Sof'ina et al. Experimental evaluation of antitumor drugs in the USA and USSR and clinical correlations. Nationa Cancer Institute Monograph 55. Dec. 1980. NIH Publication No. 80-1933. pp. 76-78.* |
Das, M.K., et al., “Synthesis of Some Dihydroxamic Acid Siderophores,” Chemical Abstracts, 101(7):582 (1984). (From J. Chem. Eng. Data, 1984, 29(3):345-348, Abstract No. 54665t). |
Chun, H.G., et al., “Hexamethylene Bisacetamide: A Polar-Planar Compound Entering Clinical Trials as a Differentiating Agent,” Cancer Treatment Reports, 70(8):991-996 (1986). |
Brown, D., et al., “A Facile Synthesis of Aliphatic Dihydroxamic Acids of General Formula RONR1-CO- (CH2)n-CO-NR1OR,” 23-Aliphatics, 105:605 (1986). From Synth. Commun., 1985, 15(13):1159-1164, Abstract No. 78501v). |
Brown, D.A., et al., “Design of Metal Chelates with Biological Activity. 5. Complexation Behavior of Dihydroxamic Acids with Metal Ions,” Inorganic Chemistry, 25(21):3792-3796 (1986). |
Linfield, W.M., et al., “Antibacterially Active Substituted Anilides of Carboxylic and Sulfonic Acids,” J. Med. Chem., 26(12):1741-1746 (1983). |
Lea, M.A., and Tulsyan, N., “Discordant Effects of Butyrate Analogues on Erythroleukemia Cell Proliferation, Differentiation and Histone Deacetylase,” Anticancer Research, 15:879-883 (1995). |
Kwon, H.J., et al., “Depudecin Induces Morphological Reversion of Transformed Fibroblasts via the Inhibition of Histone Deacetylase,” Proc. Natl. Acad. Sci. USA, 95(7):3356-3361 (1998). |
Kim, Y.B., et al., “Oxamflatin is a Novel Antitumor Compound that Inhibits Mammalian Histone Deacetylase,” Oncogene, 18:2461-2470 (1999). |
Kijima, M., et al., “Trapoxin, an Antitumor Cyclic Tetrapeptide, Is an Irreversible Inhibitor of Mammalian Histone Deacetylase,” The Journal of Biological Chemistry, 268(30):22429-22435 (1993). |
Iwata, S., and Hirai, K., “Polyurethanes with Small Permanent Compressive Strain and Their Moldings,” Chemical Abstracts, 125(18):28. (From Jpn. Kokai Tokkyo Koho JP 08,176,264 [96,176,263], 1996, Abstract No. 222822h.). |
Hynes, J.B., “Hydroxylamine Derivatives as Potential Antimalarial Agents. 1. Hydroxamic Acids,” Jour. of Medicinal Chem., 13(6):1235-1237 (1970). |
Hozumi, T., et al., “Induction of Erythroid Differentiation in Murine Erythroleukemia Cells by N-Substituted Polymethylene Diamides,” Int. J. Cancer, 23:119-122 (1979). |
Hozumi, T., et al., “Induction of Erythroid Differentiation in Murine Erythroleukemia Cells by Nitrogen Substituted Polymethylene Diamides,” Chemical Abstracts, 90(13). (From Int. J. Cancer, 23(1):119-122, 1979) Abstract No. 1162482. |
Haces, A., et al., “Chemical Differentiating Agents. Differentiation of HL-60 Cells by Hexamethylenebis [acetamide] Analogues,” J. Med. Chem., 30(2):405-409 (1987). |
Fibach, E., et al., “Effect of Hexamethylene Bisacetamide on the Commitment to Differentiation of Murine Erythroleukemia Cells,” Cancer Research, 37:440-444 ( 1977). |
Egorin, M.J., et al., “Phase I Clinical and Pharmacokinetic Study of Hexamethylene Bisacetamide (NSC 95580)Administered as a Five-Day Continuous Infusion,” Cancer Research, 47:617-623 (1987). |
Yoshida, M., et al., “Potent and Specific Inhibition of Mammalian Histone Deacetylase Both in Vivo and in Vitro by Trichostatin A,” J. of Biol. Chem., 265(28):17174-17179 (1990). |
Weitl, F., and Raymond, K.N., “Lipophilic Enterobactin Analogues1. Terminally N-Alkylated Spermine/Spermidine Catecholcarboxamides,” J. Org. Chem., 46(25):5234-5237 (1981). |
Toi, K., and Izumi, Y., “Stereoisomers of alpha, alpha-diaminoadipic Acid,” Chemical Abstract, Caold Accession No. CA55:6371e (1955). |
Tanaka, M., et al., “Induction of Erythroid Differentiation in Murine Virus Infected Erythroleukemia Cells by Highly Polar Compounds,” Proc. Nat. Acad. Sci. USA, 72(3):1003-1006 (1975). |
Tabernero, E., et al., “Antitrypansomal (T. Venezuelense) and Antimycotic Effect of Various Hydroxamic Acids,” 1-Pharmacology, 98:27, 1983. (From Acta Cient. Venez., 32(5):411-416, 1981). |
Saito, A., et al., “A Synthetic Inhibitor of Histone Deacetylase, MS-27-275, with Marked in Vivo Antitumor Activity Against Human Tumors,” Proc. Natl. Acad. Sci. USA, 96:4592-4597 (1999). |
Rifkind, R.A., and Marks, P.A., “Regulation of Differentiation in Transformed Erythroid Cells,” Blood Cells, 4:189-206 (1978). |
Richon, V.M., et al., “A Class of Hybrid Polar Inducers of Transformed Cell Differentiation Inhibits Histone Deacetylases,” Proc. Natl. Acad. Sci. USA, 95:3003-3007 (1998). |
Reuben, R.C., et al., “A New Group of Potent Inducers of Differentiation in Murine Erythroleukemia Cells,” Proc. Natl. Acad. Sci. USA, 73(3):862-866 (1976). |
Morrison, R.T., and Boyd, R.N., “Conversion of Amines Into Substituted Amides.” In Organic Chemistry (3rd Edition, Allyn and Bacon, Boston, Massachusetts), pp. 755-758 (1973). |
Melloni, E., et al., “Vincristine-Resistant Erythroleukemia Cell Line has Marked Increased Sensitivity to Hexamethylenebisacetamide-Induced Differentiation,” Proc. Natl. Acad. Sci. USA, 85:3835-3839 (1988). |
Marks, P.A., et al., “Polar/Apolar Chemical Inducers of Differentiation of Transformed Cells: Strategies to Improve Therapeutic Potential,” Proc. Natl. Acad. Sci. USA, 86:6358-6362 (1989). |
Marks, P.A., and Rifkind, R.A., “Hexamethylene Bisacetamide-Induced Differentiation of Transformed Cells: Molecular And Cellular Effects and Therapeutic Application,” Int. J. of Cell Cloning, 6:230-240 (1988). |
Marks, P.A., et al., “Induction of Murine Erythroleukemia Cells to Differentiate: A Model for the Detection of New Anti-Tumor Drugs,” Antibiotics Chemother., 23:33-41 (1978). |
Nakajima, H., et al., “FR901228, A Potent Antitumor Antibiotic, Is a Novel Histone Deacetylase Inhibitor,” Exp. Cell Res., 241:126-133 (1998). |
Prabhaker, Y.S., et al., “Quantitative Correlations of Biological Activities of Dactinomycin Analogs and Methotrexate Derivatives with van der Waals Volume,” Arzneim.-Forsch./Drug Res., 35(7):1030-1033 (1985). |
Reuben, R.C., et al., “Chemically Induced Murine Erythroleukemic Differentiation,” Biochimica et Biophysica Acta, 605:325-346 (1980). |
Reuben, R.C., et al., “Inducers of Erythroleukemic Differrentiation,” J. of Biol. Chemistry, 253(12):4214-4218 (1978). |