This present invention relates to the application of Nickel Titanium or other shape memory alloy as an actuator for clamping and shutoff, squeeze off, of plastic pipe and tubing used in the transmission of gas or fluid under pressure. Natural gas, water and other fluids are routinely transported using flexible plastic, polyolefin, pipe and tubing. The fluids are pressurized to move, transmit, them through pipes which may be called “pressure pipe”.
Clamping is commonly performed by construction and safety personnel to shutoff natural gas, water, and other fluid flow through plastic pipes. During construction and for safety shutoff, or other reasons, the flow of fluids through a pipe must be stopped. It may be necessary to permanently halt the flow, or only temporarily stop the flow. Current methods employ manual or powered clamps which allow operators to safely and securely shutoff gas or fluid flow through pressure pipe. One of the values of using plastic pipe is its ability to recover its shape and continue to safely transmit the fluid subsequent to a squeeze off clamping event.
The enabling technology for this invention is shape memory alloys (SMAs). SMAs experience a reversible shape change from a martensite state to an austenite state as a result of a change in temperature. Austenite and martensite are different internal crystal structures of the alloys. A SMA element is created, forged, into a desired form such as a tube, rod, bar, or beam. It is then set by mechanical deformation into a preferred shape, the austenite set shape (As), using high temperature (Ts). Once set and cooled back to its martensite state the element retains the set shape, As.
The SMA element is then mechanically deformed. It will hold the new deformed shape, the martensite start shape (Ms), until heated to the austenite start temperature (Tas), which is significantly lower than the temperature, Ts, used to set the austenite shape. At this temperature, the element will begin to revert to the set shape, As. It will continue to deform toward that set shape as the temperature is raised until it is as close to the set shape as the mechanical force being continuously applied for training allows. This is the austenite finish shape (Af) which may approximate, but is unlikely to equal, As. This shape occurs at the austenite finish temperature (Taf), which is higher than Tas, but also significantly lower than the temperature, Ts, used to set the shape, As. As the element cools below the martensite start temperature (Tms) it will begin to revert to the martensite start shape, Ms, finally obtaining that shape at the martensite finish temperature (Tmf).
Training of SMA elements is accomplished by thermal cycle training. This training requires repeated cycles of heating and cooling between the Tmf and Taf temperatures while the SMA element is under mechanical strain. An SMA element will revert from the trained austenite finish shape, Af, to the martensite start shape, Ms, as the material cools to the martensite finish temperature, Tmf. After training, the SMA element will cycle between the two shapes Ms and Af as it is heated from Tmf to Taf and then cooled back to Tmf. These physical characteristics of SMAs are used in this invention to enable different embodiments of clamps for squeeze off, via clamping, of pressurized gas or fluid flow through plastic pipe.
Clamping technology has a long history (U.S. Pat. No. 636,971A). Clamps of various design have been created to meet specific needs (U.S. Pat. Nos. 3,341,909A, 4,743,079A). In recent decades, the transmission of pressurized fluids through plastic pipe for commercial and residential use has become standard practice. Current technology provides construction personnel, police, and fire departments either manual or powered mechanisms for pressure pipe squeeze off clamping (U.S. Pat. Nos. 3,589,668A, 3,730,478A, 3,575,405A, 3,599,960A, 5,219,146A, 7,559,525B2). These devices can be heavy and difficult to deploy. Therefore, what is needed is a lighter weight and easier to deploy device for squeeze off of plastic gas and fluid pressure pipe.
The discovery of Nickel Titanium (NiTi) alloys, one of the known shape memory alloys, has provided a material which may be used here as an actuator (U.S. Pat. Nos. 5,127,228A, 4,565,589A, 6,065,934A, 6,499,952B1, 9,885,345B2, 7,159,398B1) for the design of a new and unique type of clamp which meets these basic needs for the squeeze off of plastic pressure pipe. Prior Art clamps have been designed using shape memory alloys (CN101693357A, U.S. Pat. No. 9,732,776B2), but not in the same manner or for the unique application described herein.
Therefore, it is a primary object, feature, or advantage of the present invention to improve upon the state of the art by creating a device which provides users an easy, safe, and efficient means for squeeze off, via clamping, of pressurized gas or fluid flow through plastic pipe.
It is a further object, feature, or advantage of the present invention to provide users of this device a means of deploying the device for squeeze off of a pipe at a distance from the user, such as from outside a building interior or exterior wall, or from the earth's surface to a pipe buried in the earth. This remote deployment method may be an extension of the handle to provide the user a means of operating or powering the device of this invention at a distance from the user, or may include remote triggering using a wireless mechanism.
It is a further object, feature, or advantage of the present invention that the device is not dangerous to use in a flammable environment, and will not cause or induce sparks through its use, or via static electrical buildup.
It is a further object, feature, or advantage of the present invention that it may be utilized as a onetime clamp for permanent pipe closure or as a temporary clamp which may be released through a subsequent user-initiated action, allowing fluid flow to resume.
One or more of these and/or other objects, features, or advantages of the present invention will become apparent from the Specification and Claims that follow. No single embodiment need meet all of these objects, features, or advantages and different embodiments may meet different objects, features, or advantages. The present invention is not to be limited by or to these objects, features, or advantages.
The above-mentioned features of this invention, and the methods of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying figures, wherein:
Number | Name | Date | Kind |
---|---|---|---|
363971 | Smead | May 1887 | A |
3341909 | Havener | Sep 1967 | A |
3575405 | Harding | Apr 1971 | A |
3589668 | Gill | Jun 1971 | A |
3599960 | Phillips | Aug 1971 | A |
3730478 | Burke et al. | May 1973 | A |
4565589 | Harrison | Jan 1986 | A |
4743079 | Bloch | May 1988 | A |
5127228 | Swenson | Jul 1992 | A |
5219146 | Thompson | Jun 1993 | A |
5540689 | Sanders | Jul 1996 | A |
6065934 | Jacot | May 2000 | A |
6499952 | Jacot et al. | Dec 2002 | B1 |
6746461 | Fry | Jun 2004 | B2 |
7159398 | Bushnell et al. | Jan 2007 | B1 |
7559525 | Grimes | Jul 2009 | B2 |
9732776 | Madsen et al. | Aug 2017 | B2 |
9885345 | Calkins et al. | Feb 2018 | B2 |
20070071575 | Rudduck | Mar 2007 | A1 |
20100050399 | Browne | Mar 2010 | A1 |
20100109322 | Zavattieri | May 2010 | A1 |
20140017025 | Hemingway | Jan 2014 | A1 |
20160064750 | Ostadi | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
101693357 | Apr 2010 | CN |