The present disclosure relates to a novel class of platinum anticancer compounds and a preparation method thereof, belonging to the field of chemical pharmacy.
Cancer is a disease that seriously threatens human health and life. In 2015, there were 4.3 million new cancer cases and 2.8 million deaths in China. The number of cancer cases and deaths in China has ranked the first in the world. About 10000 people are diagnosed with cancer every day, with an average of 7 people every minute. Cancer has become one of the medical problems that human beings urgently need to overcome.
Currently, there are three main means of treating cancer: surgical treatment, radiotherapy and chemotherapy. The basis of chemotherapy is chemotherapy drugs, and countries all over the world invest a lot of manpower, materials and financial resources in the research of anticancer drugs every year. The application of platinum drugs in clinical cancer treatment originated in 1969, when Rosenberg et al. discovered the promising anticancer activity of platinum (II) complex cisplatin. Platinum drugs represented by cisplatin, carboplatin and oxaliplatin and the like are widely used as the first choice for the treatment of many tumors due to their strong anticancer activity and wide spectrum of action. According to the latest statistics, 85% of the combined chemotherapy schemes currently used in clinical use are mainly platinum antitumor drugs as the main drugs, or platinum antitumor drugs are involved in the compatibility.
Studies have shown that platinum drugs have the defect of poor water solubility. The water solubility of cisplatin is 1.0 mg/mL, that of carboplatin is 17.0 mg/mL, and that of oxaliplatin is 6.0 mg/mL, which has brought many adverse effects on the stability and clinical application of pharmaceutical preparations. The poor water solubility of platinum drugs also directly affects the accumulation and metabolism of drugs in the body, resulting in their accumulation in kidney tissue and blood, which can not be excreted by the body in time, and it is easy to produce cumulative poisoning.
A large number of clinical trials have confirmed that antitumor angiogenesis is crucial in the treatment of cancer and is a key link in the process of inhibiting tumor growth. Tumor angiogenesis is regulated by various protein molecules in the integrin family, such as αvβ3, αvβ6, α5β1, etc. Integrin, first proposed by Richard in 1987, is a kind of heterodimeric transmembrane glycoprotein composed of α and β subunits. At present, at least 25 kinds of a subunits and 11 kinds of β subunits are known, and the two are connected to each other to form more than 20 different integrin molecules. Integrin is an extracellular matrix receptor, in which integrin αvβ3 is highly expressed on the surface of neovascular endothelial cells, neuroblastoma, osteosarcoma, glioblastoma, breast cancer, prostate cancer and other tumor cells, but not expressed or expressed at very low levels in existing blood vessels and normal tissues; integrin αvβ6 is up-regulated in pancreatic cancer, breast cancer, lung cancer, oral and skin squamous cell carcinoma, colon cancer, gastric cancer and endometrial cancer, and down regulated in normal adults; integrin α5β1 is highly expressed in colorectal cancer, breast cancer, ovarian cancer, lung cancer, gastric cancer, glioma and other tumors, but not expressed or expressed at low levels in mature normal cells and blood vessels. The highly restricted expression in the process of tumor growth and metastasis makes integrin a very favorable target for tumor targeted therapy.
The present disclosure discloses a novel class of platinum compounds represented by formula (I), and a use thereof as a medicament, particularly a medicament for treating, preventing cancer alone or in combination.
The present disclosure discloses a novel class of platinum compounds represented by formula (I). Compared with the antitumor platinum compounds of the prior art, the solubility and in vivo tumor inhibition activity of the platinum compounds disclosed in the present disclosure are greatly improved, resulting in unexpected technical effects.
The present disclosure provides a compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof,
In some embodiments of the present disclosure, R1 and R2 are linked together to form moiety (A1), (A2), (A3) or (A4):
In some embodiments of the present disclosure, R1 and R2 are linked together to form moiety (A1), and the general formula of this series of platinum compounds is:
In some embodiments of the present disclosure, R1 and R2 are linked together to form moiety (A2), and the general formula of this series of platinum compounds is:
In some embodiments of the present disclosure, R1 and R2 are linked together to form moiety (A3), and the general formula of this series of platinum compounds is:
In some embodiments of the present disclosure, R1 and R2 are linked together to form moiety (A4), and the general formula of this series of platinum compounds is:
In some embodiments of the present disclosure, R3 is a group with certain functionalities, which is characterized in that R3 is able to effectively enhance the targeting or water solubility of platinum compounds;
R3 is the following structure:
In some embodiments of the present disclosure, R4 is selected from: C1-12 alkyl, C1-12 alkoxy, C1-12 alkylcarbonyl, phenoxy or phenylamino optionally substituted by 1 to 2 halogens, C1-12 alkylamino, C1-12 alkoxy-C1-12 alkylamino, C1-12 alkylcarbonyloxy, C1-12 alkyl-C3-8 cycloalkylcarbonyloxy, (C1-4 alkyl-O)m—C1-12 alkylcarbonyloxy, C1-12 alkylcarbonylamino-(C1-4 alkyl-O)m—C1-12 alkylcarbonyloxy, C1-12 alkylcarbonylamino and phenyl-C1-12 alkylcarbonylamino.
In some embodiments of the present disclosure, R4 is the following structure:
In some embodiments of the present disclosure, R5 is: human serum albumin HAS; an antibody that binds to a tumor-associated antigen, such as an anti-folate receptor α antibody, an anti-mesothelin antibody, an anti-Her2 antibody, an anti-EGFR antibody, an anti-VEGFR antibody, an anti-CD20 antibody, an anti-CD22 antibody, an anti-CD28 antibody, an anti-CD33 antibody, an anti-BR96 antibody; or, a molecule that is able to specifically bind to a tumor cell surface integrin receptor.
In some embodiments of the present disclosure, R5 is the molecule that is able to specifically bind to the tumor cell surface integrin receptor, wherein the integrin receptor includes, but is not limited to, αvβ3, αvβ6, α5β1.
In some embodiments of the present disclosure, R5 is the molecule that is able to specifically bind to an integrin, and comprises an arginine-glycine-aspartic acid (RGD) tripeptide sequence in chemical structure, preferably but not limited to the following structures:
In some embodiments of the present disclosure, the general structure formula is shown in any one of the following structures:
In some embodiments of the present disclosure, the compound represented by formula (I) is:
The present disclosure provides a pharmaceutical composition, comprising the compound represented by formula (I) or the pharmaceutically acceptable salt thereof as claimed in any one of claims 1 to 14 and a pharmaceutically acceptable carrier.
The present disclosure provides a use of the compound represented by formula (I) or the pharmaceutically acceptable salt thereof, or the pharmaceutical composition in the manufacture of a medicament, and the medicament is preferably used for preventing and/or treating cancer, wherein, the cancer is preferably gastrointestinal cancer, colorectal cancer, colon cancer, liver cancer, hepatocellular carcinoma, pancreatic cancer, biliary tract cancer, gastric cancer, urogenital system cancer, bladder cancer, testicular cancer, cervical cancer, malignant mesothelioma, osteogenic sarcoma, esophageal cancer, laryngeal cancer, prostate cancer, hormone-resistant prostate cancer, lung cancer, small cell lung cancer, non-small cell lung cancer, breast cancer, triple negative breast cancer, breast cancer with BRCA1 and/or BRCA2 gene mutations, blood cancer, leukemia, acute primitive lymphoblastic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, follicular lymphoma, diffuse large B-cell lymphoma, ovarian cancer, brain cancer, neuroblastoma, Ewing sarcoma, renal cell carcinoma, epidermoid carcinoma, skin cancer, melanoma, head and/or neck cancer, head and neck squamous cell carcinoma, or oral cancer, more preferably colorectal cancer, colon cancer, pancreatic cancer, lung cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, melanoma, head and/or neck cancer, or head and neck squamous cell carcinoma.
The present disclosure provides a use of the compound represented by formula (I) or the pharmaceutically acceptable salt thereof, or the pharmaceutical composition in the manufacture of a medicament for preventing and/or treating cancer, wherein, the compound represented by the formula (I) or the pharmaceutically acceptable salt thereof, or the pharmaceutical composition is administered in combination with an anticancer medicament and/or in combination with radiotherapy and/or immunotherapy.
The present disclosure provides a method for preventing and/or treating cancer, comprising administering a therapeutically effective amount of the compound represented by formula (I) or the pharmaceutically acceptable salt thereof, or the pharmaceutical composition to a patient;
The present disclosure discloses a series of platinum derivatives with novel structures represented by formula I, and tests their in vitro water solubility and in vivo tumor inhibition activity, which led to a completely unforeseen discovery:
1) The in vitro water solubility experiments show that the water solubility of the examples S47, S72, S80, S95 and S97 disclosed in the present disclosure are significantly improved compared with the marketed drugs. Especially the water solubility of example 72 and example S80, compared with the marketed drug carboplatin, has nearly a 1-fold improvement; the water solubility of example S47, example S95 and example S97, compared with the marketed drug oxaliplatin, has an improvement of 3 times or more, and examples S47, S72, S80, S95 and S97S can be made into a lyophilized powder or an aqueous solution dosage form, which solves the adverse effects of poor water solubility of platinum drugs in clinical application.
2) The in vivo tumor inhibition experiment in mice shows that the examples S47, S70, etc. of the present disclosure have more obvious ability to inhibit the growth of transplanted tumor S180 than the clinical drug carboplatin, and have a good dose-effect relationship, and have a broad antitumor application prospect.
Embodiments of the present disclosure will be described in detail below in combination with examples, but those skilled in the art will understand that the following examples are only for illustrating the present disclosure, and should not be regarded as limiting the scope of the present disclosure. If no specific conditions are specified in the example, the experimental methods usually follow the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer is not indicated in the reagents or instruments used, they are all conventional products that can be obtained from the market.
The structures of the compounds were determined by liquid chromatography-mass spectrometry (HPLC-MS). The mass spectrum was determined by watersZQ2000 mass spectrometer, manufacturer: Waters, model: ZQ2000.
When liquid chromatography-mass spectrometry was used for determination, the model of liquid chromatography instrument was Water 2695HPLC Waters 2998, detector: ultraviolet detector, chromatographic column: YMC pack ODS-AQ 100*4.6 mm*5 μm. The detection conditions of the liquid chromatograph were as follows:
When the liquid phase instrument was used for purification, the instrument used was Dalian Elite preparative liquid chromatograph, model: P270, detector: ultraviolet detector, chromatographic column: C18 reversed-phase silica gel 20*250 mm. The preparation method of the preparative high performance liquid chromatograph was as follows:
Thin layer chromatography (TLC) was used for reaction detection. The development system used was dichloromethane:methanol=10:1 (volume ratio).
The digital display magnetic stirrer was used as the stirrer. Manufacturer: Dragon Laboratory Instruments, model: MS-H280-Pro.
The general synthesis method of the examples was as follows:
Taking example S1 and example 65 as examples, the specific implementation process was as follows:
1) In a 50 mL single-necked flask, A1 (177.2 mg, 0.46 mmol), 2-(aminooxy)-N-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)acetamide (98 mg 0.46 mmol) were weighed in turn, and after dissolving by adding 15 mL of N,N-dimethylformamide, 4 A molecular sieve (162 mg) was added, and the reaction system was replaced with nitrogen. The reaction solution was reacted overnight at room temperature. The reaction solution was evaporated to dryness by rotary evaporation under reduced pressure, and the crude product was purified by silica gel column chromatography to obtain a white solid (169.0 mg, yield of 63.3%), i.e., example S1.
2) In a 50 mL single-necked flask, example S1 (151 mg, 0.26 mmol) and R5-1 (117.5 mg, 0.26 mmol) were weighed in turn, then 15 mL of methanol was added, and the reaction system was replaced with nitrogen, and the reaction solution was reacted overnight at room temperature. The reaction solution was evaporated to dryness by rotary evaporation under reduced pressure, and refined and separated by semi-preparative HPLC, and freeze-dried by a freeze dryer to obtain a white solid (181.2 mg, yield of 65%), i.e., example S65.
A. When R4 and R5 were respectively different substituents, the compounds shown in Table 1 below could be obtained, i.e., examples S1-S97.
The detection results of mass spectrometry (MS) confirmed that the molecular weights of compounds S1-S97 are sequentially shown in the following Table 2, which are consistent with the molecular weights predicted by structural calculation:
In Vitro Water Solubility Experiment of Example
In order to compare the difference in water solubility between the platinum compounds of the present disclosure and the marketed drugs cisplatin, carboplatin and oxaliplatin, the water solubility at room temperature was determined. At room temperature of 25° C., the test sample that had been ground into a fine powder was weighed accurately, and shaken vigorously for 30 seconds every 5 minutes in a certain volume of distilled water; and the dissolution of each test sample was observed within 30 minutes. If no visible solute particles were visible, the sample was considered to be completely dissolved. The experimental results of the solubility of the test sample in water are shown in Table 3.
Conclusions: The water solubility of marketed drugs cisplatin and oxaliplatin is poor, both of which are less than 6 mg/mL. The solubility of carboplatin is slightly better, reaching 16.6 mg/mL in water. However, the water solubility of the examples S47, S72, S80, S95 and S97S disclosed by the present disclosure are significantly improved compared with the marketed drugs. Especially the water solubility of example 72 and example S80, compared with carboplatin, the water solubility has nearly a 1-fold improvement; the water solubility of example S47, example S95, example S97 has an improvement of 3 times or more, and examples S47, S72, S80, S95 and S97S are easier to make into a lyophilized powder or an aqueous solution dosage form, which solves the adverse effects of poor water solubility of platinum drugs in clinical application.
In Vivo Tumor Inhibition Experiment of Example
The inhibitory effects of example S47 and example S70 of the present disclosure on animal transplanted tumor S180 were tested.
Kunming mice, ♀, 22±1 g, were purchased from Shanghai Slac Laboratory Animal Co., Ltd. Certificate number: SCXK (Shanghai) 2013-0010-02. Feeding environment: SPF level. Example S47, example S70 and carboplatin, a positive control drug, were prepared with 5% glucose to the required concentration. Mice were subcutaneously inoculated with S180 sarcoma cells, and the drug administration was started on the next day of inoculation. The administration dose and scheme are shown in Table 4. The mice were killed on the eighth day, and the tumor was weighed and the tumor inhibition rate was calculated.
Tumor inhibition rate=(tumor weight in the control group−tumor weight in the treatment group)/tumor weight in the control group×100
*P<0.01 compared with the control group
Conclusion: Example S47 and example S70 have obvious inhibitory effects on the growth in S180 sarcoma of mice, and the inhibitory effects at equimolar concentrations are significantly better than carboplatin, an anticancer drug widely used in clinical practice, and example S47 and example S70 have a good dose-effect relationship, and have a good clinical application prospect.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/114659 | 9/11/2020 | WO |