Information
-
Patent Grant
-
6575442
-
Patent Number
6,575,442
-
Date Filed
Friday, September 28, 200123 years ago
-
Date Issued
Tuesday, June 10, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Lipsitz; Barry R.
- McAllister; Douglas M.
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
In order to provide a clamping device with a clamping rail (14) guided for displacement and an actuating device (12) which comprises a gripping element (77), by means of which the clamping rail (14) can be displaced, which can be used universally it is suggested that the clamping rail (14) be displaceable via the gripping element (77) in one direction (A) or an opposite direction (B) and that a change-over device be provided for freeing the displacement in one direction (A; B) and blocking the displacement in the opposite direction (B; A).
Description
This application is a continuation of international application number PCT/EP00/00818 filed on Feb. 2, 2000.
The present disclosure relates to the subject matter disclosed in International Application No. PCT/EP00/00818 of Feb. 2, 2000, which is incorporated herein by reference in its entirety and for all purposes.
BACKGROUND OF THE INVENTION
The invention relates to a clamping device with a clamping rail guided for displacement and an actuating device which comprises a gripping element, by means of which the clamping rail can be displaced.
Clamping devices of this type are known, for example, from DE 39 17 473 A1, DE 197 31 579 A1, DE 296 03 811 U1 or U.S. Pat. No. 4,989,847. They have the advantage that they may essentially be operated with one hand.
Proceeding on this basis, the object underlying the invention is to provide a clamping device which can be used universally and has, in particular, great operating convenience.
SUMMARY OF THE INVENTION
This object is accomplished in accordance with the invention, in a clamping device of the type specified at the outset, in that the clamping rail can be displaced via the gripping element in one direction or an opposite direction and that a change-over device is provided for freeing the displacement in one direction and blocking the displacement in the opposite direction.
As a result, the inventive clamping device may be used not only for clamping workpieces by exerting a clamping force but also for spreading them apart by exerting a spreading force, wherein the possibilities of use do not hinder one another since the displacement of the clamping rail can be blocked in one direction via the change-over device. In contrast to the devices known from the state of the art, a displacement in two directions may be brought about via the gripping element.
In an advantageous variation of one embodiment, the gripping element comprises a first gripping lever, by means of which the clamping rail can be displaced in one direction, and a second gripping lever, by means of which the clamping rail can be displaced in the opposite direction. As a result, one gripping lever is associated with each displacement direction and so the inventive clamping device may be used in a simple manner.
It is particularly advantageous when only one gripping lever can be actuated at the same time. It is thus ensured that an optimum result is achieved for the respective use—clamping or spreading apart, i.e. only the displacement in a single direction can be actuated at the same time and a clamping position or a spreading position cannot be released due to unintentional actuation of the other gripping lever. Furthermore, this has the additional advantage that the other gripping lever serves each time as a stationary counterpart for the manual system during the pivoting of one gripping lever and so no additional gripping element need be provided but rather the functional parts of a first gripping lever and a second gripping lever facilitate great operating convenience.
In a further variation of one embodiment, a gripping lever is provided, by means of which the clamping rail is displaceable in the one direction or the opposite direction depending on the direction of pivot. Since with such an embodiment only one single gripping lever need be provided, by means of which the clamping rail can be displaced in the one direction or the other direction depending on the direction of pivot, the clamping device may be produced in a simple manner.
It is particularly advantageous when one or several gripping levers are provided which are designed as rocker arms. As a result, a gripping lever can not only be pivoted but also displaced about its point of rotation and, in particular, displaced in a slide path. The advancing of a clamping rail is essentially brought about in that a gripping lever is pivoted and the degree of advancing depends on the angle of pivot. This is, however, limited. Via the design as a rocker arm, a gripping lever may follow the clamping rail in its direction of displacement during its pivoting movement and so a greater path of displacement of the clamping rail can be achieved with the same angle of pivot. It is favorable, in particular, for this purpose when a gripping lever is displaceable on a rocker arm path parallel to the clamping rail. As a result, a gripping lever may follow the clamping rail with its point of rotation in an effective manner.
A first gripping lever and a second gripping lever are advantageously coupled to one another such that they are displaceable together on a rocker arm path. As a result, it is possible for the gripping element to be displaced further as a whole in the right direction, independently of the direction of displacement of the clamping rail when a displacement by means of the first gripping lever and the second gripping lever is actuated, in order to increase the path of displacement of the clamping rail during a pivoting procedure. In this respect, a gripping lever, by means of which the displacement of the clamping rail is actuated, is favorably arranged and designed as a rocker arm so that it is movable in the direction of displacement of the clamping rail. As a result, it is automatically ensured that this gripping lever is guided in the right direction and thus a long path of displacement of the clamping rail can be brought about due to its actuation.
The change-over device favorably comprises blocking means, by means of which a displacement of the clamping rail in one direction can be blocked, wherein the displacement in the opposite direction is not impeded. This ensures that the multifunctionality (clamping or spreading apart) does not interfere with the respective use during use of the inventive clamping device.
In this respect, the direction of displacement of the clamping rail can favorably be switched via the blocking means. As a result, the corresponding direction of displacement of the clamping rail may be set in a simple manner.
The blocking means are favorably structural elements separate from the first and second gripping levers in order not to impair the operating convenience and the functioning of the gripping levers.
In one advantageous design of the inventive clamping device, the first and the second gripping levers are arranged and designed such that they can be gripped together with one hand. As a result, a good force can be exerted via manual actuation and, in particular, no additional stationary counterelement need be provided as handle for the pivoting of the gripping levers. Favorably, the first gripping lever is not pivotable when the second gripping lever can be actuated and the second gripping lever is not pivotable when the first gripping lever can be actuated.
The first gripping lever can be advantageously pivoted in the direction of the second gripping lever for the displacement of the clamping rail, and the second gripping lever can be pivoted in the direction of the first gripping lever for the displacement of the clamping rail. As a result, a displacement of the clamping rail may be achieved in a simple manner and, in particular, the constructional resources for the design of a displacement mechanism can be kept low.
Particularly in the variation of one embodiment, with which a single gripping lever is provided, due to the pivoting of which in the one direction the clamping rail is displaceable in one direction and due to the pivoting of which in the opposite direction the clamping rail is displaced in the opposite direction, it is advantageous when one or several counterelements are provided for the gripping lever which can be gripped with the gripping lever in one hand. This counterelement or these counterelements serve an operator for gripping the inventive clamping device by hand in that the counterelement is placed in the palm of the hand and the gripping element can then be pivoted via movement of the fingers. In a variation of one embodiment, the gripping element can be placed in the palm of the hand while the fingers are supported on the counterelement and the gripping lever is displaced due to movement of the palm of the hand in the direction of the fingers.
It is particularly advantageous when the actuating device is designed to be essentially in mirror symmetry to a central plane transversely to the direction of displacement. As a result, the displacement mechanism, in particular, may essentially be designed in the same way for the displacement of the clamping rail in both directions, whereby the constructional and technical resources required for production are again kept low since the number of different components, in particular, is minimized.
In a variation of one embodiment, an advancing element is provided for the displacement of the clamping rail and this advancing element can be tilted against the clamping rail in order to block the displaceability of the clamping rail against the advancing element and is displaceable in the direction of displacement of the clamping rail due to action of a gripping lever. As a result, displacement of the clamping rail can be achieved in a constructionally simple manner in that the tilting is first effected and then the clamping rail is taken along due to displacement of the tilted advancing element.
A pressure spring is favorably arranged between an advancing element and a blocking element and a restoring force can be exerted by this spring on the advancing element contrary to the direction of displacement. As a result, the advancing element is pushed back when the gripping lever is released without the clamping rail itself being displaced. When actuation occurs again via the gripping lever, the rail can then be displaced further. As a result, the clamping rail may be displaced, in particular, in steps, wherein the guidance during displacement is, however, continuous.
The blocking element can be advantageously brought into a blocking position, in which displaceability of the clamping rail is blocked in one direction. As a result, it is possible in a constructionally simple manner for the clamping rail to be displaceable only in one direction while the displacement in the other direction is blocked. It is ensured that, when the inventive clamping device is intended to be used as a clamping tool, displacement occurs only in the corresponding direction for the exertion of force and the clamping rail does not move back and the same is accordingly brought about for the use as a spreading tool.
It is particularly advantageous when a holding element is associated with the blocking element, by means of which the blocking element can be held in a non-blocking position, or the blocking element is designed as a holding element which can be held in a non-blocking position. Such a holding element may be operated, in particular, from outside the housing of the actuating device in order to thus set or release a corresponding blocking position in a simple manner, i.e. whilst ensuring great operating convenience.
In this respect, the holding element is favorably independent of the gripping element in order not to influence the exertion of force on the clamping rail via the gripping element and, in particular, not to impair the operating convenience of the gripping element.
The holding element can favorably be fixed in a holding position, in which the blocking element is in a non-blocking position. In this way, the non-blocking position can be secured and thus the sliding displacement guidance of the clamping rail ensured.
It is particularly favorable when the holding position of the holding element can be fixed by blocking means which hold the holding means essentially at right angles to the clamping rail. As a result of the vertical holding, the sliding displaceability of the clamping rail is ensured since no locking in position can occur.
A first advancing element is favorably provided for the displacement of the clamping rail in a first direction of displacement and a second advancing element for the displacement in an opposite direction. As a result, the displacement guidance and displacement actuation for the clamping rail can be designed in a simple manner from a constructional and technical point of view.
First and second advancing elements can favorably be tilted in opposite directions. This makes opposite pivoting directions possible for the two gripping levers when two such gripping levers are provided or for a single gripping lever and, in particular, it is also possible as a result to block the displacement of the clamping rail in the direction opposite to the direction of displacement.
It is particularly favorable when a first blocking element, a first pressure spring and, where applicable, a first holding element are associated with the first advancing element and a second blocking element, a second pressure spring and, where applicable, a second holding element are associated with the second advancing element. In this way, the displacement mechanism for both directions of displacement may be designed essentially the same.
In order to make a reliable use of the inventive clamping device possible not only as a clamping tool but also as a spreading tool, it is favorable when first and second blocking elements can be coupled to one another such that when the first blocking element is in a blocking position the second blocking element is in a non-blocking position and vice versa.
In this respect, the first blocking element is favorably tilted in the opposite direction to the second advancing element during its displacement and the second blocking element is tilted in the opposite direction to the first advancing element during its displacement. As a result, the displacement of the clamping rail in the direction of displacement is not impeded since the locking in position by the blocking element is discontinued while the displacement in the opposite direction is blocked since the locking in position is effective in this case and increases.
Great operating convenience is given when a coupling device is provided which can be secured in a first position on the housing, in which the first blocking element is fixed in a non-blocking position and the second blocking element is in a blocking position, and can be secured in a second position, in which the first blocking element is in a blocking position and the second blocking element is fixed in a non-blocking position. As a result of the coupling device, which can be arranged, for example, on the housing so as to be displaceable or can be separate from this, the direction of displacement can be set or changed over in a simple manner.
In the first position of the coupling device the second advancing element is favorably secured against tilting and in the second position the first advancing element is secured against tilting. As a result, the corresponding gripping lever is, in particular, not pivotable and is stationary so that in the respective first or second positions only that gripping lever is pivotable which causes a displacement of the clamping rail in the desired direction.
It is particularly favorable when the housing of the actuating device is designed and provided with recesses such that the movable parts are fixed with respect to the housing solely via the recesses acting as contact surfaces. These movable parts may then be inserted into the housing and need not be fixed in place, in addition, for example, via screw connections. The inventive clamping device may then be assembled quickly with few technical resources being required.
In this respect, it is favorable when the housing of the actuating device, which is, in particular, a closed housing, comprises a first housing section and a second housing section which can be fixed to one another. The structural parts may be inserted into the first housing section and when the second housing section is placed on it these are finally fixed in the assembled housing. The two housing sections may then be fixed to one another in a simple manner, for example, via screw connections. The movable structural parts are protected by the housing and oil or grease or the like, which is used to increase the workability of the movable structural parts, adhere longer to them.
It is favorable when a contact element, which is held on the clamping rail, has contact surfaces which are essentially of the same design transversely to the longitudinal direction of the clamping rail. As a result, such a contact element may be used not only for clamping purposes but also for spreading purposes.
The inventive device may be used universally when a first contact element is provided which is held on the clamping rail so as to be non-displaceable and a second contact element is provided, the distance of which from the first contact element can be varied due to displacement of the clamping rail. The clamping device may be used, in particular, not only for clamping but also for spreading by means of such contact elements. The distance between the contact elements may be varied in a constructionally simple manner when the second contact element is arranged on the actuating device so as to be non-displaceable.
The first contact element and the second contact element favorably have contact surfaces of essentially the same design. As a result, the inventive clamping device can be used universally since it can be used as a clamping tool and spreading tool.
In an advantageous variation of one embodiment, it is provided for the clamping rail to be mounted for rotation in the actuating device. As a result, the clamping device may be used as a one-handed clamping device, with which the displacement of the clamping rail can be actuated with one hand. The orientation of contact elements and, in particular, contact bars on the clamping rail with respect to a workpiece may be changed in that the clamping rail is turned accordingly until the workpieces to be clamped or the workpieces to be spread apart are gripped in an optimum manner.
It is advantageous, in particular, when the clamping rail is unlimitedly rotatable since great operating convenience is brought about in this manner.
It is particularly advantageous when the contact elements are held in the clamping rail such that they are co-rotated during the rotation of the clamping rail. As a result, a relative orientation between the contact elements, which has been set accordingly, is maintained even when the clamping rail is turned.
A contact element which is secured with respect to the actuating device so as to be non-displaceable and rotatable is favorably seated on the clamping rail. This contact element represents a contact surface for clamping or spreading uses. As a result of displacement of the clamping rail, on which the first contact element is secured, the distance between the first contact element and the second contact element can be varied. The orientation of the two contact elements in relation to one another is not altered as a result of rotation of the clamping rail.
In an alternative embodiment, which is advantageous, in particular, with respect to its technical production, it is provided for the clamping rail to be mounted on the actuating device so as to be displaceable and rotatable by at least one rotary slide bearing. As a result, only one type of bearing is required, wherein the clamping rail is mounted in such a bearing so as to be rotatable and is mounted therein so as to be displaceable at the same time.
It is favorable when a clamping rail is mounted for displacement by at least one bearing element, wherein the bearing element is mounted for rotation in a housing of the actuating device. Such a bearing element ensures, on the one hand, a good sliding displaceability of the clamping rail and, on the other hand, makes its rotatability possible. The clamping rail is, in particular, non-rotatably guided in the bearing element. Such a non-rotatable guidance may be designed in a constructionally simple manner in that the clamping rail has a profile which is designed such that the rotatability of the clamping rail can be blocked in relation to a bearing element, by means of which the clamping rail is guided for displacement. An adapted recess in the bearing element prevents the rotation in the recess relative to the bearing element. For example, the clamping rail can have a flat profile for this purpose.
In one constructionally favorable embodiment, at least one bearing element is designed as a deep-groove bearing which is arranged on the housing of the actuating device so as to be rotatable and non-displaceable by means of a groove. The non-displaceability is ensured as a result of the groove in the deep-groove bearing and the rotatability of the bearing with the clamping rail is achieved in a simple manner.
In this respect, a contact element is favorably held on the housing of the actuating device via a deep-groove bearing so as to be non-displaceable and rotatable with the clamping rail. The deep-groove bearing can be connected to the second contact element, for example, in one piece or in a form-locking manner. No further non-rotatable fixing need then be provided for the contact element on the clamping rail.
It is favorable when at least one advancing element, which can be tilted contrary to the direction of displacement of the clamping rail in order to block the displaceability of the clamping rail in relation to the advancing element and which is displaceable in the direction of displacement of the clamping rail, is arranged so as to be rotatable. As a result, the rotatability of the clamping rail is ensured.
In a variation of one embodiment, a blocking element for blocking the displacement of the clamping rail in one direction is arranged in the housing of the actuating device so as to be rotatable. As a result, the rotatability of the clamping rail can be ensured.
The following description of preferred embodiments of the invention serves to explain the invention in greater detail in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG.
1
: shows a sectional side view of a first embodiment of an inventive clamping device;
FIG.
2
: shows a side view of contact elements of an inventive clamping device;
FIG.
3
: shows a sectional side view of an actuating device according to
FIG. 1
which shows a change-over device for changing the direction of displacement of a clamping rail;
FIG.
4
: shows a sectional view along line X—X in
FIG. 3
;
FIG.
5
: shows a view of a second embodiment of an inventive clamping device, with which a housing of an actuating device is shown opened;
FIG.
6
: shows a sectional view of a third embodiment of an inventive clamping device;
FIG.
7
: shows a partial sectional view along line Y—Y in
FIG. 6
;
FIG.
8
: shows a partial view of an alternative embodiment of a contact element;
FIG.
9
: shows a side view of the contact element in accordance with FIG.
8
and
FIG.
10
: shows a front partial sectional view of a fourth embodiment of an inventive clamping device.
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of an inventive clamping device, which is designated in
FIG. 1
as a whole as
10
, comprises an actuating device
12
and a clamping rail
14
which is guided for displacement on the actuating device
12
and the displacement of which can be actuated via the actuating device
12
.
The actuating device
12
has a housing
16
and, in particular, a closed housing, in which the clamping rail
14
is guided for sliding displacement. The clamping rail
14
has, in one variation of one embodiment, a flat profile and an essentially rectangular cross section, as shown in
FIG. 4
, in particular with lateral recesses.
A first bearing element
18
in the form of a bearing disk is arranged in the housing
16
of the actuating device
12
for the displaceable guidance of the clamping rail
14
, this bearing disk having a recess
20
which is arranged centrally and in which the clamping rail
14
is guided for sliding displacement (FIG.
4
). The recess
20
is designed such that the clamping rail
14
cannot be rotated against the first bearing element
18
.
The first bearing element
18
is rotatably arranged in the housing
16
, wherein a block element
24
of the housing
16
with an end face
26
makes an, in particular, annular contact surface available for the first bearing element
18
which is oriented at right angles to a longitudinal direction of the clamping rail
14
.
The block element
24
is seated, in the variation of one embodiment shown, symmetrically and, in particular, in mirror symmetry to a central plane
30
of the actuating device
12
. A contact surface for a second rotatable bearing element
34
is formed by an end face
32
of the block element
24
located opposite the end face
26
and the second bearing element is of the same construction as the first bearing element
18
and the clamping rail
14
can likewise be guided through it.
For the purpose of displaceably guiding the clamping rail
14
, a first deep-groove bearing
36
is arranged, in addition, at a first opening
38
for the clamping rail
14
through the housing
16
and a second deep-groove bearing
40
is arranged at a second opening
42
of the housing
16
which is located opposite the first opening
38
.
Such a deep-groove bearing
36
,
40
is formed by a disk-like element which is provided on its cylinder surface with a groove-like recess
44
. This groove-like recess
44
has a width which corresponds essentially to the housing wall in the area of an associated opening
38
,
42
. As a result, such a deep-groove bearing
36
,
40
may be inserted into the housing
16
via its groove-like recess
44
, wherein it is not displaceable against the housing
16
.
As a result of the cylindrical inner wall for the groove-like recess
44
, the deep-groove bearing
36
is rotatably mounted in the first opening
38
and the second deep-groove bearing
40
is rotatably mounted in the second opening
42
in the case of a corresponding cylindrical configuration of the associated opening
38
,
40
. The deep-groove bearings
36
and
40
each have a recess which is of essentially the same configuration as the recess
20
(
FIG. 4
) in the first bearing element
18
and is arranged in alignment with this (and with the corresponding recess of the second bearing element
34
) and in which the clamping rail
14
is guided for sliding displacement.
A first contact element
46
is connected to the second deep-groove bearing
40
, for example, by way of form locking or in one piece. The first contact element
46
is designed, in particular, as a contact bar which is oriented transversely to the clamping rail
14
. As a result, this first contact bar
46
is mounted on the actuating device
12
for rotation with the clamping rail
14
via its rotatable mounting by means of the first bearing element
18
, the second bearing element
34
and the deep-groove bearings
36
and
40
but is not displaceable in relation to this device.
In a variation of one embodiment, a rotary bearing
47
is non-rotatably seated on the deep-groove bearing
40
so that this rotary bearing
47
is rotated with the clamping rail
14
. The first contact bar
46
is held for rotation in this rotary bearing
47
, wherein it can be fixed in its rotatability in the rotary bearing
47
, for example, by means of friction or form locking. As a result, the first contact bar
46
can be turned as a whole with rotation of the clamping rail and independently thereof relative to the clamping rail about the rotary bearing
47
.
A second contact element
48
faces the first contact bar
46
on the clamping rail
14
and is held, in particular, at one end thereof, for example, by way of form locking. The distance between the first contact bar
46
and the second contact element
48
may be altered as a result of displacement of the clamping rail
14
. The two contact elements
46
and
48
are aligned in a defined orientation relative to one another and, in particular, are aligned essentially parallel or at a slight inclination to one another. As a result of an inclination of one contact element and, in particular, of the first contact element
46
, the clamping effect on a workpiece between the contact elements can be increased.
It may be provided for the second contact element
48
to be designed as a contact bar (FIG.
2
). In one variation of one embodiment, the second contact element is designed, in particular, as a circular contact disk
49
(
FIGS. 8
,
9
) which is held centrally on the clamping rail
14
. In this respect, an annular contact member
51
may be formed on the contact disk
49
facing the first contact element in order to make a contact surface available which corresponds to that of the first contact element, in particular, with respect to the dimensions in a radial direction. The contact member
51
and a contact surface of the first contact element are preferably aligned with one another.
A first blocking element
52
, which is rotatable in relation to the housing
16
and essentially of the same design as the first bearing element
18
, is facultatively arranged in a recess
50
of a wall of the housing
16
, in which the first deep-groove bearing
36
is seated at one end, so as to be located opposite this first deep-groove bearing
36
. A first holding element
54
is associated with the first blocking element
52
and the first blocking element
52
can be abutted on this holding element.
This first holding element
54
has a through opening
56
for the clamping rail
14
, in which this is rotatable. It extends transversely to the clamping rail
14
through the housing
16
and exits from it at an opening
58
so that the first holding element
54
can be moved from outside the housing
16
.
The first holding element
54
has a holding member
60
which is, for example, of a flat design, a guiding member
62
which is arranged at an angle, for example, in the order of magnitude of 20° towards the first blocking element
52
and, in addition, a gripping member
64
which is essentially parallel to the holding member
60
and projects out of the housing
16
via the opening
58
so that the first holding element
54
can be moved (in particular, in the direction towards the first bearing element
18
). The function of the guiding member
62
will be explained in greater detail in the following.
The first holding element
54
can be brought into a position
66
(indicated by dashed lines in FIG.
1
), in which the holding member
60
is aligned at right angles to the clamping rail
14
and can be fixed in this position.
As a result, the first blocking element
52
is also aligned at right angles to the clamping rail
14
and the clamping rail
14
is, as a result, not locked in position by the first blocking element
52
, i.e. its displaceability is not impeded.
A pressure spring
68
is arranged between the first bearing element
18
and the first blocking element
52
and this spring exerts a force on the first blocking element
52
in the direction away from the first bearing element
18
, presses the first blocking element
52
against the holding element
54
and, in particular, tilts it away from the first bearing element
18
when the first holding element
54
is not in its vertical position
66
. The pressure spring
68
is, in particular, in a position to tilt the blocking element
52
and the first holding element
54
to such an extent that the blocking element
52
blocks the displacement of the clamping rail
14
in the direction A.
In the same way as a first blocking element
52
is associated with the first bearing element
18
, a second blocking element
70
, a second holding element
72
and a second pressure spring
73
between the second blocking element
70
and the second bearing element
34
are associated with the second bearing element
34
.
The second holding element
72
is, in the embodiment shown in
FIG. 1
, of the same design as the first holding element
54
and arranged in the same orientation (i.e. not in mirror symmetry in relation to the central plane
30
). A guiding member
74
of the second holding element
72
is therefore arranged at a small angle in relation to a holding member
76
away from the second bearing element
34
.
The second holding element
72
and thus the second blocking element
70
, as well, may be tilted in a direction away from the second bearing element
34
in order to lock the clamping rail
14
in position accordingly. The first blocking element
52
and the second blocking element
70
can therefore be tilted in opposite directions.
A gripping element
77
is arranged on the housing and has a first gripping lever
78
which is arranged so as to be pivotable and acts on the first bearing element
18
and a second gripping lever
80
which acts on the second bearing element
34
. The first gripping lever
78
may be pivoted about a pivot axis
82
in the direction of the second gripping lever
80
, i.e. in a direction away from the first bearing element
18
. The second gripping lever
80
may be pivoted in the direction of the first gripping lever
78
, i.e. away from the second bearing element
34
.
In the case of the embodiment of an inventive clamping device shown in
FIG. 1
, the two gripping levers
78
and
80
have the common pivot axis
82
.
The first gripping lever
78
and the second gripping lever
80
are each designed as twin armed levers with a respective eccentric element
84
and
86
which acts on the associated first bearing element
18
and the second bearing element
34
, respectively, during pivoting of the associated gripping lever in order to tilt this element against the clamping rail
14
and move it in a direction of displacement of the clamping rail in order to bring about the displacement itself of the clamping rail
14
. The bearing elements
18
and
34
therefore act as advancing elements for the clamping rail
14
, wherein this advancing takes place contrary to the force of the pressure springs
68
and
73
.
The gripping element
77
is designed such that it can be placed in one hand of a user and can be operated with one hand; i.e., the clamping device represents a one-handed clamping device. In order to displace the clamping rail in a certain direction, for example, in the direction A according to
FIG. 1
, during which the two contact elements
46
and
48
are moved towards one another (and therefore a workpiece can be clamped between these two contact elements), one gripping lever is stationary and the other gripping lever is pivotable. In particular, for the displacement in the direction A according to
FIG. 1
the second gripping lever
80
is stationary and the first gripping lever
78
can be pivoted towards the second gripping lever
80
. For displacement in the opposite direction B, during which the two contact elements
46
and
48
are moved apart from one another in order to use the clamping device for spreading, the first gripping lever
78
is stationary and the second gripping lever
80
may be pivoted in the direction of the first gripping lever
78
about the pivot axis
82
.
In order to bring about a displacement of the clamping rail
14
in only one direction A or B via the gripping element
77
, a coupling device which is designated in
FIGS. 1
,
3
and
6
as a whole as
88
is provided as a change-over device for the direction of displacement.
In a variation of one embodiment, the coupling device
88
comprises, as shown in
FIG. 3
, a slide element
90
which is arranged on the housing
16
of the actuating device
12
so as to be displaceable as a whole transversely to the longitudinal direction of the clamping rail
14
. For this purpose, spaced parallel guiding grooves
92
a
,
92
b
are formed on the housing and these are aligned at right angles to the directions of displacement A and B, respectively, and a respective guiding pin
94
a
,
94
b
of the slide element
90
engages in them.
Furthermore, holding noses
96
a
and
96
b
are arranged on the slide element
90
and these serve for the positioning of the second holding element
72
and the first holding element
54
, respectively. They are arranged such that only one of the two holding elements
54
and
72
is located in a vertical position
66
, i.e. either the second holding element
72
is in such a position and the first holding element
54
is tilted (for a displacement of the clamping rail
14
in the direction B) or the second holding element
72
is tilted and the first holding element is in its vertical position
66
(for a displacement in the direction A). The two holding noses
96
a
and
96
b
have for this purpose essentially the same distance from the clamping rail
14
. They engage on the respective guiding member
62
,
74
of the first holding element
54
or the second holding element
72
which serves to transfer the holding noses
96
a
,
96
b
between a fixing position for the holding element
72
and
54
, respectively, and a non-holding position.
Furthermore, the slide element
90
comprises holding noses
98
a
and
98
b
which serve as a means for securing against tilting for the first bearing element
18
(holding nose
98
b
) or the second bearing element
34
(holding nose
98
a
), respectively. The holding noses
98
a
and
98
b
are arranged and designed such that either the first bearing element
18
is secured against any tilting and displacement (during the displacement of the clamping rail in the direction B) or the second bearing element
34
is protected against any tilting and displacement (during the displacement in the direction A).
In
FIGS. 1 and 3
, a means for securing against tilting is shown by solid lines which allows only a displacement in the direction B and a means for securing against tilting by dashed lines which allows only a displacement in the direction A.
For this purpose, the two holding noses
98
a
and
98
b
are connected via a bridge element
100
(
FIG. 3
) which is articulatedly connected to the housing
16
between the eccentric elements
84
and
86
so as to be rotatable with an axis of rotation
102
parallel to the pivot axis
82
and is likewise rotatably articulated to the first holding nose
98
a
. If the slide element
98
is then displaced with the holding nose
98
a
, the holding nose
98
b
is also displaced via the turned bridge element
100
transversely to the clamping rail
14
, namely in such a manner that during the movement of the slide element
90
into a holding position in relation to the second bearing element
34
the holding nose
98
a
is displaced into a holding position for the second bearing element
34
and the holding nose
98
b
out of a holding position for the first bearing element
18
; during a corresponding, reverse displacement of the slide element
90
the relationships are reversed.
As a result of displacement of the slide element
90
, the corresponding holding element is displaced into its vertical position at the same time (if a displacement of the clamping rail
14
is intended to be allowed in the direction B, the second holding element
72
, if it is intended to be displaced in the direction A, the first holding element
54
).
In a preferred variation of one embodiment, the first contact element
48
and the second contact element
46
are essentially of the same design. Each contact element has, in particular, essentially the same first contact surface
106
which is arranged so as to face the other contact element and a second contact surface
108
which is arranged so as to face away from the other contact element (FIG.
2
). As a result, the inventive clamping device can be used advantageously for clamping (locking in position) and for spreading apart. Furthermore, it is provided for the two contact elements
48
and
46
to have plane lower surfaces
110
which are oriented so as to be in alignment and on which the contact elements
48
and
46
can be placed. It is likewise provided in a variation of one embodiment for at least one section of that surface
112
of a contact element which faces the other contact element to be of a flat design and, in particular, at right angles to the clamping rail
14
so that, in this case, as well, a support surface is formed, with which the contact elements
48
and
46
can be abutted on a workpiece.
The inventive clamping device functions as follows:
A user sets the direction of displacement of the clamping rail
14
via the slide element
90
of the change-over device. In its lower position (shown in solid lines in
FIGS. 1
,
3
and
4
) the clamping rail
14
may be displaced in the direction B, i.e. the two contact elements
48
and
46
may be moved away from one another. If, proceeding from this position, the slide element
90
is displaced upwards, the direction of displacement may be switched over to the opposite direction A, with which the two contact elements
48
and
46
can be moved towards one another.
In the lower position of the slide element
90
for the displacement in the direction B, the pivoting of the first gripping lever
78
is blocked. The first bearing element
18
is oriented at right angles to the longitudinal direction of the clamping rail
14
. In this position of the slide element
90
, the first holding element
54
is not in the position
66
and so the first blocking element
52
is tilted contrary to the direction of displacement and thus locked in position against the clamping rail
14
. As a result, the displacement of the clamping rail
14
in the direction A is blocked.
By actuating the second gripping lever
80
, a force is exerted on the second bearing element
34
via the eccentric element
86
, this bearing element tilts in the direction of force and is locked in position against the clamping rail
14
. As a result, the second bearing element
34
which acts as an advancing element is moved further during further force exertion via actuation of the second gripping lever
80
and on account of the locking in position with the clamping rail
14
this is displaced. The bearing element
34
is thus an advancing bearing.
The second gripping lever
80
can be pivoted only up to a certain pivot angle. When the user releases this second gripping lever
80
, the second pressure spring
73
pushes the second bearing element
34
back into its initial position. Since it is no longer acted upon by pressure via the second gripping lever
80
, the tilting is also released which makes it possible for the bearing element
34
to be pushed back. It is ensured on account of the blocking position of the first blocking element
52
that the clamping rail
14
is not pushed back in the direction A during the return movement of the second bearing element
34
. Since this first blocking element
52
is tilted in the direction A, a displacement in the direction B, as brought about via the second bearing element
34
, acts contrary to this tilting and thus does not hinder the displacement in the direction B.
As a result of displacement of the slide element
90
, the holding nose
96
b
is displaced along the guiding member
62
of the first holding element
54
such that it is displaced into the vertical position
66
and thus the first blocking element
52
, as well. Furthermore, the holding nose
96
a
which has previously held the second holding element
76
in its vertical position is pushed outwards so that on account of the effect of the force of the second pressure spring
73
the second blocking element
70
and the second holding element
76
tilt. At the same time, the holding nose
98
a
is displaced towards the second bearing element
34
so that this can no longer tilt and the pivotability of the second gripping lever
80
is blocked. As a result of the displacement of the holding nose
98
a
, the holding nose
98
b
is pivoted out of its blocking position on the first bearing element
18
and this is released as a result.
The first gripping lever
78
may then be pivoted against the second gripping lever
80
, the first bearing element
18
tilted as a result and on account of its design as an advancing element the clamping rail
14
displaced in the direction A in order to move the two contact elements
46
and
48
towards one another.
The displacement in the direction B is blocked on account of the tilting of the second blocking element
70
in the direction B.
On account of its rotatable mounting, the clamping rail
14
is unlimitedly rotatable, i.e. through any optional angle, irrespective of the position of the slide element
90
with respect to the housing
16
of the actuating device
12
. As a result, an adjusted alignment of the two contact elements
46
and
48
relative to one another is maintained even during rotation of the clamping rail
14
.
In a second embodiment of an inventive clamping device which is designated in
FIG. 5
as a whole as
120
, the advancing/restoring mechanism for the displacement of the clamping rail is, in principle, of the same construction as that already described in conjunction with the first embodiment according to
FIGS. 1
to
4
. Structural elements which are of the same design therefore have the same reference numerals in
FIG. 5
as in
FIGS. 1
to
4
.
In the case of the clamping device
120
, a gripping element
122
is provided with a first gripping lever
124
which is arranged so as to be pivotable about a first pivot axis
128
and a second gripping lever
128
which is articulated for pivoting about a second pivot axis
130
which is parallel and at a distance to the first pivot axis
126
. A pivot bearing
123
for the first gripping lever
124
is formed by a pin
125
, about which the first gripping lever
124
is rotatable. A similar pivot bearing
127
with a pin
129
is formed for the second gripping lever
128
in the same way. A bridge element
132
is pushed over the pins
125
and
129
in order to couple the two gripping levers
124
and
128
to one another.
The housing
16
has a recess
133
, in which at least one of the bridge elements
132
is guided for displacement parallel to the clamping rail
14
; as a result, in the case of a force acting on a gripping lever
124
and
128
, respectively, not only pivoting is brought about but the two coupled gripping levers
124
and
128
are displaced with one another via the bridge element or elements
132
. A displacement of the bridge element
132
in the direction of the displacement of the clamping rail
14
may then be brought about via the pivoting of the gripping lever
124
and
128
, respectively, whereby with the same pivot angle a longer path of displacement of the clamping rail
14
is achieved since, to a certain extent, the gripping lever
124
and
128
, respectively, follows the advancing element
18
and
34
, respectively. A rocker arm path for the gripping levers
124
and
128
is thus formed. As a result of the linear guidance of the gripping levers
124
and
128
, during the pivoting of one gripping lever
124
or
128
for the displacement of the clamping rail
14
in the direction A or B the other gripping lever
128
or
124
is pivoted with it to a certain extent, namely in the opposite direction to the actuating gripping lever
124
or
128
.
Furthermore, recesses
138
and
140
associated with one another and recesses
142
and
144
associated with one another are provided in the housing
16
. A pin which blocks the tilting of the second bearing element
34
may be inserted into the recess
138
. In a similar manner, a pin which blocks the tilting of the first bearing element
18
may be inserted into the recess
142
. A pin may be inserted into the recess
140
which brings the first holding element
54
into a vertical position, in which the first blocking element
52
is in a non-blocking position for the displacement of the clamping rail
14
. A pin may be inserted into the recess
144
which fixes the second holding element
72
in a vertical position, in which the blocking element
70
is not locked in position in relation to the clamping rail
14
.
One coupling element is advantageously provided as a change-over element, for example, in the form of a bridge element which has a bar, on which pins are arranged at a specific distance (not shown in the Figures). This coupling element may then be arranged on the housing
16
such that in a first position the displacement of the clamping rail is possible in one direction and the displacement in the other is blocked and in a second position accordingly vice versa.
If, for example, the coupling element is arranged such that it is introduced into the recesses
138
and
140
, a displacement of the clamping rail in the direction A is then possible.
If corresponding pins of the coupling element are inserted into the recesses
142
and
144
, a displacement of the clamping rail in the direction B is then possible whereas the displacement in the direction A is blocked.
The coupling element thus forms, together with the recesses
138
,
140
,
142
,
144
, a change-over device for switching the direction of displacement of the clamping rail
14
.
As for the rest, the clamping device
120
functions essentially the same as that described above for the clamping device
10
.
The housing
16
is advantageously designed such that it comprises a first housing section
146
(cf., for example,
FIG. 5
) which is provided, for example, with recesses
38
,
42
,
50
, into which the movable parts can be placed. By fixing a second housing section (not shown in the Figure) on the first housing section, these parts may be fixed in their recesses without them needing to be screwed. It is sufficient to merely connect the two housing sections to one another, for example, via screws. As a result, the production resources may be kept low.
In a third embodiment of an inventive clamping device which is designated in
FIG. 6
as a whole as
150
, respective rotary slide bearings
154
and
156
are arranged in a housing
152
so as to be located opposite one another and a clamping rail
158
is mounted in them so as to be not only rotatable about a longitudinal axis
160
but also slidingly displaceable in the direction of the longitudinal axis
160
.
Such a rotary slide bearing
154
and
156
, respectively, is formed by a circular recess
162
, wherein a cylindrical flange
164
is seated around the circumference of the recess
162
in order to ensure the sliding displaceability of the clamping rail
158
. The clamping rail
158
has a circular profile with oppositely located lateral recesses
165
.
A first contact element
166
which is designed, in particular, as a contact bar is held on the housing
152
such that it is non-displaceable against this and thus the actuating device
12
. As a result of a, for example, cylindrical recess
167
in the first contact element
166
, the clamping rail
158
can be displaced relative to this first contact element
166
. An annular recess
170
is provided, for example, in the first contact element
166
and a corresponding flange of the rotary slide bearing
156
dips into this recess in order to, on the one hand, ensure the rotatability of the first contact element
166
relative to the housing
152
and, on the other hand, to keep this non-displaceable with respect to the housing
152
.
The first contact element
166
itself is held non-rotatably on the clamping rail
158
in a variation of one embodiment so that during rotation of the clamping rail
158
relative to the actuating device
12
the first contact element
166
is rotated with it. For this purpose, strips
169
which engage in the groove-like recesses
165
(
FIG. 7
) are seated in the recess
167
in the first contact element
166
, by means of which the clamping rail
158
is guided, diametrically opposite.
A second contact element
172
is, in addition, held on the clamping rail
158
so as to be non-displaceable and, in particular, non-rotatable. This second contact element
172
can be designed as a contact bar.
In a variation of one embodiment, the first contact element
166
is arranged for rotation in relation to the clamping rail
158
in that, for example, no strips are seated in the recess
167
for engagement in the recesses
165
or the clamping rail
158
has no such recesses at all. An additional rotary bearing, as described in conjunction with the first embodiment (
FIG. 1
, rotary bearing
47
) can also be provided.
A coupling rod
174
aligned, in particular, parallel to the clamping rail
158
is then arranged between the second contact element
172
and the first contact element
166
and couples the first contact element
166
to the second contact element
172
such that during a rotation of the clamping rail
158
, during which the second contact element
172
is co-rotated, the first contact element
166
is co-rotated via the coupling with the coupling rod
174
and thus turned relative to the actuating device
12
; as a result, the relative orientation between the two contact elements
166
and
172
is maintained during the rotation of the clamping rail
158
without the first contact element
166
being non-rotatably seated on the clamping rail
158
. The coupling of the first contact element
166
via the coupling rod
174
to the second contact element
172
therefore blocks the free rotatability of the first contact element
166
about the clamping rail
158
.
In order to be able to change the relative distance between the first contact element
166
and the second contact element
172
during a displacement of the clamping rail
158
, the coupling rod
174
is guided via a guiding recess
176
for displacement with respect to the second contact element
172
or with respect to the first contact element
166
or in relation to both contact elements
166
and
172
.
The mechanism for advancing the clamping rail
158
functions independently of the type of fixing of the first contact element
166
on the clamping rail
158
essentially in the same way as that already described in conjunction with FIG.
1
. Advancing elements
178
and
180
are likewise provided, between which a block element
182
is arranged. The advancing elements
178
and
180
can each be titled against the clamping rail
158
in order to lock in position with this and in order to then be able to displace it in the direction A or B. The advancing elements
178
and
180
have central recesses, through which the clamping rail
158
is guided and in which this can be rotated relative to the advancing elements. (In an alternative embodiment, it may also be provided for the clamping rail
158
to be non-rotatably guided in the advancing elements
178
,
180
in that, for example, holding elements of the advancing elements
178
,
180
engage in the recesses
165
of the clamping rail
158
. The advancing elements
178
,
180
must then be mounted in the housing so as to be rotatable as a whole.)
Furthermore, holding elements
184
and
186
are provided which function in the same way as the holding elements
64
and
74
and the blocking elements according to FIG.
1
. In the embodiment shown in
FIG. 6
, no separate blocking elements and holding elements as in
FIG. 1
are provided but rather the holding elements
184
and
186
undertake not only the blocking function but also the holding function.
In the embodiment shown in
FIG. 6
, a gripping lever
188
is provided which is arranged on the housing
152
so as to be pivotable with a pivot axis
190
transversely to the direction of displacement of the clamping rail
158
. This gripping lever
188
is pivotable in both directions of pivot. In a rest position it is aligned with a longitudinal axis
192
at right angles to the longitudinal axis
160
of the clamping rail
158
, wherein in this orientation the longitudinal axis
192
is located, in particular, in a central plane of the housing
152
.
Counterelements
194
and
196
are securely arranged on the housing
152
, against which the gripping lever
188
can be pivoted and which serve as respective stationary handles.
The change-over device for blocking the displaceability of the clamping rail
158
in one direction and for switching over the blocking direction is, in principle, of the same design as that already described in conjunction with FIG.
1
.
If the coupling device
88
is then adjusted such that the tilting of the advancing element
178
and its transport in the direction A is blocked, the advancing element
180
may be tilted due to pivoting of the gripping lever
188
towards the counterelement
196
and displaced in the direction B, whereby the clamping rail
158
is displaced in the direction B. Accordingly in the reverse case, the gripping lever
188
may be pivoted towards the counterelement
194
when the tilting of the advancing element
180
is blocked in order to be able to displace the clamping rail
158
in the direction A.
In a fourth embodiment which is shown schematically in
FIG. 10
a clamping rail
200
is guided for sliding displacement but not rotatably in relation to a housing
202
of the actuating device
12
. A first contact element
204
is seated on the clamping rail so as to be non-displaceable inrelation to the actuating device
12
and is, for example, rotatable via a rotary bearing
206
relative to it. The first contact element
204
is therefore rotatable relative to the actuating device.
A second contact element
208
is seated non-rotatably on the clamping rail
200
and this is designed, in particular, in axial symmetry about a longitudinal axis of the clamping rail
200
(
FIGS. 8
,
9
). The contact element has, for example, a configuration already described above in conjunction with the contact element
49
. As a result of the rotation of the first contact element
204
relative to the second contact element
208
, their relative orientation is nevertheless maintained due to the symmetrical design of the second contact element
208
.
The advancing mechanism for the clamping rail
200
is, in principle, of the same design as that described in conjunction with the other embodiments.
Claims
- 1. Clamping device comprising:a clamping rail guided for displacement, an actuating device comprising a gripping element, the clamping rail being displaceable via the gripping element in a clamping direction to exert a clamping force and in a spreading direction to exert a spreading force, and a change-over device which in a first position frees the displacement in the clamping direction and blocks the displacement in the spreading direction and in a second position frees the displacement in the spreading direction and blocks the displacement in the clamping direction.
- 2. Clamping device as defined in claim 1, wherein the gripping element comprises a first gripping lever for displacing the clamping rail in one direction and a second gripping lever for displacing the clamping rail in the opposite direction.
- 3. Clamping device as defined in claim 2, wherein only one gripping lever is actuatable at a time.
- 4. Clamping device as defined in claim 1, wherein a gripping lever is provided for displacing the clamping rail in the one direction or the opposite direction depending on the direction of pivot.
- 5. Clamping device as defined in claim 1, wherein one or several gripping levers are provided, said levers being designed as rocker arms.
- 6. Clamping device as defined in claim 5, wherein a gripping lever is displaceable on a rocker arm path parallel to the clamping rail.
- 7. Clamping device as defined in claim 5, wherein a first gripping lever and a second gripping lever are coupled to one another such that they are displaceable together on a rocker arm path.
- 8. Clamping device as defined in claim 5, wherein a gripping lever for actuating the displacement of the clamping rail is arranged and designed as a rocker arm so that it is movable in the direction of displacement of the clamping rail.
- 9. Clamping device as defined in claim 1, wherein the change-over device comprises blocking means for blocking a displacement of the clamping rail in one direction, wherein the displacement in the opposite direction is not impeded.
- 10. Clamping device as defined in claim 9, wherein the direction of displacement of the clamping rail is switchable via the blocking means.
- 11. Clamping device as defined in claim 9, wherein the blocking means are structural elements seperate from first and second gripping levers.
- 12. Clamping device as defined in claim 2, wherein the first and second gripping levers are arranged and designed such that they are grippable together with one hand.
- 13. Clamping device as defined in claim 12, wherein the first gripping lever is not pivotable when the second gripping lever is actuatable and the second gripping lever is not pivotable when the first gripping lever is actuatable.
- 14. Clamping device as defined in claim 13, wherein the first gripping lever is pivotable in the direction of the second gripping lever for the displacement of the clamping rail.
- 15. Clamping device as defined in claim 13, wherein the second gripping lever is pivotable in the direction of the first gripping lever for the displacement of the clamping rail.
- 16. Clamping device as defined in claim 4, wherein one or several counterelements are provided for the gripping lever and are grippable with the gripping lever in one hand.
- 17. Clamping device as defined in claim 1, wherein the actuating device is designed to be essentially in mirror symmetry to a central plane transversely to the direction of displacement.
- 18. Clamping device as defined in claim 1, wherein an advancing element is provided for the displacement of the clamping rail, said advancing element being tiltable against the clamping rail in order to block the displaceability of the clamping rail against the advancing element; anda gripping lever is provided for moving the advancing element in the direction of the displacement of the clamping rail.
- 19. Clamping device as defined in claim 18, wherein a pressure spring is arranged between an advancing element and a blocking element for exerting a restoring force on the advancing element contrary to the direction of displacement.
- 20. Clamping device as defined in claim 19, wherein the blocking element is adapted to be brought into a blocking position blocking displaceability of the clamping rail in one direction.
- 21. Clamping device as defined in claim 20, wherein a holding element is associated with the blocking element for holding the blocking element in a non-blocking position or the blocking element is designed as a holding element adapted to be held in a non-blocking position.
- 22. Clamping device as defined in claim 21, wherein the holding element is independent of the gripping element.
- 23. Clamping device as defined in claim 21, wherein the holding element is adapted to be fixed in a holding position, the blocking element being in a non-blocking position in said holding position.
- 24. Clamping device as defined in claim 23, wherein the holding position of the holding element is adapted to be fixed by blocking means holding the holding element essentially at right angles to the clamping rail.
- 25. Clamping device as defined in claim 18, wherein a first advancing element for the displacement of the clamping rail in a first direction of displacement and a second advancing element for the displacement in an opposite direction are provided.
- 26. Clamping device as defined in claim 25, wherein first and second advancing elements are tiltable in opposite directions.
- 27. Clamping device as defined in claim 25, wherein a first blocking element, a first pressure spring and, where applicable, a first holding element are associated with the first advancing element and a second blocking element, a second pressure spring and, where applicable, a second holding element are associated with the second advancing element.
- 28. Clamping device as defined in claim 27, wherein first and second blocking elements are couplable to one another such that when the first blocking element is in a blocking position the second blocking element is in a non-blocking position and vice versa.
- 29. Clamping device as defined in claim 28, wherein the first blocking element is tilted in the opposite direction to the second advancing element during its displacement and the second blocking element is tilted in the opposite direction to the first advancing element during its displacement.
- 30. Clamping device as defined in claim 28, wherein the change-over device comprises a coupling device adapted to be secured in a position on the housing where the first blocking element is fixed in a non-blocking position and the second blocking element is in a blocking position and is adapted to be secured in a second position where the first blocking element is in a blocking position and the second blocking element is fixed in a non-blocking position.
- 31. Clamping device as defined in claim 30, wherein in the first position of the coupling device the second advancing element is secured against tilting and in the second position the first advancing element is secured against tilting.
- 32. Clamping device as defined in claim 1, wherein a housing of the actuating device is designed and provided with recesses such that the movable parts are fixed with respect to the housing soley via the recesses acting as contact surfaces.
- 33. Clamping device as defined in claim 32, wherein the housing of the actuating device comprises a first housing section and a second housing section adapted to be fixed to one another.
- 34. Clamping device as defined in claim 1, wherein a contact element held on the clamping rail has contact surfaces essentially of the same design transversely to the longitudinal direction of the clamping rail.
- 35. Clamping device as defined in claim 1, wherein a first contact element is provided, said element being held on the clamping rail so as to be non-displaceable, and a second contact element is provided, the distance of said element from the first contact element being variable due to displacement of the clamping rail.
- 36. Clamping device as defined in claim 35, wherein the second contact element is arranged so as to be non-displaceable with respect to the actuating device.
- 37. Clamping device as defined in claim 35, wherein the first contact element and the second contact element have contact surfaces of essentially the same design.
- 38. Clamping device as defined in claim 1, wherein the clamping rail is mounted for rotation on the actuating device.
- 39. Clamping device as defined in claim 38, wherein the clamping rail is unlimitedly rotatable.
- 40. Clamping device as defined in claim 38, wherein contact elements are held on the clamping rail such that they are co-rotated during the rotation of the clamping rail.
- 41. Clamping device as defined in claim 40, wherein a contact element is seated on the clamping rail, said element being secured with respect to the actuating device so as to be non-displaceable and rotatable.
- 42. Clamping device as defined in claim 1, wherein the clamping rail is mounted for displacement by at least one bearing element, wherein the bearing element is rotatably mounted on the actuating device.
- 43. Clamping device as defined in claim 1, wherein the clamping rail is mounted on the actuating device so as to be displaceable and rotatable by at least one rotary slide bearing.
- 44. Clamping device as defined in claim 42, wherein the clamping rail is guided non-rotatably in the bearing element.
- 45. Clamping device as defined in claim 44, wherein the clamping rail has a profile designed such that the rotatability of the clamping rail is blockable in relation to a bearing element guiding the clamping rail for displacement.
- 46. Clamping device as defined in claim 42, wherein at least one bearing element is designed as a deep-groove bearing arranged in the housing of the actuating device so as to be rotatable and non-displaceable by means of a groove.
- 47. Clamping device as defined in claim 46, wherein a contact element is held on the housing of the actuating device via a deep-groove bearing so as to be non-displaceable and rotatable with the clamping rail.
- 48. Clamping device as defined in claim 38, wherein an advancing element tiltable against the clamping rail in order to block the displacement of the clamping rail against the advancing element and movable in the direction of displacement of the clamping rail due to action of a gripping lever is arranged on the actuating device so as to be rotatable.
- 49. Clamping device as defined in claim 39, wherein a blocking element for blocking the displaceability of the clamping rail in one direction is arranged on the actuating device so as to be rotatable.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
6254073 |
Noniewicz et al. |
Jul 2001 |
B1 |
6382608 |
Michell |
May 2002 |
B1 |
Foreign Referenced Citations (3)
Number |
Date |
Country |
197 31 579 |
Jan 1999 |
DE |
198 61 130 |
Apr 2000 |
DE |
2 273 073 |
Jun 1994 |
GB |
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/EP00/00818 |
Feb 2000 |
US |
Child |
09/967334 |
|
US |