This invention relates to a clamping apparatus for use in releasably grasping a load to be lifted from two or more sides of the load.
Various clamping apparatuses have been developed for use in lifting loads. Among these clamping apparatuses are ones having a plurality of clamping arms which can releasably grasp a load to be lifted from multiple sides. In some cases, the clamping arms pivot between an open and closed position. In other cases, the clamping arms translate without pivoting along a linear or other path between an open and closed position.
With clamping apparatuses of the type having movable clamping arms which have been proposed in the past, the height of the load that can be lifted by the clamping arms is limited by the length of the clamping arms. The taller is the load, the longer the clamping arms need to be. As the clamping arms become longer, the clamping apparatus as a whole becomes more bulky and more difficult to maneuver. In addition, as the length of the clamping arms increases, the bending moments applied to the clamping arms increase, and the clamping arms need to be heavier to resist the increased bending moments. Furthermore, the longer are the clamping arms, the higher the clamping apparatus must be lifted in order to clear the top of a load to be lifted or in order to avoid collisions with other items when the clamping apparatus is being transported or maneuvered. This imposes limitations on the equipment used to manipulate the clamping apparatus and the height of the workplace in which the clamping apparatus is used.
The present invention provides a clamping apparatus in which the height of a load which can be lifted by the clamping apparatus is not limited by the length of the clamping arms of the clamping apparatus.
The present invention also provides a clamping apparatus which can be compact and light weight in spite of being able to handle a tall and heavy load.
The present invention additionally provides a method of grasping a load using a clamping apparatus.
According to one form of the present invention, a clamping apparatus includes a frame having an opening through which a load can pass, at least one pair of clamping arms mounted on the frame for grasping and release a load, and at least one actuator connected to the clamping arms for moving the clamping arms towards and away from each other.
The opening in the frame is preferably large enough to contain an imaginary rectangle having dimensions of at least 24×24 inches, more preferably at least 30×38 inches, and still more preferably at least 40×48 inches as viewed in plan.
The clamping arms are not restricted to any particular type of movement in order to grasp and release a load. In a preferred embodiment, the clamping arms are pivotably mounted on the frame.
In another form of the present invention, a method of grasping a load includes contacting opposite sides of a load with the clamping arms of a clamping apparatus according to the present invention with the load extending above the frame. Preferably the load is capable of extending at least 12 inches and more preferably at least 24 inches above the frame.
A clamping apparatus according to the present invention is particularly suitable for use with a lift truck (also referred to as a fork lift). However, the clamping apparatus can be used with any mechanism capable of raising and lowering the clamping apparatus together with a load held by the clamping apparatus, such as a crane, a boom, a davit, or a robot arm.
A load which can be lifted by a clamping apparatus according to the present invention is not restricted to any particular type or shape of object. Some examples of objects with which the clamping apparatus can be employed are beverages such as soft drinks or beer, groceries, bricks, lumber, barrels, bottles, and other cylindrical objects, bales, stacks of paper products, and boxes, cartons, and packages of various types of merchandise. The object or objects to be lifted may be arranged in one or more layers, such as when a load comprises a plurality of boxes of merchandise stacked on a shipping pallet in a plurality of layers, but the clamping apparatus can also be used to lift a single object, such as a single box. Thus, the present invention can be used with virtually any objects which can be grasped from a plurality of sides.
When the clamping apparatus is intended for use in grasping a four-sided load, it will typically have an even number of clamping arms, such as two or four clamping arms arranged in opposing pairs. However, the number of clamping arms and their orientation with respect to each other is not restricted. For example, if the clamping apparatus is intended for use in grasping a round object such as a barrel, it may have an odd number of clamping arms, such as three.
Preferred embodiments of a clamping apparatus according to the present invention will be described while referring to the accompanying drawings.
The frame 20 has a size and a shape such that a load to be lifted by the clamping apparatus 10 can pass vertically through an opening 20a (shown in
As an example, a frame 20 with inner dimensions of 47×55 inches is easy to use in gripping a load on a standard 40×48 inch pallet commonly used in the grocery industry. In order to enable the clamping apparatus 10 to grasp a wide range of merchandise commonly transported in the beverage and grocery industries, the opening 20a in the frame 20 is preferably large enough to surround an imaginary rectangle having dimensions as viewed in plan of at least 24×24 inches, more preferably at least 32×38 inches, and still more preferably at least 40×48 inches. The opening 20a in the frame 20 may be yet larger, such as large enough to surround an imaginary rectangle measuring 48×48 inches.
The frame 20 may have any structure which gives it sufficient strength and rigidity to support a load. The illustrated frame 20 comprises four legs 21 comprising hollow steel tubes which are rigidly secured to each other at their ends at right angles to each other to form a rigid structure. Reinforcing plates 22 are secured to the ends of the legs 21 at the lengthwise ends of the frame 20 to reinforce the corners and to cover the open ends of the tubes forming the legs 21.
The clamping arms 30 can have any structure which enables them to grasp and release a desired load. The illustrated clamping arms 30 are similar in structure to the clamping arms disclosed in U.S. Pat. No. 7,537,427 entitled “Clamping Apparatus”, the disclosure of which is incorporated by reference. As shown in
As shown in
The upper end of each lever portion 31 is secured to a tube 50, which is rotatable about a shaft 51 centered on the first axis 45. The shaft 51 is supported at its ends by two mounting brackets 52 secured to and extending downwards from one of the legs 21 of the frame 20 to provide a pivotable connection between the lever portions 31 and the frame 20 about the first axis 45.
The upper end of each control rod 35 is pivotably connected to a mounting bracket 53 secured to one of the legs 21 of the frame 20 to provide a pivotable connection between the control rod 35 and the frame 20 about the fourth axis 48.
The control rod 35 may have a structure which enables it to be varied in length in order to adjust the angle of the inner surface of the contact portion 40 with respect to the vertical. In the illustrated embodiment, each control rod 35 includes a tube 38 and a clevis 39 secured to the upper end of the tube 38. The clevis 39 has a threaded shank which can be screwed into a nut secured to the upper end of the tube 38, and the clevis 39 can be prevented from rotating with respect to the tube 38 by a lock nut. The clevis 39 can be screwed into or out of the nut at the end of the tube 38 to adjust the overall length of the control rod 35.
A plurality of actuators are provided for pivoting the clamping arms 30 with respect to the frame 20. A separate actuator can be provided for each clamping arm 30, or a single actuator can be used to operate a plurality of the clamping arms 30. In the present embodiment, the actuators comprise hydraulic cylinders 60 connected to an unillustrated source of hydraulic fluid by unillustrated hydraulic lines. When the clamping apparatus is intended to mounted on a lift truck, the hydraulic tank of the lift truck can conveniently be used as a source of hydraulic fluid, such as with the clamping apparatus sold by Tygard Machine & Manufacturing Co. as the Tygard Claw. Each hydraulic cylinder 60 has a first end pivotably connected to a bracket 61 extending downwards from the frame 20 and a second end pivotably connected to a lever 62 which is secured to and extends downwards from one of the tubes 50 supporting the clamping arms 30. The two ends of the hydraulic cylinder 60 are connected to the bracket 61 and the lever 62 for pivoting with a single degree of freedom, but one or both ends of the hydraulic cylinder may have a connection which permits pivoting with multiple degrees of freedom. The hydraulic cylinders 60 exert a linear drive force on the levers 62 to pivot the clamping arms 30, but actuators which generate a rotational drive force can also be used. Some examples of other types of actuators which can be employed are pneumatic cylinders, hydraulic motors, pneumatic motors, and electric motors. Mechanisms for driving and controlling a variety of actuators are well known to those skilled in the art, and any suitable such mechanisms can be employed for the actuators in the present invention.
The hydraulic cylinders 60 can be extended and retracted to pivot the clamping arms 30 between the fully closed positions shown in
As viewed in plan, the inner surfaces of the contact portions 40 in the present embodiment coincide with the sides of an imaginary rectangle. When the clamping arms 30 are in their fully open positions, the imaginary rectangle is preferably at least as large as the outer dimensions as viewed in plan of the largest load that it is desired for the clamping apparatus 10 to lift. When the clamping arms 30 are in their fully closed position, the imaginary rectangle is preferably somewhat smaller than the outer dimensions as viewed in plan of the smallest load that it is desired for the clamping apparatus 10 to lift. The opening 20a defined by the frame 20 is preferably no smaller than the imaginary rectangle defined by the contact portions 40 when the clamping arms 30 are in their fully open position so that the largest load to be grasped by the clamping arms 30 can pass vertically through the opening 20a to above the frame 20. In the illustrated embodiment, the separation between the left and right opposing contact portions 40 in
The clamping apparatus 10 can be supported by any suitable device capable of positioning the clamping apparatus 10 with respect to a load and then lifting the clamping apparatus 10 and the load gripped by the clamping apparatus 10. One example of a suitable device for supporting the clamping apparatus 10 is a lift truck. There is no particular limitation on a method of mounting the clamping apparatus 10 on a lift truck, but in the present embodiment, the clamping apparatus 10 is capable of being directly supported by the forks of a lift truck. As shown in the figures, fork-engaging members comprising two parallel fork-receiving tubes 23 are secured to the top surfaces of two of the legs 21 of the frame 20. Each tube 23 has dimensions such that a standard fork 76 of a lift truck 70 can be loosely inserted into the tube 23, and the horizontal separation between the two tubes 23 is within the range in which the horizontal separation between the forks of a lift truck can be adjusted. As shown in
A fork-engaging member is not restricted to the fork-receiving tubes 23, and any members into which the forks 76 of a lift truck can be inserted to support the weight of the clamping apparatus 10 can be employed. In addition, the fork-receiving tubes 23 need not be mounted on the top surface of the frame 20. For example, they could be mounted on the sides or lower surface of the frame 20.
In order to mount the clamping apparatus 10 on the lift truck 70, the clamping apparatus 10 is first placed in a substantially horizontal attitude with the contact portions 40 of the clamping arms 30 resting on a floor or other support surface where the clamping apparatus 10 can be approached by the lift truck 70. The lift truck 70 is then maneuvered so that each fork 76 of the lift truck 70 is aligned with one of the fork-receiving tubes 23 of the clamping apparatus 10, and the lift truck 70 is then driven forward to insert each fork 76 into a corresponding one of the tubes 23. The lift truck 70 continues to move forwards until the tapered ends of the forks 76 extend from the tubes 23 and the vertical plates 25 mounted on the tubes 23 are disposed to the rear of the vertical portions of the forks 76. Unillustrated retaining members such as pins or bolts are then inserted into the aligned holes 25a in the plates 25 to prevent the clamping apparatus 10 from translating with respect to the forks 76 in the fore-and-aft direction of the lift truck 70. The forks 76 are then slightly raised along the mast 73 far enough to bring the upper surface of the horizontal portion of each fork 76 into contact with the top inner surface of the corresponding fork-receiving tube 23. For example, the forks 76 can be raised far enough to lift the clamping apparatus 10 off the support surface on which it was resting so that the weight of the clamping apparatus 10 is supported entirely by the forks 76. In this state, the bolts 27 mounted in the horizontal plates 26 can be screwed upwards to bring the upper end of each bolt 27 into contact with the bottom surface of the corresponding fork 76 to reduce the vertical play between the top surface of the fork 76 and the bottom inner surface of the fork-receiving tube 23. Once the clamping apparatus 10 is mounted on the lift truck 70, the clamping apparatus 10 can be moved around a workplace to handle loads.
When it is desired to grasp a load using the clamping apparatus 10, the clamping apparatus 10 is positioned by the fork lift 70, for example, above a load (such as a stack of boxes disposed atop a pallet) with the clamping arms 30 in the fully open positions shown in
The angle of the contact portions 40 with respect to the sides of a load when contacting a load can be selected in accordance with the type of load, as described, for example, in above-mentioned U.S. Pat. No. 7,537,427. As stated above, this angle can be varied by adjusting the length of the control rods 35.
In previously known clamping apparatuses with clamping arms movably mounted on a frame, the height of a load which can be grasped by the clamping arms is limited by the length of the clamping arms. In contrast, in the present embodiment of a clamping apparatus 10, since a load can extend vertically through the frame 20, the length of the clamping arms 30 is not determined by the height of a load and can be significantly shorter than the height of a load as measured from the point of contact between the contact portions 40 of the clamping arms 30 to the top of the load. This fact makes it possible to significantly decrease the size (particularly the height) and weight of the clamping apparatus 10, thereby making the clamping apparatus 10 easier to handle and reducing the load on a lift truck 70 or other apparatus for supporting the clamping apparatus 10.
In the illustrated embodiment, the clamping apparatus 10 has no obstructions whatsoever above the frame 20, so the only limits on how high a load 80 can extend through the frame 20 to above the clamping apparatus 20 are factors such as the stability of the load 80, the height of the mast 73 of the lift truck 70, and the height of the workplace in which the lift truck 70 is operating. It is possible for the clamping apparatus 10 to include structure above the frame 20 which could limit the maximum height of a load 80, such as a protective net. However, any obstruction is preferably disposed high enough above the frame 20 to enable a load 80 to extend above the frame 20 by at least 12 inches and preferably by at least 24 inches.
This application claims the benefit of U.S. Provisional Application No. 61/457,489 filed on Apr. 11, 2011, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1822629 | McIlvried | Sep 1931 | A |
3194422 | Shinn | Jul 1965 | A |
3262595 | Seip et al. | Jul 1966 | A |
3453017 | Nagy | Jul 1969 | A |
3458229 | Cooper et al. | Jul 1969 | A |
4252496 | Williams | Feb 1981 | A |
4331320 | Naruse et al. | May 1982 | A |
5354112 | Hara et al. | Oct 1994 | A |
5429490 | Myers et al. | Jul 1995 | A |
6749392 | Adams et al. | Jun 2004 | B1 |
7537427 | Tygard | May 2009 | B2 |
7993094 | Tygard | Aug 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20120263563 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
61457489 | Apr 2011 | US |