve water purification. The present invention could also be used for killing germs, virus, harmful micro-organisms, and anthrax virus in mails, and it could also be used for environment sanitization and for eliminating bad odor in air for purification and sanitization of air.
11. The present invention could be applied to induce crystallization. Ice making in a quick and direct manner by using ultrasonic wave has a prospect towards practicability. It also has a promising prospect for inducing crystallization in hydrate.
12. The present invention used together with a graphite rod for ultrasonic irradiation towards a tank of molten metal liquid phase through the graphite rod could effectively induce crystallization and facilitate and enhance metal properties. The present invention is also an effective means for preparing materials such as alloys.
13. Application of the present invention in respect of water activation could cut off hydrogen bond in a water particle having a long chain. The water particle having a long chain then changes its composition and transforms into an active state having a shorter chain. This kind of activated water is a very good kind of healthy activated drinking water.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0109377 | Feb 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2010/001741 | 11/1/2010 | WO | 00 | 8/1/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/094925 | 8/11/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5159580 | Andersen et al. | Oct 1992 | A |
20120300590 | Yan et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
1807011 | Jul 2006 | CN |
Number | Date | Country | |
---|---|---|---|
20120300590 A1 | Nov 2012 | US |