Claims
- 1. A clamping bracket for mechanical and electrical connection to a metal plate, comprising:
- a generally U-shaped plate having a front planar member containing a threaded bore, a base member at a bight section, and a rear planar member which is spaced from the front planar member to define a gap for containing the metal plate, the front and rear planar members being relatively movable with respect to each other to vary the distance of the gap,
- a threaded stud having a head and an extending neck with threads to rotatably engage the threaded bore for axial movement towards the rear planar member, the end of the neck having an abrading end surface movable into engagement with the metal plate to urge the metal plate against the rear planar surface and thereby vary the gap distance, the head having a stop surface which abuts the front planar member when the abrading end surface has penetrated an outer surface of the metal plate to prevent further relative motion between the front and rear planar members so that the rear planar member remains approximately parallel to the front planar member, whereby the metal plate is electrically connected to and mechanically clamped by the stud.
- 2. The clamping bracket of claim 1 wherein the front planar member and the rear planar member are slanted towards each other and are relatively bendable as the threaded stud urges the metal plate against the rear planar member.
- 3. The clamping bracket of claim 2 wherein the head is enlarged and a reduced diameter neck extends from the head to the abrading end surface, and means for securing an electrical wire to the enlarged head to thereby electrically connect the electrical wire to the metal plate.
- 4. The clamping bracket of claim 3 wherein the securing means comprises a cross bore extending through the head for receiving the electrical wire therein, a threaded head bore extending from a surface of the enlarged head to intersect the cross bore, and a screw securable within the threaded head bore and rotatable for abutment against the electrical connector when located within the cross bore.
- 5. The clamping bracket of claim 1 wherein the front planar member has only a single threaded bore located therein, and the threaded stud forms the sole element which is movable from the front planar member and into engagement with the metal plate whereby the stud clamps the generally U-shaped plate against the metal plate and electrically connects the stud to the metal plate.
- 6. The clamping bracket of claim 5 wherein the extending neck of the threaded stud has a diameter which is on the same order as or greater than the distance of the gap.
- 7. The clamping bracket of claim 1 wherein the end of the neck has an annular rim which creates the abrading end surface and which surrounds a center point which projects outwardly from the surrounding annular rim.
- 8. The clamping bracket of claim 1 wherein the rear planar member is formed by a spring leaf which extends upwardly from the base member and is bendable rearwardly away from the front planar member as the threaded stud is rotated to urge the metal plate against the rear leaf spring until the stop surface abuts the front planar member.
- 9. The clamping bracket of claim 1 including rib means extending between the front planar member and the base member to form a rigid connection therebetween while allowing the rear planar member to move relative to the braced front planar member.
- 10. A clamping bracket for mechanical and electrical connection to a metal plate, comprising:
- a generally U-shaped plate having a front planar member containing a threaded bore, a base member at a bight section, and a rear planar member extending upwardly from the bight section and spaced from the front planar member to create a gap therebetween for containing the metal plate, a plurality of projections extending from the rear planar member into the gap and toward the front planar member,
- a threaded stud having a head and an extending neck with threads to rotatably engage the threaded bore for axial movement towards the rear planar member, the end of the neck having an abrading end surface movable into engagement with the metal plate to urge the metal plate against the plurality of projections on the rear planar surface and thereby clamp the metal plate as the abrading end surface penetrates an outer surface of the metal plate to electrically connect the stud to the metal plate;
- wherein the rear planar member has a pair of side surfaces and a top surface therebetween which defines an opening for inserting the metal plate into the gap, and the plurality of projections include at least a first projection on one of the side surfaces and a second projection on the other of the side surfaces for engaging the metal plate at spaced locations which are approximately the width of the rear planar member.
- 11. The clamping bracket of claim 10 wherein the first and second projections are stamped into the rear planar member to create barbs formed from the rear planar member and which project into the gap.
- 12. The clamping bracket of claim 10 wherein the plurality of projections include at least a third projection on one of the side surfaces and a fourth projection on the other of the side surfaces, the third and fourth projections being spaced from the first and second projections respectively so as to space the metal plate from the remainder of the rear planar member as the outer surface of the metal plate is engaged by the abrading end surface.
- 13. The clamping bracket of claim 10 wherein the front and rear planar members are relatively movable with respect to each other to vary the distance of the gap, and the threaded stud includes a stop surface which abuts the front planar member when the abrading end surface has penetrated the outer surface of the metal plate to prevent overtightening of the threaded stud.
- 14. The clamping bracket of claim 13 wherein the front planar member and the rear planar member are slanted towards each other and are relatively bendable as the threaded stud urges the metal plate against the rear planar member, and the stop surface abuts the front planar member when the front and rear planar members are approximately parallel to each other.
- 15. The clamping bracket of claim 10 wherein the rear planar member is formed by a spring leaf which extends upwardly from the base member and is bendable rearwardly away from the planar member as the threaded stud is advanced to urge the metal plate against the rear leaf spring, whereby the plurality of projections prevent inadvertent movement of the leaf spring with respect to the metal plate.
- 16. The clamping bracket of claim 15 wherein the generally U-shaped plate includes a pair of side flanges extending upwardly from the bight section and each having a section in front of the front planar member to stiffen the front planar member against forward deflection as the stud urges the metal plate against the rear leaf spring.
- 17. The clamping bracket of claim 15 wherein the extending neck of the threaded stud has a diameter which is on the same order as or greater than the distance of the gap.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of my application Ser. No. 08/777,839 filed on Dec. 26, 1996, now U.S. Pat. No. 5,746,609 issued May 5, 1998.
US Referenced Citations (8)
Non-Patent Literature Citations (2)
Entry |
Sachs bonding connectors SC51-1, SC51-2, SC51-3 and application procedures, 1992. |
Sachs bonding connector SC51-CF, 1995. |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
777839 |
Dec 1996 |
|