1. Field of the Invention
The field of the invention relates generally to mechanical power transmissions, and more particularly the invention pertains to devices and methods relating to generating clamping force in certain types of said transmissions.
2. Description of the Related Art
Certain transmissions, for example some continuously or infinitely variable transmissions, often include one or more mechanisms for generating a clamping force that facilitates the transmission of torque between or among transmission components via traction or friction. Some clamping force generators are referred to as axial force generators (AFGs) because, typically, the clamping force produced by the AFGs resolves (or must be reacted) along a main or longitudinal axis of a transmission. Hence, as used here, references to clamping force generation or clamping force generators will be understood as including axial force generation or AFGs.
One known method of generating clamping force is to place rollers between a set of load cams (or load ramps) and a reacting surface, such as for example another set of load cams or a flat driven or driving surface. As the relative motion between the opposing surfaces drives the rollers up the ramps, the rollers act to push apart the opposing surfaces. Since the opposing surfaces are typically substantially constrained to react the pushing of the rollers, a clamping force arises in the assembly. The clamping force is then usually transmitted to tractive or frictional torque transmission components.
However, devising the proper clamping force generator for any given application can be challenging. For example, difficulties can arise in providing the adequate pre-load (or initial clamping force) necessary to avoid total traction loss and/or inefficiencies (due to lost motion, for example). Hence, there are continuing needs in the relevant technology for clamping force generating mechanisms and/or methods to provide adequate clamping force for various operating conditions of certain transmissions. The devices and methods disclosed here address at least some of these needs.
The preferred embodiments will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described. Embodiments of the clamping force generators described here can be suitably adapted to continuously variable transmissions of the type disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; and 7,011,600. The entire disclosure of each of these patents is hereby incorporated herein by reference.
As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be readily apparent to a person of ordinary skill in the relevant technology.
As used here, the terms “axial,” “axially,” “lateral,” “laterally,” refer to a position or direction that is coaxial or parallel with a longitudinal axis of a transmission or variator. The terms “radial” and “radially” refer to locations or directions that extend perpendicularly from the longitudinal axis. For clarity and conciseness, at times components labeled similarly (for example, spring 112A and spring 112B) will be referred to collectively by a single label (for example, springs 112).
To provide context for the inventive clamping force generation technologies disclosed here, one type of transmission that could implement these technologies will be discussed. Referencing
The CVT 50 includes a hub shell 54 that couples to a hub cover 56. The hub shell 54 and the hub cover 56 forms a housing. The CVT 50 includes a number of power rollers 58 arranged angularly about the main axle 52 and placed in contact with an input traction ring 60, an output traction ring 62, and a support member 64. Legs 66 couple to power roller axles 68, which provide tiltable axes of rotation for the power rollers 58. The tilting of the power roller axles 68 causes the radii (relative to the power roller axles 68) at the point of contact between the power rollers 58 and the traction rings 60, 62 to change, thereby changing the speed ratio of output speed to input speed.
Embodiments of the CVT 50 often use a clamping force generation mechanism (clamping force generator or CFG) to prevent slip between the power rollers 58 and the traction rings 60, 62 when transmitting certain levels of torque. By way of example, at low torque input it is possible for the input ring 60 to slip on the power rollers 58, rather than to achieve traction. In some embodiments, clamping force generation includes providing preloading, such as by way of one or more of an axial spring (for example, a wave spring); a torsion spring, a compression coil spring, or a tension coil spring.
In one embodiment, the CVT 50 includes an input-side clamping force generation subassembly 70 (CFG 70) as shown in detail view A. Referencing
The roller cage 76 includes a roller retainer ring 78 adapted to receive and retain the load cam rollers 74. The roller retainer ring 78 transitions into a retainer extension 80, which is a generally annular ring extending from the roller retaining ring 78 at an angle of about 90 degrees. The roller retainer extension 80, in some embodiments, is adapted to pilot on the traction ring 60 to, in part, aid in retaining a torsion spring 82 in a spring groove 104 of the traction ring 60. In the embodiment depicted, the retainer extension 80 includes a retaining slit 84 for receiving and retaining an end of the torsion spring 82.
To ensure appropriate preloading of the CVT 50, and initial staging of the load cam rollers 74 for clamping force generation during operation, in some embodiments, the depth of the spring groove 104, the pitch diameter of the torsion spring 82 in its free state, the length and wire diameter of the torsion spring 82, and the internal diameter of the retainer extension 80 are selected such that expansion of the torsion spring 82 in the spring groove 104 is constrained by the retainer extension 80 so that a partially wound torsion spring 82 biases the roller cage 76 to cause the load cam rollers 74 to roll up the ramps 106 and come to rest on or near a substantially flat portion 107 of the traction ring 60.
Upon assembly of the CVT 50, the roller cage 76 is turned relative to the traction ring 60, thereby winding the torsion spring 82 until the load cam rollers 74 come to rest substantially at a bottom portion 109 of the ramps 106. This assembly process ensures, among other things, that the torsion spring 82 is preloaded to bias the load cam rollers 74 up the ramps 106 so that the load cam rollers 74 are properly staged for activation during operation of the CVT 50. Additionally, this component configuration and assembly process facilitates the take up of stack up tolerances present during assembly of the CVT 50.
To manage and/or minimize slip or creep at the contact points between the power rollers 58, the traction rings 60, 62, and the support member 64, in some embodiments of the CVT 50, the input CFG 70 and an output CFG 71 are used. To reduce the response time and to ensure sufficient contact force at low torque input, the torsion springs 82, 83 act upon, respectively, the input traction ring 60 and the roller cage 76, and the output traction ring 84 and the roller cage 77 (see
In certain situations, it is possible that the retainer extension 80 of the roller cage 76 interacts with the traction ring 60 and/or the torsion spring 82 to produce an undesired drag force in the CVT 50. The clamping force generation mechanisms described below generally reduce or eliminate the potential for generating the drag force.
Referencing
In one embodiment, one end of the spring 112A couples to the traction ring 102 via a dowel pin 116A, which is inserted through suitable holes in the traction ring 102. The other end of the spring 112A couples to one end of the wire 114A. As can be best seen in
As illustrated in
During assembly and operation of a CVT 50, the CFGs 100, 400, and 500 are assembled and operated in substantially the same manner as already described above with reference to the CFG 70. More specifically, for example, the springs 112 and the stop pin 122 are configured such that the springs 112 bias the roller cage 108 and the load cam rollers 74 to be initially staged at or in the vicinity of the flat surfaces 107 of the traction ring 102. Preferably as the CVT 50 is assembled, the roller cage 108 is rotated so that the load cam rollers 74 are positioned substantially at the bottom portion 109 of the ramps 106. The springs 112 will then act upon the roller cage 108 to cause the load cam rollers 74 to roll back up the ramps 106 for some distance to produce a preload that ensures that a certain minimum level of clamping force will be always available during operation of the CVT 50.
While the springs 114, 402, and 502 of some embodiments are made of any resilient material capable of being formed into a spring, in certain applications, the springs 114, 402, and 502 are made of, for example, metal, rubber, composite, plastic, etc. In one embodiment, the springs 114 are general use extension springs such as spring SP-9606 distributed by Prime-Line Product Company of San Bernardino, Calif., USA. The spring SP-9606 has a length of about 2.5 inches, an outer diameter of about 5/32″, and wire diameter of about 0.02 inches. Preferably, the springs 114 have a load capacity of about 1.5 to 3.5 pounds. In some embodiments, the wires 114 are made of a metallic material; however, in other embodiments, the wires 114 are made any other suitable material, such as rubber, composite, plastic, etc.
Referring now to
Preferably, when the CFG 600 is assembled, the springs 610 motivate the spring loaded ramps 606 to engage the load cam rollers 601 so that a cam roller 601 is positioned substantially at the flat surface 609 of a respective spring loaded ramp 606. The spring 610 is configured to actuate the spring loaded ramp 606 to cause the load cam roller 601 to roll up the spring loaded ramp 606 for some distance to produce a preload that ensures that a certain minimum level of clamping force will be available during operation of the CVT 50. During operation, input torque is delivered to the cam base ring 602. The torque transferring shoulders 608 deliver the input torque to the spring loaded ramps 606. Under load, the spring loaded ramp 606 tends to wedge between the torque transferring shoulder 608 and, the load cam roller 601. The spring 610 can facilitate, among other things, the wedging action of the spring loaded ramp 606. The load cam roller cage 622 that is coupled to the load cam roller 601 and the spring loaded ramp 606 can be configured to prevent the load cam roller 601 from decoupling from the spring loaded ramp 606 during a free-wheeling or back-driving condition.
In some embodiments, such as the one shown in
In yet other embodiments, such as the one shown in
Turning now to
In one embodiment, the load cam roller cage 706 includes a first slotted ring 706A coupled to a second slotted ring 706B. In some embodiments, the first and second slotted rings 706A, 706B are received in a band 706C. The first slotted ring 706A and the second slotted ring 706B can be provided with slots 799. The first slotted ring 706A and the second slotted ring 706B can be coupled together with, for example, a plurality of pegs 707A and bores 707B. In some embodiments, each of the slotted rings 706 has equally as many pegs 707A as bores 707B. The arrangement of the pegs 707A and the bores 707B around the face of the slotted rings 706 can be configured to accommodate various manufacturing methods, such as plastic injection molding. For example, the arrangement of the pegs 707A and the bores 707B can allow the slotted rings 706 to be substantially identical for manufacture while retaining features for alignment during assembly. In one embodiment, the pegs 707A are arranged around half the circumference of the slotted ring 706 while the bores 707B are arranged around the other half of the circumference so that once assembled the slotted rings 706A and 706B are aligned when joined. In some embodiments, the slotted rings 706A and 706B are further retained around their outer circumference or periphery with the band 706C. The band 706C can be a generally annular ring made from, for example, steel or aluminum. An outer circumference of the band 706C can have a number of protrusions 750 and 751. The protrusions 750 and 751 are generally aligned with the slotted rings 706A and 706B. The protrusions 750 and 751 are configured to, among other things, axially retain and align the slotted rings 706A and 706B. It will be readily apparent to a person of ordinary skill in the relevant technology that the load cam roller cage 706 can be used in various applications in the same manner as the cage 76, the cage 108, or the cage 622.
Still referring to
A groove 714 can be formed onto the cam driver 704. Similarly, a groove 720 can be formed onto the traction ring 702. Once assembled, the grooves 714 and 720 aid to, among other things, retain the spring 710 and provide the reaction surfaces 715 and 721, respectively. Channels 716 and 718 can be formed into the slotted rings 706A and 706B to provide clearance for the spring 710.
Preferably, when the CFG 700 is assembled, the springs 710 are configured to apply a force on the cam driver 704 and the traction ring 702 that engages the load cam rollers 708 with the cam driver 704 and the traction ring 702. The load cam rollers 708 are positioned generally on the flat portion of the ramps 703 and 705. The interaction between the traction ring 702, the cam driver 704, and the springs 710 causes the cam rollers 708 to roll up the ramps 703 and 705 for some distance to produce a preload that ensures that a certain minimum level of clamping force will be available during operation of the CVT 50.
Turning now to
Referring to
Referring to
Referring now to
Referring now to
Referring now to
Turning now to
Passing now to
Referring now to
Turning now to
Passing to
Referencing
It should be noted that the description above has provided dimensions for certain components or subassemblies. The mentioned dimensions, or ranges of dimensions, are provided in order to comply as best as possible with certain legal requirements, such as best mode. However, the scope of the inventions described herein are to be determined solely by the language of the claims, and consequently, none of the mentioned dimensions is to be considered limiting on the inventive embodiments, except in so far as anyone claim makes a specified dimension, or range of thereof, a feature of the claim.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.
This application is a continuation of U.S. patent application Ser. No. 12/514,062, filed May 7, 2009, which is a national phase application of Application No. PCT/US2007/023315, filed Nov. 6, 2007, which claims the benefit of U.S. Provisional Application No. 60/864,941, filed Nov. 8, 2006. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
719595 | Huss | Feb 1903 | A |
1121210 | Techel | Dec 1914 | A |
1175677 | Barnes | Mar 1916 | A |
1207985 | Null et al. | Dec 1916 | A |
1380006 | Nielson | May 1921 | A |
1390971 | Samain | Sep 1921 | A |
1558222 | Beetow | Oct 1925 | A |
1629092 | Arter et al. | May 1927 | A |
1629902 | Arter et al. | May 1927 | A |
1686446 | Gilman | Oct 1928 | A |
1774254 | Daukus | Aug 1930 | A |
1793571 | Vaughn | Feb 1931 | A |
1847027 | Thomsen et al. | Feb 1932 | A |
1850189 | Weiss | Mar 1932 | A |
1858696 | Weiss | May 1932 | A |
1865102 | Hayes | Jun 1932 | A |
1903228 | Thomson | Mar 1933 | A |
1947044 | Gove | Feb 1934 | A |
1978439 | Sharpe | Oct 1934 | A |
2030203 | Gove et al. | Feb 1936 | A |
2060884 | Madle | Nov 1936 | A |
2086491 | Dodge | Jul 1937 | A |
2100629 | Chilton | Nov 1937 | A |
2109845 | Madle | Mar 1938 | A |
2112763 | Cloudsley | Mar 1938 | A |
2134225 | Christiansen | Oct 1938 | A |
2152796 | Erban | Apr 1939 | A |
2196064 | Erban | Apr 1940 | A |
2209254 | Ahnger | Jul 1940 | A |
2259933 | Holloway | Oct 1941 | A |
2269434 | Brooks | Jan 1942 | A |
2325502 | Georges | Jul 1943 | A |
RE22761 | Wemp | May 1946 | E |
2461258 | Brooks | Feb 1949 | A |
2469653 | Kopp | May 1949 | A |
2480968 | Ronai | Sep 1949 | A |
2586725 | Henry | Feb 1952 | A |
2596538 | Dicke | May 1952 | A |
2597849 | Alfredeen | May 1952 | A |
2675713 | Acker | Apr 1954 | A |
2696888 | Chillson et al. | Dec 1954 | A |
2730904 | Rennerfelt | Jan 1956 | A |
2748614 | Weisel | Jun 1956 | A |
2868038 | Billeter | Jan 1959 | A |
2959070 | Flinn | Jan 1959 | A |
2873911 | Perrine | Feb 1959 | A |
2874592 | Oehrli | Feb 1959 | A |
2883883 | Chillson | Apr 1959 | A |
2891213 | Kern | Jun 1959 | A |
2901924 | Banker | Sep 1959 | A |
2913932 | Oehru | Nov 1959 | A |
2931234 | Hayward | Apr 1960 | A |
2931235 | Hayward | Apr 1960 | A |
3204476 | Rouverol | Apr 1960 | A |
2949800 | Neuschotz | Aug 1960 | A |
2959063 | Perry | Nov 1960 | A |
2959972 | Madson | Nov 1960 | A |
2964959 | Beck | Dec 1960 | A |
3008061 | Mims et al. | Nov 1961 | A |
3048056 | Wolfram | Aug 1962 | A |
3051020 | Hartupee | Aug 1962 | A |
3086704 | Hurtt | Apr 1963 | A |
3087348 | Kraus | Apr 1963 | A |
3283614 | Hewko | Apr 1963 | A |
3154957 | Kashihara | Nov 1964 | A |
3163050 | Kraus | Dec 1964 | A |
3176542 | Monch | Apr 1965 | A |
3184983 | Kraus | May 1965 | A |
3209606 | Yamamoto | Oct 1965 | A |
3211364 | Wentling et al. | Oct 1965 | A |
3216283 | General | Nov 1965 | A |
3246531 | Kashihara | Apr 1966 | A |
3248960 | Schottler | May 1966 | A |
3273468 | Allen | Sep 1966 | A |
3280646 | Lemieux | Oct 1966 | A |
3292443 | Felix | Dec 1966 | A |
3340895 | Osgood, Jr. et al. | Sep 1967 | A |
3407687 | Hayashi | Oct 1968 | A |
3440895 | Fellows | Apr 1969 | A |
3464281 | Azuma et al. | Sep 1969 | A |
3477315 | Macks | Nov 1969 | A |
3487726 | Burnett | Jan 1970 | A |
3487727 | Gustafsson | Jan 1970 | A |
3574289 | Scheiter et al. | Apr 1971 | A |
3661404 | Bossaer | May 1972 | A |
3695120 | Titt | Oct 1972 | A |
3707888 | Schottler | Jan 1973 | A |
3727473 | Bayer | Apr 1973 | A |
3727474 | Fullerton | Apr 1973 | A |
3736803 | Horowitz et al. | Jun 1973 | A |
3768715 | Tout | Oct 1973 | A |
3800607 | Zurcher | Apr 1974 | A |
3802284 | Sharpe et al. | Apr 1974 | A |
3810398 | Kraus | May 1974 | A |
3820416 | Kraus | Jun 1974 | A |
3866985 | Whitehurst | Feb 1975 | A |
3891235 | Shelly | Jun 1975 | A |
3934493 | Hillyer | Jan 1976 | A |
3954282 | Hege | May 1976 | A |
3987681 | Keithley et al. | Oct 1976 | A |
3996807 | Adams | Dec 1976 | A |
4098146 | McLarty | Jul 1978 | A |
4103514 | Grosse-Entrup | Aug 1978 | A |
4159653 | Koivunen | Jul 1979 | A |
4169609 | Zampedro | Oct 1979 | A |
4177683 | Moses | Dec 1979 | A |
4227712 | Dick | Oct 1980 | A |
4314485 | Adams | Feb 1982 | A |
4345486 | Olesen | Aug 1982 | A |
4369667 | Kemper | Jan 1983 | A |
4382188 | Cronin | May 1983 | A |
4391156 | Tibbals | Jul 1983 | A |
4459873 | Black | Jul 1984 | A |
4464952 | Stubbs | Aug 1984 | A |
4468984 | Castelli et al. | Sep 1984 | A |
4494524 | Wagner | Jan 1985 | A |
4496051 | Ortner | Jan 1985 | A |
4501172 | Kraus | Feb 1985 | A |
4526255 | Hennessey et al. | Jul 1985 | A |
4546673 | Shigematsu et al. | Oct 1985 | A |
4560369 | Hattori | Dec 1985 | A |
4567781 | Russ | Feb 1986 | A |
4574649 | Seol | Mar 1986 | A |
4585429 | Marier | Apr 1986 | A |
4617838 | Anderson | Oct 1986 | A |
4630839 | Seol | Dec 1986 | A |
4631469 | Tsuboi et al. | Dec 1986 | A |
4651082 | Kaneyuki | Mar 1987 | A |
4663990 | Itoh et al. | May 1987 | A |
4700581 | Tibbals, Jr. | Oct 1987 | A |
4713976 | Wilkes | Dec 1987 | A |
4717368 | Yamaguchi et al. | Jan 1988 | A |
4735430 | Tomkinson | Apr 1988 | A |
4738164 | Kaneyuki | Apr 1988 | A |
4744261 | Jacobson | May 1988 | A |
4756211 | Fellows | Jul 1988 | A |
4781663 | Reswick | Nov 1988 | A |
4838122 | Takamiya et al. | Jun 1989 | A |
4856374 | Kreuzer | Aug 1989 | A |
4869130 | Wiecko | Sep 1989 | A |
4881925 | Hattori | Nov 1989 | A |
4900046 | Aranceta-Angoitia | Feb 1990 | A |
4909101 | Terry | Mar 1990 | A |
4918344 | Chikamori et al. | Apr 1990 | A |
4964312 | Kraus | Oct 1990 | A |
5006093 | Itoh et al. | Apr 1991 | A |
5020384 | Kraus | Jun 1991 | A |
5033322 | Nakano | Jul 1991 | A |
5037361 | Takahashi | Aug 1991 | A |
5044214 | Barber | Sep 1991 | A |
5069655 | Schivelbusch | Dec 1991 | A |
5099710 | Nakano | Mar 1992 | A |
5121654 | Fasce | Jun 1992 | A |
5125677 | Ogilvie et al. | Jun 1992 | A |
5138894 | Kraus | Aug 1992 | A |
5156412 | Meguerditchian | Oct 1992 | A |
5230258 | Nakano | Jul 1993 | A |
5236211 | Meguerditchian | Aug 1993 | A |
5236403 | Schievelbusch | Aug 1993 | A |
5267920 | Hibi | Dec 1993 | A |
5273501 | Schievelbusch | Dec 1993 | A |
5318486 | Lutz | Jun 1994 | A |
5319486 | Vogel et al. | Jun 1994 | A |
5330396 | Lohr et al. | Jul 1994 | A |
5355749 | Obara et al. | Oct 1994 | A |
5375865 | Terry, Sr. | Dec 1994 | A |
5379661 | Nakano | Jan 1995 | A |
5383677 | Thomas | Jan 1995 | A |
5387000 | Sato | Feb 1995 | A |
5401221 | Fellows et al. | Mar 1995 | A |
5451070 | Lindsay et al. | Sep 1995 | A |
5489003 | Ohyama et al. | Feb 1996 | A |
5508574 | Vlock | Apr 1996 | A |
5562564 | Folino | Oct 1996 | A |
5564998 | Fellows | Oct 1996 | A |
5601301 | Liu | Feb 1997 | A |
5607373 | Ochiai et al. | Mar 1997 | A |
5645507 | Hathaway | Jul 1997 | A |
5651750 | Imanishi et al. | Jul 1997 | A |
5664636 | Ikuma et al. | Sep 1997 | A |
5669845 | Muramoto et al. | Sep 1997 | A |
5690346 | Keskitalo | Nov 1997 | A |
5722502 | Kubo | Mar 1998 | A |
5746676 | Kawase et al. | May 1998 | A |
5755303 | Yamamoto et al. | May 1998 | A |
5799541 | Arbeiter | Sep 1998 | A |
5823052 | Nobumoto | Oct 1998 | A |
5846155 | Taniguchi et al. | Dec 1998 | A |
5888160 | Miyata et al. | Mar 1999 | A |
5899827 | Nakano et al. | May 1999 | A |
5902207 | Sugihara | May 1999 | A |
5967933 | Valdenaire | Oct 1999 | A |
5984826 | Nakano | Nov 1999 | A |
6000707 | Miller | Dec 1999 | A |
6004239 | Makino | Dec 1999 | A |
6006151 | Graf | Dec 1999 | A |
6015359 | Kunii | Jan 2000 | A |
6019701 | Mori et al. | Feb 2000 | A |
6029990 | Busby | Feb 2000 | A |
6042132 | Suenaga et al. | Mar 2000 | A |
6045477 | Schmidt | Apr 2000 | A |
6045481 | Kumagai | Apr 2000 | A |
6053833 | Masaki | Apr 2000 | A |
6053841 | Koide et al. | Apr 2000 | A |
6054844 | Frank | Apr 2000 | A |
6066067 | Greenwood | May 2000 | A |
6071210 | Kato | Jun 2000 | A |
6076846 | Clardy | Jun 2000 | A |
6079726 | Busby | Jun 2000 | A |
6086506 | Petersmann et al. | Jul 2000 | A |
6095940 | Ai et al. | Aug 2000 | A |
6099431 | Hoge et al. | Aug 2000 | A |
6113513 | Itoh et al. | Sep 2000 | A |
6119539 | Papanicolaou | Sep 2000 | A |
6119800 | McComber | Sep 2000 | A |
6159126 | Oshidan | Dec 2000 | A |
6171210 | Miyata et al. | Jan 2001 | B1 |
6174260 | Tsukada et al. | Jan 2001 | B1 |
6186922 | Bursal et al. | Feb 2001 | B1 |
6217473 | Ueda et al. | Apr 2001 | B1 |
6241636 | Miller | Jun 2001 | B1 |
6243638 | Abo et al. | Jun 2001 | B1 |
6251038 | Ishikawa et al. | Jun 2001 | B1 |
6258003 | Hirano et al. | Jul 2001 | B1 |
6261200 | Miyata et al. | Jul 2001 | B1 |
6311113 | Danz et al. | Oct 2001 | B1 |
6312358 | Goi et al. | Nov 2001 | B1 |
6322475 | Miller | Nov 2001 | B2 |
6325386 | Shoge | Dec 2001 | B1 |
6358178 | Wittkopp | Mar 2002 | B1 |
6375412 | Dial | Apr 2002 | B1 |
6390945 | Young | May 2002 | B1 |
6390946 | Hibi et al. | May 2002 | B1 |
6406399 | Ai | Jun 2002 | B1 |
6414401 | Kuroda et al. | Jul 2002 | B1 |
6419608 | Miller | Jul 2002 | B1 |
6425838 | Matsubara et al. | Jul 2002 | B1 |
6434960 | Rousseau | Aug 2002 | B1 |
6440037 | Takagi et al. | Aug 2002 | B2 |
6461268 | Milner | Oct 2002 | B1 |
6482094 | Kefes | Nov 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494805 | Ooyama et al. | Dec 2002 | B2 |
6499373 | Van Cor | Dec 2002 | B2 |
6514175 | Taniguchi et al. | Feb 2003 | B2 |
6532890 | Chen | Mar 2003 | B2 |
6551210 | Miller | Apr 2003 | B2 |
6575047 | Reik et al. | Jun 2003 | B2 |
6659901 | Sakai et al. | Dec 2003 | B2 |
6672418 | Makino | Jan 2004 | B1 |
6676559 | Miller | Jan 2004 | B2 |
6679109 | Gierling et al. | Jan 2004 | B2 |
6682432 | Shinozuka | Jan 2004 | B1 |
6689012 | Miller | Feb 2004 | B2 |
6721637 | Abe et al. | Apr 2004 | B2 |
6723016 | Sumi | Apr 2004 | B2 |
6805654 | Nishii | Oct 2004 | B2 |
6808053 | Kirkwood et al. | Oct 2004 | B2 |
6839617 | Mensler et al. | Jan 2005 | B2 |
6849020 | Sumi | Feb 2005 | B2 |
6859709 | Joe et al. | Feb 2005 | B2 |
6931316 | Joe et al. | Aug 2005 | B2 |
6932739 | Miyata et al. | Aug 2005 | B2 |
6942593 | Nishii et al. | Sep 2005 | B2 |
6945903 | Miller | Sep 2005 | B2 |
6949049 | Miller | Sep 2005 | B2 |
6958029 | Inoue | Oct 2005 | B2 |
6991575 | Inoue | Jan 2006 | B2 |
6991579 | Kobayashi et al. | Jan 2006 | B2 |
7011600 | Miller et al. | Mar 2006 | B2 |
7011601 | Miller | Mar 2006 | B2 |
7014591 | Miller | Mar 2006 | B2 |
7029418 | Taketsuna et al. | Apr 2006 | B2 |
7032914 | Miller | Apr 2006 | B2 |
7036620 | Miller et al. | May 2006 | B2 |
7044884 | Miller | May 2006 | B2 |
7063640 | Miller | Jun 2006 | B2 |
7074007 | Miller | Jul 2006 | B2 |
7074154 | Miller | Jul 2006 | B2 |
7074155 | Miller | Jul 2006 | B2 |
7077777 | Miyata et al. | Jul 2006 | B2 |
7086979 | Frenken | Aug 2006 | B2 |
7086981 | Ali et al. | Aug 2006 | B2 |
7094171 | Inoue | Aug 2006 | B2 |
7111860 | Grimaldos | Sep 2006 | B1 |
7112158 | Miller | Sep 2006 | B2 |
7112159 | Miller et al. | Sep 2006 | B2 |
7125297 | Miller et al. | Oct 2006 | B2 |
7131930 | Miller et al. | Nov 2006 | B2 |
7140999 | Miller | Nov 2006 | B2 |
7147586 | Miller et al. | Dec 2006 | B2 |
7153233 | Miller et al. | Dec 2006 | B2 |
7156770 | Miller | Jan 2007 | B2 |
7160220 | Shinojima et al. | Jan 2007 | B2 |
7160222 | Miller | Jan 2007 | B2 |
7163485 | Miller | Jan 2007 | B2 |
7163486 | Miller et al. | Jan 2007 | B2 |
7166052 | Miller et al. | Jan 2007 | B2 |
7166056 | Miller et al. | Jan 2007 | B2 |
7166057 | Miller et al. | Jan 2007 | B2 |
7166058 | Miller et al. | Jan 2007 | B2 |
7169076 | Miller et al. | Jan 2007 | B2 |
7172529 | Miller et al. | Feb 2007 | B2 |
7175564 | Miller | Feb 2007 | B2 |
7175565 | Miller et al. | Feb 2007 | B2 |
7175566 | Miller et al. | Feb 2007 | B2 |
7192381 | Miller et al. | Mar 2007 | B2 |
7197915 | Luh et al. | Apr 2007 | B2 |
7198582 | Miller et al. | Apr 2007 | B2 |
7198583 | Miller et al. | Apr 2007 | B2 |
7198584 | Miller et al. | Apr 2007 | B2 |
7198585 | Miller et al. | Apr 2007 | B2 |
7201693 | Miller et al. | Apr 2007 | B2 |
7201694 | Miller et al. | Apr 2007 | B2 |
7201695 | Miller et al. | Apr 2007 | B2 |
7204777 | Miller et al. | Apr 2007 | B2 |
7214159 | Miller et al. | May 2007 | B2 |
7217215 | Miller et al. | May 2007 | B2 |
7217216 | Inoue | May 2007 | B2 |
7217219 | Miller | May 2007 | B2 |
7217220 | Careau et al. | May 2007 | B2 |
7232395 | Miller et al. | Jun 2007 | B2 |
7234873 | Kato et al. | Jun 2007 | B2 |
7235031 | Miller et al. | Jun 2007 | B2 |
7238136 | Miller et al. | Jul 2007 | B2 |
7238137 | Miller et al. | Jul 2007 | B2 |
7238138 | Miller et al. | Jul 2007 | B2 |
7238139 | Roethler et al. | Jul 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7250018 | Miller et al. | Jul 2007 | B2 |
7261663 | Miller et al. | Aug 2007 | B2 |
7275610 | Kuang et al. | Oct 2007 | B2 |
7285068 | Hosoi | Oct 2007 | B2 |
7288042 | Miller et al. | Oct 2007 | B2 |
7288043 | Shioiri et al. | Oct 2007 | B2 |
7320660 | Miller | Jan 2008 | B2 |
7322901 | Miller et al. | Jan 2008 | B2 |
7343236 | Wilson | Mar 2008 | B2 |
7347801 | Guenter et al. | Mar 2008 | B2 |
7384370 | Miller | Jun 2008 | B2 |
7393300 | Miller et al. | Jul 2008 | B2 |
7393302 | Miller | Jul 2008 | B2 |
7393303 | Miller | Jul 2008 | B2 |
7395731 | Miller et al. | Jul 2008 | B2 |
7396209 | Miller et al. | Jul 2008 | B2 |
7402122 | Miller | Jul 2008 | B2 |
7410443 | Miller | Aug 2008 | B2 |
7419451 | Miller | Sep 2008 | B2 |
7422541 | Miller | Sep 2008 | B2 |
7422546 | Miller et al. | Sep 2008 | B2 |
7427253 | Miller | Sep 2008 | B2 |
7431677 | Miller et al. | Oct 2008 | B2 |
7452297 | Miller et al. | Nov 2008 | B2 |
7455611 | Miller et al. | Nov 2008 | B2 |
7455617 | Miller et al. | Nov 2008 | B2 |
7462123 | Miller et al. | Dec 2008 | B2 |
7462127 | Miller et al. | Dec 2008 | B2 |
7470210 | Miller et al. | Dec 2008 | B2 |
7481736 | Miller et al. | Jan 2009 | B2 |
7510499 | Miller et al. | Mar 2009 | B2 |
7540818 | Miller et al. | Jun 2009 | B2 |
7547264 | Usoro | Jun 2009 | B2 |
7574935 | Rohs et al. | Aug 2009 | B2 |
7591755 | Petrzik et al. | Sep 2009 | B2 |
7632203 | Miller | Dec 2009 | B2 |
7651437 | Miller et al. | Jan 2010 | B2 |
7654928 | Miller et al. | Feb 2010 | B2 |
7670243 | Miller | Mar 2010 | B2 |
7686729 | Miller et al. | Mar 2010 | B2 |
7727101 | Miller | Jun 2010 | B2 |
7727107 | Miller | Jun 2010 | B2 |
7727108 | Miller et al. | Jun 2010 | B2 |
7727110 | Miller et al. | Jun 2010 | B2 |
7727115 | Serkh | Jun 2010 | B2 |
7731615 | Miller et al. | Jun 2010 | B2 |
7762919 | Smithson et al. | Jul 2010 | B2 |
7762920 | Smithson et al. | Jul 2010 | B2 |
7770674 | Miles et al. | Aug 2010 | B2 |
7785228 | Smithson et al. | Aug 2010 | B2 |
7828685 | Miller | Nov 2010 | B2 |
7837592 | Miller | Nov 2010 | B2 |
7871353 | Nichols et al. | Jan 2011 | B2 |
7882762 | Armstrong et al. | Feb 2011 | B2 |
7883442 | Miller et al. | Feb 2011 | B2 |
7885747 | Miller et al. | Feb 2011 | B2 |
7887032 | Malone | Feb 2011 | B2 |
7909723 | Triller et al. | Mar 2011 | B2 |
7909727 | Smithson et al. | Mar 2011 | B2 |
7914029 | Miller et al. | Mar 2011 | B2 |
7959533 | Nichols et al. | Jun 2011 | B2 |
7963880 | Smithson et al. | Jun 2011 | B2 |
7967719 | Smithson et al. | Jun 2011 | B2 |
7976426 | Smithson et al. | Jul 2011 | B2 |
8066613 | Smithson et al. | Nov 2011 | B2 |
8066614 | Miller et al. | Nov 2011 | B2 |
8070635 | Miller | Dec 2011 | B2 |
8087482 | Miles et al. | Jan 2012 | B2 |
8123653 | Smithson et al. | Feb 2012 | B2 |
8133149 | Smithson et al. | Mar 2012 | B2 |
8142323 | Tsuchiya et al. | Mar 2012 | B2 |
8167759 | Pohl et al. | May 2012 | B2 |
8171636 | Smithson et al. | May 2012 | B2 |
8230961 | Schneidewind | Jul 2012 | B2 |
8262536 | Nichols et al. | Sep 2012 | B2 |
8267829 | Miller et al. | Sep 2012 | B2 |
8313404 | Carter et al. | Nov 2012 | B2 |
8313405 | Bazyn et al. | Nov 2012 | B2 |
8317650 | Nichols et al. | Nov 2012 | B2 |
8317651 | Lohr | Nov 2012 | B2 |
8321097 | Vasiliotis et al. | Nov 2012 | B2 |
8342999 | Miller | Jan 2013 | B2 |
8360917 | Nichols et al. | Jan 2013 | B2 |
8376889 | Hoffman et al. | Feb 2013 | B2 |
8376903 | Pohl et al. | Feb 2013 | B2 |
8382631 | Hoffman et al. | Feb 2013 | B2 |
8382637 | Tange | Feb 2013 | B2 |
8393989 | Pohl | Mar 2013 | B2 |
8480529 | Pohl et al. | Jul 2013 | B2 |
8506452 | Pohl et al. | Aug 2013 | B2 |
8535199 | Lohr et al. | Sep 2013 | B2 |
8550949 | Miller | Oct 2013 | B2 |
8585528 | Carter et al. | Nov 2013 | B2 |
8622866 | Bazyn et al. | Jan 2014 | B2 |
8626409 | Vasiliotis et al. | Jan 2014 | B2 |
8628443 | Miller et al. | Jan 2014 | B2 |
8641572 | Nichols et al. | Feb 2014 | B2 |
8641577 | Nichols et al. | Feb 2014 | B2 |
8663050 | Nichols et al. | Mar 2014 | B2 |
8721485 | Lohr et al. | May 2014 | B2 |
8784248 | Murakami et al. | Jul 2014 | B2 |
8852050 | Thomassy | Oct 2014 | B2 |
8888643 | Lohr et al. | Nov 2014 | B2 |
20010008192 | Morisawa | Jul 2001 | A1 |
20010041644 | Yasuoka et al. | Nov 2001 | A1 |
20010044361 | Taniguchi et al. | Nov 2001 | A1 |
20020019285 | Henzler | Feb 2002 | A1 |
20020028722 | Sakai et al. | Mar 2002 | A1 |
20020045511 | Geiberger et al. | Apr 2002 | A1 |
20020128107 | Wakayama | Sep 2002 | A1 |
20020169051 | Oshidari | Nov 2002 | A1 |
20030015358 | Abe et al. | Jan 2003 | A1 |
20030015874 | Abe et al. | Jan 2003 | A1 |
20030022753 | Mizuno et al. | Jan 2003 | A1 |
20030036456 | Skrabs | Feb 2003 | A1 |
20030132051 | Nishii et al. | Jul 2003 | A1 |
20030135316 | Kawamura et al. | Jul 2003 | A1 |
20030216216 | Inoue et al. | Nov 2003 | A1 |
20030221892 | Matsumoto et al. | Dec 2003 | A1 |
20040038772 | McIndoe et al. | Feb 2004 | A1 |
20040058772 | Inoue et al. | Mar 2004 | A1 |
20040067816 | Taketsuna et al. | Apr 2004 | A1 |
20040082421 | Wafzig | Apr 2004 | A1 |
20040092359 | Imanishi et al. | May 2004 | A1 |
20040119345 | Takano | Jun 2004 | A1 |
20040171457 | Fuller | Sep 2004 | A1 |
20040204283 | Inoue | Oct 2004 | A1 |
20040231331 | Iwanami et al. | Nov 2004 | A1 |
20040254047 | Frank et al. | Dec 2004 | A1 |
20050037876 | Unno et al. | Feb 2005 | A1 |
20050085338 | Miller et al. | Apr 2005 | A1 |
20050085979 | Carlson et al. | Apr 2005 | A1 |
20050227809 | Bitzer et al. | Oct 2005 | A1 |
20060006008 | Brunemann et al. | Jan 2006 | A1 |
20060052204 | Eckert et al. | Mar 2006 | A1 |
20060084549 | Smithson et al. | Apr 2006 | A1 |
20060108956 | Clark | May 2006 | A1 |
20060111212 | Ai et al. | May 2006 | A9 |
20060154775 | Ali et al. | Jul 2006 | A1 |
20060180363 | Uchisasai | Aug 2006 | A1 |
20060223667 | Nakazeki | Oct 2006 | A1 |
20060234822 | Morscheck et al. | Oct 2006 | A1 |
20060276299 | Imanishi | Dec 2006 | A1 |
20070004552 | Matsudaira et al. | Jan 2007 | A1 |
20070004556 | Rohs et al. | Jan 2007 | A1 |
20070149342 | Guenter et al. | Jun 2007 | A1 |
20070155567 | Miller et al. | Jul 2007 | A1 |
20070193391 | Armstrong et al. | Aug 2007 | A1 |
20070228687 | Parker | Oct 2007 | A1 |
20080032852 | Smithson et al. | Feb 2008 | A1 |
20080032854 | Smithson et al. | Feb 2008 | A1 |
20080039269 | Smithson et al. | Feb 2008 | A1 |
20080039273 | Smithson et al. | Feb 2008 | A1 |
20080039276 | Smithson et al. | Feb 2008 | A1 |
20080081728 | Faulring et al. | Apr 2008 | A1 |
20080139363 | Williams | Jun 2008 | A1 |
20080141809 | Miller et al. | Jun 2008 | A1 |
20080149407 | Shibata et al. | Jun 2008 | A1 |
20080200300 | Smithson et al. | Aug 2008 | A1 |
20080228362 | Muller et al. | Sep 2008 | A1 |
20080284170 | Cory | Nov 2008 | A1 |
20080305920 | Nishii et al. | Dec 2008 | A1 |
20090023545 | Beaudoin | Jan 2009 | A1 |
20090082169 | Kolstrup | Mar 2009 | A1 |
20090107454 | Hiyoshi et al. | Apr 2009 | A1 |
20090132135 | Quinn et al. | May 2009 | A1 |
20090251013 | Vollmer et al. | Oct 2009 | A1 |
20100056322 | Thomassy | Mar 2010 | A1 |
20100093479 | Carter et al. | Apr 2010 | A1 |
20110088503 | Armstrong et al. | Apr 2011 | A1 |
20110127096 | Schneidewind | Jun 2011 | A1 |
20110172050 | Nichols et al. | Jul 2011 | A1 |
20110184614 | Keilers et al. | Jul 2011 | A1 |
20110218072 | Lohr et al. | Sep 2011 | A1 |
20110230297 | Shiina et al. | Sep 2011 | A1 |
20110291507 | Post | Dec 2011 | A1 |
20110319222 | Ogawa et al. | Dec 2011 | A1 |
20120035015 | Ogawa et al. | Feb 2012 | A1 |
20120238386 | Pohl et al. | Sep 2012 | A1 |
20120258839 | Smithson et al. | Oct 2012 | A1 |
20120309579 | Miller et al. | Dec 2012 | A1 |
20130035200 | Noji et al. | Feb 2013 | A1 |
20130053211 | Fukuda et al. | Feb 2013 | A1 |
20130095977 | Smithson et al. | Apr 2013 | A1 |
20130102434 | Nichols et al. | Apr 2013 | A1 |
20130146406 | Nichols et al. | Jun 2013 | A1 |
20130190123 | Pohl et al. | Jul 2013 | A1 |
20130288844 | Thomassy | Oct 2013 | A1 |
20130288848 | Carter et al. | Oct 2013 | A1 |
20130310214 | Pohl et al. | Nov 2013 | A1 |
20130324344 | Pohl et al. | Dec 2013 | A1 |
20130331218 | Lohr et al. | Dec 2013 | A1 |
20130337971 | Kostrup | Dec 2013 | A1 |
20140011619 | Pohl et al. | Jan 2014 | A1 |
20140011628 | Lohr et al. | Jan 2014 | A1 |
20140038771 | Miller | Feb 2014 | A1 |
20140073470 | Carter et al. | Mar 2014 | A1 |
20140121922 | Vasiliotis et al. | May 2014 | A1 |
20140128195 | Miller et al. | May 2014 | A1 |
20140141919 | Bazyn et al. | May 2014 | A1 |
20140144260 | Nichols et al. | May 2014 | A1 |
20140148303 | Nichols et al. | May 2014 | A1 |
20140179479 | Nichols et al. | Jun 2014 | A1 |
20140206499 | Lohr | Jul 2014 | A1 |
20140248988 | Lohr et al. | Sep 2014 | A1 |
20140257650 | Carter et al. | Sep 2014 | A1 |
20140323260 | Miller et al. | Oct 2014 | A1 |
20140329637 | Thomassy et al. | Nov 2014 | A1 |
20140335991 | Lohr et al. | Nov 2014 | A1 |
20140365059 | Keilers et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
118064 | Dec 1926 | CH |
1054340 | Sep 1991 | CN |
1157379 | Aug 1997 | CN |
1281540 | Jan 2001 | CN |
1283258 | Feb 2001 | CN |
1940348 | Apr 2007 | CN |
498 701 | May 1930 | DE |
1171692 | Jun 1964 | DE |
2 310880 | Sep 1974 | DE |
2 136 243 | Jan 1975 | DE |
2436496 | Feb 1975 | DE |
39 40 919 | Jun 1991 | DE |
19851738 | May 2000 | DE |
10155372 | May 2003 | DE |
0 432 742 | Dec 1990 | EP |
0 528 381 | Feb 1993 | EP |
0528382 | Feb 1993 | EP |
635639 | Jan 1995 | EP |
0638741 | Feb 1995 | EP |
0 832 816 | Apr 1998 | EP |
0976956 | Feb 2000 | EP |
1136724 | Sep 2001 | EP |
1366978 | Mar 2003 | EP |
1 433 641 | Jun 2004 | EP |
1 624 230 | Feb 2006 | EP |
1 811 202 | Jul 2007 | EP |
620375 | Apr 1927 | FR |
2460427 | Jan 1981 | FR |
2590638 | May 1987 | FR |
391448 | Apr 1933 | GB |
592320 | Sep 1947 | GB |
906 002 | Sep 1962 | GB |
919430 | Feb 1963 | GB |
1132473 | Nov 1968 | GB |
1165545 | Oct 1969 | GB |
1 376 057 | Dec 1974 | GB |
2031822 | Apr 1980 | GB |
2 035 482 | Jun 1980 | GB |
2 080 452 | Aug 1982 | GB |
44-1098 | Jan 1944 | JP |
38-025315 | Nov 1963 | JP |
41-003126 | Feb 1966 | JP |
42-2843 | Feb 1967 | JP |
42-2844 | Feb 1967 | JP |
47-000448 | Jul 1972 | JP |
47-29762 | Nov 1972 | JP |
48-54371 | Jul 1973 | JP |
49-12742 | Mar 1974 | JP |
50-114581 | Sep 1975 | JP |
51-25903 | Aug 1976 | JP |
51-150380 | Dec 1976 | JP |
47-20535 | Aug 1977 | JP |
53 048166 | Jan 1978 | JP |
55-135259 | Apr 1979 | JP |
56-047231 | Apr 1981 | JP |
56-127852 | Oct 1981 | JP |
58065361 | Apr 1983 | JP |
59069565 | Apr 1984 | JP |
59-144826 | Aug 1984 | JP |
60-247011 | Dec 1985 | JP |
61-031754 | Feb 1986 | JP |
61031754 | Feb 1986 | JP |
61-053423 | Mar 1986 | JP |
61-144466 | Jul 1986 | JP |
61-173722 | Oct 1986 | JP |
61-270552 | Nov 1986 | JP |
62-75170 | Apr 1987 | JP |
63-219953 | Sep 1988 | JP |
63219953 | Sep 1988 | JP |
63-160465 | Oct 1988 | JP |
01-286750 | Nov 1989 | JP |
01-308142 | Dec 1989 | JP |
02-130224 | May 1990 | JP |
02157483 | Jun 1990 | JP |
02271142 | Jun 1990 | JP |
02-182593 | Jul 1990 | JP |
03-223555 | Oct 1991 | JP |
04-166619 | Jun 1992 | JP |
04-272553 | Sep 1992 | JP |
4-351361 | Dec 1992 | JP |
5-87154 | Apr 1993 | JP |
52-35481 | Sep 1993 | JP |
06-050169 | Feb 1994 | JP |
6-50358 | Feb 1994 | JP |
7-42799 | Feb 1995 | JP |
07-133857 | May 1995 | JP |
7-139600 | May 1995 | JP |
07-259950 | Oct 1995 | JP |
08170706 | Jul 1996 | JP |
09024743 | Jan 1997 | JP |
09-089064 | Mar 1997 | JP |
10-061739 | Mar 1998 | JP |
10-115355 | May 1998 | JP |
10-115356 | May 1998 | JP |
10-194186 | Jul 1998 | JP |
10-511621 | Nov 1998 | JP |
411063130 | Mar 1999 | JP |
11-257479 | Sep 1999 | JP |
2000-46135 | Feb 2000 | JP |
2001-27298 | Jan 2001 | JP |
2001-071986 | Mar 2001 | JP |
2001-107827 | Apr 2001 | JP |
2001-165296 | Jun 2001 | JP |
2001521109 | Nov 2001 | JP |
2002-147558 | May 2002 | JP |
2002-250421 | Jun 2002 | JP |
2002-307956 | Oct 2002 | JP |
2002-372114 | Dec 2002 | JP |
2003-028257 | Jan 2003 | JP |
2003-56662 | Feb 2003 | JP |
2003-161357 | Jun 2003 | JP |
2003-524119 | Aug 2003 | JP |
2003-336732 | Nov 2003 | JP |
2004162652 | Jun 2004 | JP |
2004-189222 | Jul 2004 | JP |
8-247245 | Sep 2004 | JP |
2004-526917 | Sep 2004 | JP |
2005-003063 | Jan 2005 | JP |
2005240928 | Sep 2005 | JP |
2006015025 | Jan 2006 | JP |
2006-300241 | Nov 2006 | JP |
2007-535715 | Dec 2007 | JP |
2008-002687 | Jan 2008 | JP |
03-149442 | Jan 2009 | JP |
2010069005 | Apr 2010 | JP |
98467 | Jul 1961 | NE |
74007 | Jan 1984 | TW |
175100 | Dec 1991 | TW |
218909 | Jan 1994 | TW |
227206 | Jul 1994 | TW |
275872 | May 1996 | TW |
360184 | Jun 1999 | TW |
366396 | Aug 1999 | TW |
512211 | Dec 2002 | TW |
582363 | Apr 2004 | TW |
590955 | Jun 2004 | TW |
I225129 | Dec 2004 | TW |
I225912 | Jan 2005 | TW |
I235214 | Jan 2005 | TW |
M294598 | Jul 2006 | TW |
200637745 | Nov 2006 | TW |
WO 9920918 | Apr 1999 | WO |
WO 0173319 | Oct 2001 | WO |
WO 02088573 | Nov 2002 | WO |
WO 03100294 | Dec 2003 | WO |
WO 2005083305 | Sep 2005 | WO |
WO 2005108825 | Nov 2005 | WO |
WO 2005111472 | Nov 2005 | WO |
WO 2006091503 | Aug 2006 | WO |
WO 2007133538 | Nov 2007 | WO |
WO 2007133681 | Nov 2007 | WO |
WO 2008002457 | Jan 2008 | WO |
WO 2008057507 | May 2008 | WO |
WO 2008078047 | Jul 2008 | WO |
WO 2008095116 | Aug 2008 | WO |
WO 2008100792 | Aug 2008 | WO |
WO 2008101070 | Aug 2008 | WO |
WO 2008131353 | Oct 2008 | WO |
WO 2008154437 | Dec 2008 | WO |
WO 2009065057 | May 2009 | WO |
WO 2009148461 | Dec 2009 | WO |
WO 2009157920 | Dec 2009 | WO |
WO 2010017242 | Feb 2010 | WO |
WO 2010135407 | Nov 2010 | WO |
WO 2011101991 | Aug 2011 | WO |
WO 2012030213 | Mar 2012 | WO |
WO 2013112408 | Aug 2013 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2007/023315 dated Apr. 16, 2008. |
Thomassy: An Engineering Approach to Simulating Traction EHL. CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97. |
International Search Report and Written Opinion dated Feb. 2, 2010 from International Patent Application No. PCT/US2008/068929, filed on Jan. 7, 2008. |
Office Action dated Feb. 12, 2010 from Japanese Patent Application No. 2009-294086. |
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2006-508892. |
Office Action dated Jul. 10, 2012 for U.S. Appl. No. 12/514,062. |
Office Action dated Mar. 1, 2012 for U.S. Appl. No. 12/514,062. |
International Search Report and Written Opinion dated Aug. 6, 2009 for PCT Application No. PCT/US2009/035540. |
Japanese Office Action dated Aug. 6, 2013 for Japanese Patent Application No. 2011-524950. |
Office Action dated May 28, 2013 in Japanese Patent Application No. 2012-095839. |
Office Action dated Aug. 12, 2013 for Taiwanese Patent Application No. 095143152. |
Preliminary Notice of First Office Action dated Sep. 14, 2013 in Taiwan Patent Application No. 96142183. |
Notification of Reasons for Refusal dated Jan. 28, 2014 in Japanese Patent Application No. 2012-506182. |
Preliminary Notice of First Office Action dated Jan. 23, 2014 in Taiwanese Patent Application No. 097114878. . |
First Office Action date Jul. 30, 2014 in Taiwan Patent Application No. 96142183. |
Number | Date | Country | |
---|---|---|---|
20130152715 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
60864941 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12514062 | US | |
Child | 13765409 | US |