This disclosure relates to integrated circuit (IC) chips, more particularly to protecting circuitry of chips' power supplies and I/O pads and more particularly to protecting the functional elements of an IC chip from electrostatic discharge (ESD).
Electrostatic discharge (ESD) may be described as the sudden and momentary electric current that flows when an excess of electric charge, stored on an electrically insulated object, finds a path to an object at a different electrical potential (such as ground). The term is usually used in the electronics and other industries to describe momentary unwanted currents that may cause damage to electronic equipment.
ESD is a serious issue in solid-state electronics. Integrated circuits are made from semiconductor materials such as silicon and insulating materials such as silicon dioxide. Either of these materials can suffer permanent damage when subjected to high voltages. Manufacturers and users of integrated circuits must take precautions to avoid this problem. Such measures include special design techniques for device input, output pins and supply pins, using appropriate ESD safe packing material, the use of conductive tracks on cleanroom clothing worn by assembly workers, conducting wrist straps and foot-straps to prevent high voltages from accumulating on workers' bodies, anti-static mats or conductive flooring materials to conduct harmful electric charges away from the work area, and humidity control because, in humid conditions, the surface layer of moisture on many objects conducts electric charges harmlessly to earth.
For testing the susceptibility of electronic devices to ESD from human contact, a simple test circuit called the human body model (HBM) is often used. This consists of a capacitor in series with a resistor. The capacitor is charged to a specified high voltage from an external source, and then suddenly discharged through the resistor into an electrical terminal of the device under test. One of the most widely used models is defined in the JEDEC 22-A114-B standard, which specifies a 100 pf (picofarad) capacitor and a 1500 ohm resistor. Other similar standards are MIL-STD-883 Method 3015, and the ESD Association's ESD STM5.1. These standards are incorporated by reference in their entirety herein,
Other standardized ESD test circuits include the following:
Machine model (MM)
Charged device model (CDM)
Socketed Device Model (SDM)
Transmission line pulse (TLP)
All these ESD testing standards define the testing method and procedure as well as the test circuit.
For qualification testing of semiconductor devices, ESD and latchup are commonly considered together. “Latchup” is the inadvertent creation of a low-impedance path between the power supply rails of an electronic component, triggering a parasitic device, which then acts as a short circuit, leading to cessation of proper function of the part and perhaps even its destruction with the overcurrent. A power cycle is typically required to correct the situation.
Electrostatic discharge (ESD) has been the main reliability concern in semiconductor devices, especially in the scaled-down CMOS technologies. Due to the low breakdown voltage of the thinner gate oxide in deep-submicron CMOS technologies, an efficient on-chip ESD protection circuit should be designed to clamp the overstress voltage across the gate oxide of the internal circuits.
As a whole chip ESD protection is needed, an ESD scheme to protect the whole chip is required.
A more complete description of NROM and similar ONO cells and devices, as well as processes for their development may be found at “Non Volatile Memory Technology”, 2005 published by Saifun Semiconductors Ltd. and materials presented at and through http://siliconnexus.com, both incorporated by reference herein in their entirety.
Unless otherwise noted, or as may be evident from the context of their usage, any terms, abbreviations, acronyms or scientific symbols and notations used herein are to be given their ordinary meaning in the technical discipline to which the disclosure most nearly pertains. The following terms, abbreviations and acronyms may be used throughout the descriptions presented herein and should generally be given the following meaning unless contradicted or elaborated upon by other descriptions set forth herein. Some of the terms set forth below may be registered trademarks (®).
According to the disclosure, a clamping scheme uses dual sensing detection, which can sense and differentiate (in the extreme) between a high voltage level and fast (enough) slope (indicative of ESD), and low voltage level and slow slope (indicative of normal operation) and/or low voltage level and fast slope (indicative of hot insertion). It can also generate a locking scheme to ensure proper discharging only if the level is above high level and fast slope. It can also operate the clamping for a short time only if the level is below the high level but above the low level, and of sufficient (above a threshold, pre-determined) slope.
According to the disclosure, a method of performing voltage clamping comprises: determining whether a voltage is above a pre-defined level; and sensing voltage slope for voltages, which are above the pre-defined level. Voltage events may be clamped when the voltage slope exceeds the pre-defined level, and voltage events, which are below the pre-defined level, may be ignored.
According to the disclosure, a clamper comprises: means for determining whether a voltage is above a pre-defined level; means for sensing voltage slope for voltage events which are above the pre-defined level; and means for discharging voltage events which are above the predefined level. A voltage event, which is a spike, may be discharged until the pre-defined level is reached. A voltage event, which is an ESD may be discharged completely.
Reference will be made in detail to embodiments of the disclosure, examples of which may be illustrated in the accompanying drawing figures (FIGs). The figures are intended to be illustrative, not limiting. Although the disclosure is generally described in the context of these embodiments, it should be understood that it is not intended to limit the disclosure to these particular embodiments.
Conventional electronic components may be labeled with conventional schematic-style references comprising a letter (for example, A, C, Q, R, D) indicating the type of electronic component (for example, amplifier, capacitor, transistor, resistor, diode, respectively) followed by a number indicating the iteration of that element (for example, “1” meaning a first of typically several of a given type of electronic component). Components such as resistors and capacitors typically have two terminals, which may be referred to herein as “ends”. In some instances, “signals” are referred to, and reference numerals may point to lines that carry said signals In the schematic diagrams, the various electronic components are connected to one another, as shown.
In schematic diagrams illustrating a “flow”, the direction is usually from left-to-right. However, it can also be, without limitation, from right-to-left.
Elements of the figures may (or may not) be numbered as follows. The most significant digits (hundreds) of the reference number correspond to the figure number. For example, elements of
Regarding the use of subscripts (in the drawings, as well as throughout the text of this document), sometimes a character (letter or numeral) is written as a subscript—smaller, and lower than the character (typically a letter) preceding it, such as “Vs” (source voltage) or “H2O” (water). For consistency of font size, such acronyms may be written in regular font, without subscripting, using uppercase and lowercase—for example “Vs” and “H2O”.
The disclosure is generally directed to a clamper, which may be part of an overall ESD (Electro-Static Discharge) and chip power scheme. The clamper should be integrated into the chip without adversely affecting its behaviour or operation condition. The clamper should clamp ESD events as described in ESD Specs (specifications) the chip should comply to.
The clamper is supposed to clamp any ESD event. ESD Events are destructive, thus fast response is required for power/heat dispersing, else the chip can be damaged and rendered non-functional. However, the chip should function within its operation specification without any interference from the ESD clamper. Fast supply rise time (ramp) is part of the chips' specification, especially, but not limited to, Memory Card Applications, where the card can be inserted into a system already powered on. In order to be effective, the clamper should differentiate between fast ESD voltage ramp and fast supply ramp—it should clamp the fast ESD voltage ramp while not interfering with the fast supply ramp. Supply noise is (limited in amplitude) part of the chips' operation environment. This limited noise should not be treated as an ESD event.
Most prior art clamper designs are based on a simple RC (resistor-capacitor) network as shown in
A situation addressed by this disclosure, involving fast supply ramp, is typified by (and somewhat unique to) Memory Card Applications that require hot insertion (plugging a memory module into an apparatus which is turned on), resulting in a fast supply ramp. Generally, a fast ramp, from zero up to supply voltage, will not damage the memory card.
Generally, the technique disclosed herein solves the problem by using a double sensing scheme. Typically, ESD events will be of much higher voltage than supply voltages or supply noise voltage during normal operation.
First, by sensing the voltage level, only voltage levels above pre-defined levels are treated as a candidate ESD event. This allows fast supply ramps to be “filtered” (ignored), thereby not responding to them (ignoring them). As used herein, supply levels include all voltages within normal operating range, as well as voltages used for burn-in conditions. (Burn-in typically uses voltages somewhat higher than normal operating voltages, in conjunction with elevated temperature.)
Second, in addition to only responding to voltage events above a pre-defined level, the double sensing mechanism differentiates between, and reacts differently to, voltage events which are (i) ESD events and voltage events which are (ii) normal operation of the chip.
To achieve the objectives of differentiation between the ESD events and normal operation, the double sensing scheme is used. The following description refers to
All events with voltage amplitudes lower than the first detection level, VDET113 trip are treated as normal operation. Like the prior art detectors, in this voltage range no clamping occurs and the clamper does not affect chip's normal operation.
All events with voltages above the second detection level, VDET2_trip, are treated as ESD events, which imply that the clamper is activated and a locking circuitry is also activated, keeping the operation of the clamper as long as necessary to completely discharge the ESD event.
Due to process variations, temperature effects and different system designs, there could be an overlap of the 2 cases described above, i.e. a fast ramp which is not an ESD can go higher than the first detection level, VDET1_trip, but is lower than VDET2_trip. In this case, the clamper should be activated, because if it is a ESD event, then delaying it's activation might result in voltages across the chip which are higher than the chip could tolerate. On the other hand, the locking mechanism is not turned on, so that if it is not a ESD event, the power supply is not shorted, and the clamper will only operate for a short while (discharging the extra voltage on the power supply but not more than that). If it was an ESD event, anyway the voltage level would rise above the VDET2_trip and the locking circuitry would be turned on.
Thus, there are three voltage events of concern:
The circuit that is shown (in
When the clamper is used in an overall ESD scheme, diodes, snapback devices or any other special devices are placed in a way such that they will conduct ESD charge in an ESD event from the pad (input or output or I/O) to the Power supply (e.g. VCC) but will not hurt normal operation mode. More precisely, in normal operation mode, where diodes are used, the anode of the diode is in a lower potential than the cathode of the diode. Note that the diodes shown in the
Fifteen diodes D1-D15 are shown, and may be of two types, as follows:
The diodes D1-D15 are laid out to obtain large current capacity, minimal series resistance, no self damage.
The diodes (other than D9 and D10) are connected generally from bottom to top (cathode towards highest voltage rail), so that there will be (under normal operating conditions) no reverse current flow through the diodes (Except for diode leakage).
Two of the diodes (D9 and D10) are shown connected “back-to-back”, in the substrate supply line (Vss), to accommodate a noisy line.
Two clampers CL1 and CL2 are shown. Each clamper has a “high” terminal connected to the highest voltage (VDDH) rail, and a “low” terminal connected to a lowest voltage rail (Vss/Vssq). Note: in large chips there are more than one clamper per supply port. Exemplary clampers are shown in greater detail in
Two amplifiers A1 and A2 are shown. Amplifier A1 serves as an input buffer while Amplifier A2 serves as an output buffer .
Five inputs are shown, as follows:
One output is shown, as follows:
The solid line 330, extending from left (+) to right (−), from “Out”, through the clamp CL1, to the Input to Vccq, illustrates the main discharge path.
The dashed line 332, extending from the solid line 330, through the diode D10, and through the clamp CL2, illustrates the secondary/additional discharge path.
The solid line 334, extending from right (+) to left (−), through clamp CL2, illustrates the main discharge path.
The dashed line 336, extending through diode D9, and through clamp CL1, illustrates the secondary/additional discharge path.
The solid line 340, extending from left (+) to left (−), through clamp CL2, illustrates the main discharge path
The dashed line 336, extending through diode D9, and through clamp CL1, illustrates the secondary/additional discharge path
In
The string of diodes is connected via a resistor and series-connected capacitor to the high rail (positive port) 402. The purpose of the resistor is to define the current through the diodes and limit it while the circuit is active and the purpose of the capacitor is to limit the time this circuit is active. This is mostly impotant for eliminating standby current. The time constant should be, of course, sufficient for detection and discharging events, in the second region (see
The string of diodes is connected via a transistor Q1 to the low rail (negative port) 404. The purpose of the transistor Q1 (
The detector 410 has two outputs—a lower threshold output DET1, and a higher threshold output DET2. Both DET1 and DET2 voltages are close to the higher rail 452 when no current is flowing in Q2, Q3. When 452 rail rise (e.g., due to ESD event) to a sufficient level, DET1 will be pulled by Q2 towrds the lower rail 454, and if the volatge of DET1 is below the trip-point (“threshold”) of the NAND gate, the output of the NAND gate will change logical state from logical ‘0’ to logical ‘1’. For even a higher level of the supply rail 452, DET2 will be pulled to the lower rail 454 by Q3, and if the volatge of DET2 is below the trip-point (“threshold”) of the INVERTER gate (Inv1), the output of the INVERTER (“NLTCH”) gate will change logical state from logical ‘0’ to logical ‘1’. Always, DET1 will be pulled towards the lower rail 452 before DET2, such that, always, the NAND output will change logical state, before the INVERTER output does so. The potential difference between rail 452 and rail 454, which cause DET1 to change logical value from ‘1’ to ‘0’, is refered to as VDET1_trip, as shown in
As described above, the lower threshold output DET1 is supplied to an input of a NAND gate, and performs the task of establishing the pre-defined level above which voltage events such as ESD are detected, as described hereinabove. If the voltage is below the VDET1_trip level, the situation is indicative of normal operation (including burn-in) and no clamping, neither locking will occur.
One input of the NAND logic gate is driven directly by DET1 signal. The other input of the NAND logic gate is driven by DET2 signal, via a first inverter Inv1 followed by a second inverter Inv2. A transistor QL is connected to the bottom rail (negative port) 404 and across the first inverter, as shown in
As before (clamper 400), a detector 410 in the clamper 450 detects voltage rise occuring on the clamper's ports.
As before (clamper 400), the clamper 450 is diode based, comprising a string of 7 diodes 461-467, connected in series with one another and having their cathodes oriented towards the low rail (generally, opposite to the diodes in
As before (clamper 400), the string of diodes is connected via a resistor and series-connected capacitor to the high rail (positive port) 452.
As before (clamper 400), the string of diodes is connected via a transistor Q1 (compare Q) to the low rail (negative port) 404.
In this embodiment, a current-mirroring scheme is employed. This involves the transistor Q1 establishing the current to be mirrored, and the current-mirroring transistors Q2 and Q3.
Generally, in current-mirroring, a first transistor (in this case Q1) is connected such that it has a given current flowing through it and behaves as a forward-biased diode. If the first transistor is connected to a fixed voltage source, the current flowing through the first transistor will also be fixed, or constant. If the first transistor is connected to a varying voltage source, the current flowing through the first transistor will also be varying. The first transistor Q1 establishes the current to be mirrored. Additional transistors (in this case Q2 and Q3, as described in greater detail below) are added and connected to transistor Q1 such that the current flowing through the additional, current-mirroring transistors (Q2 and Q3) will be the same as the current flowing through the current-establishing transistor (Q1), assuming Q2 and Q3 are of the same size as Q1. It is, of course, important that all of the transistors used in a current-mirroring scheme are identical with one another, (e.g. the transistors has the same W and L and it is of the same type, HV or LV), a situation which is straightforward to implement with transistors on a single integrated circuit (IC).
If a different current (other than the current “I” which is established by Q1) is desired in a given branch of a current mirror, a number “n” of identical transistors (that is, the transistors has the same W and L and it is of the same type, HV or LV) are connected together (source to source, drain to drain, gate to gate) with one another to act in unison, each mirroring the established current. Thus, 3 transistors connected together can establish a current of 3*I, and “n” transistors connected with one another can establish a current of n*I.
The transistor Q2 is in the low threshold DET #1 portion of the clamper, and is connected via a resistor 456 having a resitance R to the positive port 452. Note the legend “15*I”. This means that there are 15 identical transistors (n=15) connected identically (source to source, drain to drain, gate to gate) with one another in this branch of the current mirror.
The transistor Q3 is in the high threshold DET #2 portion of the clamper; and is connected via a resistor 458 having a resitance R/2 to the positive port 452. Note the legend “5*I”. This means that there are 5 identical transistors (n=5) connected identically (source to source, drain to drain, gate to gate) with one another.
The lower threshold (VDET1_trip) DET#1 portion of the clamper has a higher resistance R and more identical transistors Q2 (15), and the higher threshold (VDET2_trip) DET#2 portion of the clamper has a lower resistance R/2 and fewer identical transistors Q3 (5).
The current mirror transistors (Q2 and Q3) are pulling DET1 and DET2 nodes down respectivly. The resistors R (456) and R12 (458) are pulling DET1 and DET2 nodes up respectivly. The ratios used in the design for Q2, Q3, R, R/2 were sized to give VDET1_trip to be lower than VDET2_trip.
Additionally, the high threshold DET #2 portion of the clamper is provided with a capacitor “C” across the sources and drains of the transistors Q3. Generally, the purpose of the capacitor is to support lower level ESD events, as explained later on.
With reference to the examples set forth in
Details of Operation
The following is descriptive of the operation of the clamper 450 shown in
While detector reference detects VIN>VMIN,
Detector 1:
Detector 2:
Detector 2:
Latch inserted for full discharge after ESD zap
Capacitor C is needed for the lower ESD zaps
Tests and Simulations
In the provisional patent application, four diagrams are presented (at pages 9-12).
Regarding the diagram at page 9 of the provisional, entitled “Full Chip, Hot Insertion, Supp=4−5V/5V”, this simulation, run at Burn-In condition, verifies the behaviour of the clamper. The spec in this conditions for supply rise-time is 3 μsec. The simulations were run at several supply ramp-up such as 1 μsec/1.5 μsec/2 μsec for sensitivity verification. The upper graphs shows the full-chip current consumption under the relevant conditions The lower-graph shows the NCH clamper transistor's QCE gate voltage. The graphs proves the behaviour of the clamper under Burn-In conditions, for example the clamper is drawing some current when the supply is ramping up but the clamper is not locked, thus does not short the Burn-In supply.
Regarding the diagram at page 10 of the provisional, entitled “F.C. H.I. Supp=3.6V, 125° C.” (F.C. is an abbreviation for Full Chip, and H.I. is an abbreviation for Hot Insertion, 125° C. means 125 degrees Celsius), this simulation, run at maximum operating supply conditions, verifies the behaviour of the clamper under normal operation conditions. The spec in this conditions for supply rise-time is 1 μsec. The simulations were run at several supply slopes between 50 nSec to 300 nSec for sensitivity verification. The upper graphs shows the full-chip current consumption under the relevant conditions. The lower graph shows the NCH clamper transistor's QCE gate voltage. Both graphs proves the chip can handle supply ramp-up speeds of 100 nSec without locking or shorting the supply.
Regarding the diagram at page 11 of the provisional, entitled “ESD ZAP, lower ESD voltages, latch is latched”, the ESD Specs are 4 KV for the RBM, however the human can be charged into a lower voltage than the maximum specs. The design has to prove its ability to respond to lower ESD figures, namely locking the clamper and discharging the ESD energy totaly. These waveforms show that for an ESD event (as low as 100 V to as high as 2.1 KV), the circuit is locked and discharge the ESD energy completely.
Regarding the diagram at page 12 of the provisional, entitled “ESD ZAP, 4 KV, latch is latched”, this is the same situation as for slide 11, but for the maximum spec of 4 KV.
Page 13 of the provisional shows a detailed diagram of a full implementation of the clamp shown in
This situation might happen at the end of an ESD event and/or due to coupled noise to the gate of QCE In the practical circuit, the NAND is not fully implemented. Namely, DET2# locks the circuit but DET1# charge the gate of QCE which means the PCH portion of the NAND is conected to DET1# only while the NCH portion of the NAND is conencted to DET1# & DET2#
There has thus been shown and described a “smart” ESD clamper with dual-level operation. The clamper can distinguish between ESD event and normal operation voltage. The clamp circuitry locks in an ESD event. The clamper can be used for any ‘smart’ clamping requirement with dual-level definition (neither of which need be an ESD event).
One of the main advantages of the clamper is its ability to trim the VDET1_trip and VDET2_trip to be close to each-other within a wide dynamic range of operation of the clamper or another application.
There has thus been demonstrated a clamping scheme using dual sensing detection, which can sense and differentiate (in the extreme) between a high voltage level and fast (enough) slope (indicative of ESD), and low voltage level and slow slope (indicative of normal operation) and/or low voltage level and fast slope (indicative of hot insertion). It can also generate a locking scheme to ensure proper discharging only if the level is above high level and fast slope. It can also operate the clamping for a short time only if the level is below the high level but above the low level, and of sufficient (above a threshold) slope.
While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof It is therefore intended that the following appended claims and claims hereafter introduced be interpreted to include all such modifications, permutations, additions and sub-combinations.