1. Field
The present invention relates generally to computer systems, and in particular to protecting computer systems from unauthorized software.
2. Related Art
The set of software available for execution on a computer is generally dynamic and modifiable, even when such modification is not desirable. To restrict the ability of users or administrators of a computer to install and remove software or to modify configuration of the existing software, a filter is often used to manage software access to the computer from a network. However, the filtering is based on the behavior of the software or a set of rules or policies. Filtering in this manner is inefficient and limited in reliability, as malicious software often disguises its behavior or is specifically created to traverse the rules.
Accordingly, there is need for a method and system for the classification of software on networked systems. The method and system should definitively determine the authority of software to execute on a computing system, rather than on heuristics or rules or policies. The present invention addresses such a need.
A method and system for the classification of software on networked systems, includes: determining a software received by a sensor is attempting to execute on a computer system of the sensor, classifying the software as authorized or unauthorized to execute, and gathering information on the software by the sensor if the software is classified as unauthorized to execute. The sensor sends the information on the software to one or more actuators, which determine whether or not to act on one or more targets based on the information. If so, then the actuator sends a directive to the target(s). The target(s) updates its responses according to the directive. The classification of the software is definitive and is not based on heuristics or rules or policies and without any need to rely on any a priori information about the software.
Glossary:
Computing system (hereinafter also referred to as a computer): any system serving as a computing machine and capable of network communication some or all of the time. Example computing systems are workstations, servers and server groups, clusters of computers, personal computers (PCs), embedded systems, networked consoles such as travel reservation consoles, networked kiosks such as automated teller machines (ATMs), mobile or wireless devices, set-top boxes, or any other computing hardware that can send and/or receive data or otherwise communicate via one or more network nodes.
Network-Node: any computing system behaves as a Network-Node when it acts as a facilitator of network communication between two or more computing systems. Example Network Nodes are routers, switches, hardware or software firewalls, intrusion prevention systems, intrusion detection systems, and any other computing system facilitating network communication.
End-System: any computing system behaves as an End-System when it can communicate with other computing systems via one or more Network-Nodes in a network. In a network topology represented by a graph, an End-System is typically represented by a “leaf” whereas a Network-Node is generally a non-leaf internal vertex. Though not typical, a computing system that behaves as an End-System may also behave as a Network-Node, for example by performing some amount of routing.
Sensor: a computing system behaves as a Sensor when it collects information about software that attempts execution on that computing system. A Sensor can be an End-System or a Network-Node.
Actuator: a computing system behaves as an Actuator when it receives information from one or more Sensors and can act or not act upon one or more Targets (as defined below) based on an examination of the received information. As presented herein, an Actuator uses information supplied by Sensors in a network in order to assess any potential effects of software that is traveling within the network, and in response to act upon one or more Targets in an attempt to contain the effects, to deny further entry of such software into the network, to further study the propagation or other behavior of such software in the network, and/or to perform any other tasks relevant to identifying and blocking unauthorized software on networked systems.
Target: a computing system behaves as a Target when it comprises a functionality or mechanism by which it can be acted upon by an Actuator. An example Target is a Network-Node that can restrict network traffic based on directives or information received from an Actuator.
Source: a computing system behaves as a Source when it is a point of origin (or transition) for a piece of software that is traveling via a network from the Source to a Target. A Source can be an End-System or a Network-Node.
Destination: a computing system behaves as a Destination when it represents a potential destination for software originating from (or transitioning through) a Source. A Destination represents a computing system on which such software may attempt to execute some time after arrival, or from which such software may attempt to travel or propagate to other Destinations (in which case the Destination behaves also as a Source of that software).
Manager: a computing system behaves as a Manager when it manages software on one or more other computing systems. Example Managers are computing systems that update virus or malware definitions on other computing systems which have anti-virus or anti-malware software installed, computing systems that install software patches on other computing systems, computing systems that update software firewall rules on other computing systems that have a software firewall installed, etc.
A Sensor classifies pieces of software that attempt to execute on the Sensor (i.e. attempt to execute on the Sensor's underlying computing system) as either authorized to execute on the Sensor or not authorized to execute on the Sensor, and sends data relating to unauthorized pieces of software to one or more Actuators. An Actuator analyzes the data and generates directives for Targets, thereby influencing the Targets' behavior in an attempt to mitigate potentially harmful effects of such unauthorized software.
In one embodiment, the Sensor has a set of identifiers for identifying a set of software that the Sensor considers authorized to execute on the Sensor, and considers any piece of software that is not a member of this set of authorized software as unauthorized. This represents a definitive classification of all known and unknown software, without any need to rely on any a priori information about software that is considered unauthorized.
In order for a Sensor to classify a piece of software that is attempting execution, the Sensor intercepts the software's attempt at execution and examiners (partially or completely) the set of bits constituting the software.
The execution interception can be achieved in a number of ways. In one embodiment, the Sensor uses an operating system (OS)-provided application programming interface (API) to specify to the OS a “white list” of pieces of software considered authorized by the Sensor (such as an API provided by the Solaris™ OS for this purpose) and requests notification by the OS of execution attempts of unauthorized pieces of software (i.e. any software not on the “white list”). In another embodiment, the Sensor intercepts the OS's mechanism of receiving a request to execute a piece of software, or other APIs provided by the OS, and prior or after the execution of the software determines whether the piece of software is authorized or not. This approach allows recognition of code that travels through a network and attempts execution on a computing system (such as an email attachment or a downloaded piece of code) and allows recognition of code that is injected into a running process (such as in a buffer overflow attack). Such capabilities are described in more detail in U.S. patent application entitled “Damage Containment by Translation”, Ser. No. 10/651,588 filed on Aug. 29, 2003, issued as U.S. Pat. No. 7,464,408 on Dec. 9, 2008, and in U.S. patent application entitled “Method and system for containment of Usage of Language Interfaces”, Ser. No. 10/739,230 filed on Dec. 17, 2003, issued as U.S. Pat. No. 7,840,968 on Nov. 23, 2010, both assigned to the assignee of the present application. Applicant hereby incorporates these patents by reference.
The determination of whether a piece of software attempting execution is authorized to execute on a Sensor or not can also be done in a number of ways. One approach is for the Sensor to generate an identifier for the piece of software and check whether the generated identifier is a member of a set of identifiers (“authorized identifiers”) representing pieces of software authorized to execute on the Sensor. For example, an identifier may be any form of hash, checksum or message digest (e.g. a function from the Secure Hash Algorithm (SHA) family of cryptographic hash functions, the Message Digest algorithm 5 hash function, etc.) evaluated on all or part of the set of bits representing the piece of software, in which case the Sensor will have a set of hash or checksum or message digest values representing authorized identifiers. An identifier may be an OS file name of the piece of software attempting execution, in which case the Sensor will have a set of OS file names representing authorized identifiers (i.e. files authorized to execute on the Sensor). An identifier may be an OS file system internal designator (such as an inode), in which case the Sensor will have a set of corresponding OS file system internal designators representing authorized identifiers. An identifier may be an OS or file system attribute or meta-data. In general, the Sensor may use any combination of the above example identifiers, or any other identifier which can be generated for a piece of software that is attempting execution and compared against a set of corresponding authorized identifiers in order to classify the piece of software as authorized or unauthorized to execute.
In another complimentary approach, a piece of software may already be executing on the computing system of the Sensor, and the Sensor may determine that the piece of software is actually unauthorized to execute based on a specific API access attempted by the piece of software. This is described in more detail in the above referenced U.S. patent application Ser. Nos. 10/651,588 and 10/739,230, issued as U.S. Pat. Nos. 7,464,408 and 7,840,968, respectively, and in the U.S. patent application entitled “Solidifying the Executable Software Set of a Computer”, Ser. No. 10/935,772, filed on Sep. 7, 2004, issued as U.S. Pat. No. 7,873,955 on Jan. 18, 2011. Applicant hereby incorporates U.S. Pat. No. 7,873,955 by reference.
Optionally, a Sensor may be “solidified” in which case it can determine whether a piece of software that is attempting execution is authorized or not, and can also proactively block such unauthorized execution. The “solidification” of a computing system is described in more detail in the above referenced U.S. Pat. No. 7,873,955.
Once a Sensor classifies a piece of software as unauthorized to execute, the Sensor prepares data about the particular execution attempt of the piece of software, collects any ancillary data that may be relevant to an Actuator for analyzing the execution attempt and generating related directives for Targets, and sends this data to one or more Actuators. There are several examples of such ancillary data. As an example, for a piece of unauthorized software which arrives via a network, the Sensor can send one or more network packets which encoded the piece of software. The Sensor can indicate the source and destination IP address and ports, a packet payload signature and/or packet header signature (hash or checksum or message digest), etc. since this information can be useful to Targets that can recognize and possibly filter out such packets in the future. Example Targets include network level pattern matching and packet filtering elements such as packet filters, intrusion detection systems or intrusion prevention systems. The Sensor may correlate network packets with the unauthorized software by time of execution attempt, by matching a checksum of the software with a checksum of a pattern in a network packet, or by any other information available to the Sensor that could be correlated with the unauthorized software and serve as potentially useful information for one or more appropriate Targets for the purpose of identifying or blocking other instances (copies) of the software. The Sensor may keep a set of recent network packets for this purpose. As another example of such ancillary data, for a piece of software that attempts execution and is identified as unauthorized via a checksum comparison, the Sensor can send the checksum of the software to an Actuator, since this information can be useful to those Targets types (such as email servers, file transfer servers, internet proxies, etc.) that can recognize and possibly filter out pieces of software (such as email attachments, files, browser downloads, etc.) based on checksums or other similar functions.
The power of the present approach to classify software on networked computing system stems in part from the following two facts:
An Actuator's examination of Sensor-provided information and any resulting actions on Targets (i.e. directives or instructions sent to Targets) generally proceeds as follows:
Note that an Actuator may not necessarily be implemented as a monolithic system, but may optionally be represented by a set of distributed components, such as a collection component for gathering Sensor-provided data, an analyzer component for mining said data and identifying Target types and appropriate directives, and a distributor component for distributing the generated directives to one or more Targets of the identified Target type.
Note also that the notion of identification in item (b) above differs from the identification performed by a Sensor. While a Sensor uses identifiers to classify pieces of software as authorized or unauthorized to execute, and sends data about specific pieces of unauthorized software to an Actuator, an Actuator uses such Sensor-provided data to determine what (if any) subset of such data can be useful to one or more Target types for the purpose of identifying and possibly blocking such software in the future, when such software is in transit in a network or after such software arrives on a computing system connected to the network. Furthermore, note that while a Sensor's classification of a piece of software into authorized to execute versus not authorized to execute is definitive and does not rely on guesses or heuristics as described above, an Actuator's analysis of Sensor-provided information and resulting generation and distribution of actionable directives to one or more Targets may use any logic, such as heuristics, rules or policies based on best guesses, partial information, user input, historical context, etc.
Optionally, confirmation from a user can be injected at any of the illustrated steps. This user input is further described in co-pending U.S. patent application entitled, “Method and System for Containment of Networked Application Client Software By Explicit Human Input”, Ser. No. 10/651,591, filed on Aug. 29, 2003, and assigned to the assignee of the present application. Applicant hereby incorporates this patent application by reference.
In one embodiment, the examination of Sensor-provided information includes an assessment of the risk involved in allowing the software to execute. For example, a Sensor can be initially configured to allow the execution of the software, but upon an examination of the information on the software by the Actuator (and optionally the assessment of the information within a context represented by other information received from one or more other Sensors), the risk may be determined to exceed a certain threshold. This result is distributed to one or more Targets, which then update their responses to block subsequent attempted executions of this software. The updates can vary in scope, in the degree of change in response, and in number of Targets to be changed. For example, if the software is received from a Source, a Target can be updated to only block subsequent attempted executions of this software received from the same Source, but a subsequent attempted execution of this software received from another Source would be allowed to execute. For another example, the block can apply only to subsequent attempted executions received from Sources within a class of IP addresses, apply to all subsequent attempted executions of the software regardless of the Source, apply to subsequent attempted executions at particular Destinations, or apply to any Destination within a class of IP addresses. For another example, the result can be sent to any number of Targets, which may or may not include the Sensor. The update can also vary among the Targets in accordance with the same result.
The change in responses of a Target can depend upon the computing environment. For example, if the Sensor is a server with a finite set of software authorized to execute, then the Sensor can be configured to block all unauthorized software from executing. However, if the Sensor is a personal computer or a workstation, a user is more likely to attempt execution of harmless software that is not known or authorized to execute. In order to maintain flexibility and efficiency for the user in this context, the Sensor can be configured to allow execution of certain unauthorized software.
Software can travel from the Source 201 through the Network-Node 202 to a Destination/Sensor 204. The Destination/Sensor 204 determines when a piece of software is attempting execution on the Destination/Sensor 204, via step 101, and classifies the piece of software as either authorized or unauthorized to execute on the Destination/Sensor 204, via step 102. If the software is classified as unauthorized to execute, the Destination/Sensor 204 sends information on the piece of software to the Actuator 203, via step 103. The information sent may comprise Source IP address and/or port and Destination IP address and/or port that constitute the channel via which the software arrived at the Destination/Sensor 204. The Actuator 203 examines the information and decides whether or not to act on the Network-Node/Target 202, via step 104. If so, then the Actuator 203 distributes a directive to the Network-Node/Target 202, via step 105. For example, the Actuator 203 may ask the Network-Node/Target 202 to restrict traffic, for example by blocking network traffic from the Source IP address and/or port to the Destination IP address and/or port, by casting a wider net such as blocking traffic from the Source IP address or a range of IP addresses regardless of port number, by blocking traffic to a port number regardless of what Source IP address it is coming from, by blocking traffic from any Source to this particular Destination, or by asking the Network-node/Target 202 to restrict traffic in any other way. The Network-Node/Target 202 then updates it responses accordingly, via step 106.
Note that in this and all other embodiments described herein, while the description generally uses a single Network-Node for brevity of explanation and conciseness of exposition, it is understood that networking may be facilitated by any number of Network-Nodes arranged in any topology or hierarchy, and accordingly that Actuators (or Managers) may choose to act on (or manage) one or more such Network-Nodes in a manner appropriate for the particular function or hierarchical position of such Network-Nodes within the set of present Network-Nodes.
Here again software can travel from the Source 201 to any of the Destinations 204, 401, or 402. Note that while the Destination/Sensor 204 can determine what software is attempting execution on the Destination/Sensor 204, it has no first-hand awareness of execution attempts on any other computing system and in particular on any of the other Destinations 401-402. The Destination/Sensor 204 determines when a piece of software is attempting execution on the Destination/Sensor 204, via step 101. The Destination/Sensor 204 classifies the software as either authorized or unauthorized to execute on the Destination/Sensor 204, via step 102. If the software is unauthorized, the Destination/Sensor 204 collects information on the software and sends it to the Actuator 203, via step 103. The Actuator 203 examines the information and decides whether or not to act on the Destination/Targets 401-402, via step 104. In this embodiment, the Actuator 203 can act on the Network-Node/Target 202 as described above with reference to
Here again software can travel from the Source 201 to any of the Destinations 204, 401, or 402. The Destination/Sensor 204 determines when a piece of software is attempting execution on the Destination/Sensor 204, via step 101. The Destination/Sensor 204 classifies the software as either authorized or unauthorized to execute on the Destination/Sensor 204, via step 102. The Destination/Sensor 204 collects information on the software and sends it to the Actuator 203, via step 103. The Actuator 203 examines the information and decides whether or not to act on either of the Manager/Targets 501-502, via step 104. In this embodiment, the Actuator 203 can act on the Manager/Target 501 and cause the Manager/Target 501 to adjust the behavior of the Network-Node 202 in a manner similar to the above description of the Actuator 203 adjusting the behavior of the Network-Node 202 in
The embodiments in
Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks, and that networks may be wired, wireless, or a combination of wired and wireless. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but rather by Claims following.
This application is a continuation (and claims the benefit of priority under 35 U.S.C. §120) of pending U.S. application Ser. No. 12/944,567, filed Nov. 11, 2010, entitled, “CLASSIFICATION OF SOFTWARE ON NETWORKED SYSTEMS,” by inventors E. John Sebes, et al., which application is a divisional of U.S. application Ser. No. 11/182,320, filed Jul. 14, 2005, entitled, “CLASSIFICATION OF SOFTWARE ON NETWORKED SYSTEMS,” by inventors E. John Sebes, et al., issued as U.S. Pat. No. 7,856,661 on Dec. 21, 2010. The disclosure of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.
Number | Name | Date | Kind |
---|---|---|---|
4688169 | Joshi | Aug 1987 | A |
4982430 | Frezza et al. | Jan 1991 | A |
5155847 | Kirouac et al. | Oct 1992 | A |
5222134 | Waite et al. | Jun 1993 | A |
5390314 | Swanson | Feb 1995 | A |
5521849 | Adelson et al. | May 1996 | A |
5560008 | Johnson et al. | Sep 1996 | A |
5699513 | Feigen et al. | Dec 1997 | A |
5778226 | Adams et al. | Jul 1998 | A |
5778349 | Okonogi | Jul 1998 | A |
5787427 | Benantar et al. | Jul 1998 | A |
5842017 | Hookway et al. | Nov 1998 | A |
5907709 | Cantey et al. | May 1999 | A |
5907860 | Garibay et al. | May 1999 | A |
5926832 | Wing et al. | Jul 1999 | A |
5944839 | Isenberg | Aug 1999 | A |
5974149 | Leppek | Oct 1999 | A |
5987610 | Franczek et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5991881 | Conklin et al. | Nov 1999 | A |
6064815 | Hohensee et al. | May 2000 | A |
6073142 | Geiger et al. | Jun 2000 | A |
6141698 | Krishnan et al. | Oct 2000 | A |
6192401 | Modiri et al. | Feb 2001 | B1 |
6192475 | Wallace | Feb 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6275938 | Bond et al. | Aug 2001 | B1 |
6321267 | Donaldson | Nov 2001 | B1 |
6338149 | Ciccone, Jr. et al. | Jan 2002 | B1 |
6356957 | Sanchez, II et al. | Mar 2002 | B2 |
6393465 | Leeds | May 2002 | B2 |
6442686 | McArdle et al. | Aug 2002 | B1 |
6449040 | Fujita | Sep 2002 | B1 |
6453468 | D'Souza | Sep 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6496477 | Perkins et al. | Dec 2002 | B1 |
6587877 | Douglis et al. | Jul 2003 | B1 |
6611925 | Spear | Aug 2003 | B1 |
6658645 | Akuta et al. | Dec 2003 | B1 |
6662219 | Nishanov et al. | Dec 2003 | B1 |
6748534 | Gryaznov et al. | Jun 2004 | B1 |
6769008 | Kumar et al. | Jul 2004 | B1 |
6769115 | Oldman | Jul 2004 | B1 |
6795966 | Lim et al. | Sep 2004 | B1 |
6832227 | Seki et al. | Dec 2004 | B2 |
6834301 | Hanchett | Dec 2004 | B1 |
6847993 | Novaes et al. | Jan 2005 | B1 |
6907600 | Neiger et al. | Jun 2005 | B2 |
6918110 | Hundt et al. | Jul 2005 | B2 |
6930985 | Rathi et al. | Aug 2005 | B1 |
6934755 | Saulpaugh et al. | Aug 2005 | B1 |
6988101 | Ham et al. | Jan 2006 | B2 |
6988124 | Douceur et al. | Jan 2006 | B2 |
7007302 | Jagger et al. | Feb 2006 | B1 |
7010796 | Strom et al. | Mar 2006 | B1 |
7024548 | O'Toole, Jr. | Apr 2006 | B1 |
7039949 | Cartmell et al. | May 2006 | B2 |
7054930 | Cheriton | May 2006 | B1 |
7065767 | Kambhammettu et al. | Jun 2006 | B2 |
7069330 | McArdle et al. | Jun 2006 | B1 |
7082456 | Mani-Meitav et al. | Jul 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7124409 | Davis et al. | Oct 2006 | B2 |
7139916 | Billingsley et al. | Nov 2006 | B2 |
7152148 | Williams et al. | Dec 2006 | B2 |
7159036 | Hinchliffe et al. | Jan 2007 | B2 |
7177267 | Oliver et al. | Feb 2007 | B2 |
7203864 | Goin et al. | Apr 2007 | B2 |
7251655 | Kaler et al. | Jul 2007 | B2 |
7290266 | Gladstone et al. | Oct 2007 | B2 |
7302558 | Campbell et al. | Nov 2007 | B2 |
7330849 | Gerasoulis et al. | Feb 2008 | B2 |
7340684 | Ramamoorthy et al. | Mar 2008 | B2 |
7346781 | Cowie et al. | Mar 2008 | B2 |
7349931 | Horne | Mar 2008 | B2 |
7350204 | Lambert et al. | Mar 2008 | B2 |
7353501 | Tang et al. | Apr 2008 | B2 |
7363022 | Whelan et al. | Apr 2008 | B2 |
7370360 | van der Made | May 2008 | B2 |
7385938 | Beckett et al. | Jun 2008 | B1 |
7406517 | Hunt et al. | Jul 2008 | B2 |
7441265 | Staamann et al. | Oct 2008 | B2 |
7464408 | Shah et al. | Dec 2008 | B1 |
7506155 | Stewart et al. | Mar 2009 | B1 |
7506170 | Finnegan | Mar 2009 | B2 |
7506364 | Vayman | Mar 2009 | B2 |
7546333 | Alon et al. | Jun 2009 | B2 |
7546594 | McGuire et al. | Jun 2009 | B2 |
7552479 | Conover et al. | Jun 2009 | B1 |
7577995 | Chebolu et al. | Aug 2009 | B2 |
7603552 | Sebes et al. | Oct 2009 | B1 |
7607170 | Chesla | Oct 2009 | B2 |
7657599 | Smith | Feb 2010 | B2 |
7669195 | Qumei | Feb 2010 | B1 |
7685635 | Vega et al. | Mar 2010 | B2 |
7698744 | Fanton et al. | Apr 2010 | B2 |
7703090 | Napier et al. | Apr 2010 | B2 |
7739497 | Fink et al. | Jun 2010 | B1 |
7757269 | Roy-Chowdhury et al. | Jul 2010 | B1 |
7765538 | Zweifel et al. | Jul 2010 | B2 |
7783735 | Sebes et al. | Aug 2010 | B1 |
7809704 | Surendran et al. | Oct 2010 | B2 |
7818377 | Whitney et al. | Oct 2010 | B2 |
7823148 | Deshpande et al. | Oct 2010 | B2 |
7836504 | Ray et al. | Nov 2010 | B2 |
7840968 | Sharma et al. | Nov 2010 | B1 |
7849507 | Bloch et al. | Dec 2010 | B1 |
7853643 | Martinez et al. | Dec 2010 | B1 |
7856661 | Sebes et al. | Dec 2010 | B1 |
7865931 | Stone et al. | Jan 2011 | B1 |
7870387 | Bhargava et al. | Jan 2011 | B1 |
7873955 | Sebes | Jan 2011 | B1 |
7895573 | Bhargava et al. | Feb 2011 | B1 |
7908653 | Brickell et al. | Mar 2011 | B2 |
7937455 | Saha et al. | May 2011 | B2 |
7950056 | Satish et al. | May 2011 | B1 |
7966659 | Wilkinson et al. | Jun 2011 | B1 |
7996836 | Mccorkendale et al. | Aug 2011 | B1 |
8015388 | Rihan et al. | Sep 2011 | B1 |
8015563 | Araujo et al. | Sep 2011 | B2 |
8028340 | Sebes et al. | Sep 2011 | B2 |
8195931 | Sharma et al. | Jun 2012 | B1 |
8205188 | Ramamoorthy et al. | Jun 2012 | B2 |
8234713 | Roy-Chowdhury et al. | Jul 2012 | B2 |
8307437 | Sebes et al. | Nov 2012 | B2 |
8321932 | Bhargava et al. | Nov 2012 | B2 |
8332929 | Bhargava et al. | Dec 2012 | B1 |
8352930 | Sebes et al. | Jan 2013 | B1 |
8381284 | Dang et al. | Feb 2013 | B2 |
8515075 | Saraf et al. | Aug 2013 | B1 |
8539063 | Sharma et al. | Sep 2013 | B1 |
8544003 | Sawhney et al. | Sep 2013 | B1 |
8549003 | Bhargava et al. | Oct 2013 | B1 |
8549546 | Sharma et al. | Oct 2013 | B2 |
8555404 | Sebes et al. | Oct 2013 | B1 |
8561051 | Sebes | Oct 2013 | B2 |
8561082 | Sharma et al. | Oct 2013 | B2 |
20020056076 | Made | May 2002 | A1 |
20020069367 | Tindal et al. | Jun 2002 | A1 |
20020083175 | Afek et al. | Jun 2002 | A1 |
20020099671 | Mastin Crosbie et al. | Jul 2002 | A1 |
20020114319 | Liu et al. | Aug 2002 | A1 |
20030014667 | Kolichtchak | Jan 2003 | A1 |
20030023736 | Abkemeier | Jan 2003 | A1 |
20030033510 | Dice | Feb 2003 | A1 |
20030065945 | Lingafelt et al. | Apr 2003 | A1 |
20030073894 | Chiang et al. | Apr 2003 | A1 |
20030074552 | Olkin et al. | Apr 2003 | A1 |
20030115222 | Oashi et al. | Jun 2003 | A1 |
20030120601 | Ouye et al. | Jun 2003 | A1 |
20030120811 | Hanson et al. | Jun 2003 | A1 |
20030120935 | Teal et al. | Jun 2003 | A1 |
20030145232 | Poletto et al. | Jul 2003 | A1 |
20030163718 | Johnson et al. | Aug 2003 | A1 |
20030167292 | Ross | Sep 2003 | A1 |
20030167399 | Audebert et al. | Sep 2003 | A1 |
20030200332 | Gupta et al. | Oct 2003 | A1 |
20030212902 | van der Made | Nov 2003 | A1 |
20030220944 | Lyman Schottland et al. | Nov 2003 | A1 |
20030221190 | Deshpande et al. | Nov 2003 | A1 |
20040003258 | Billingsley et al. | Jan 2004 | A1 |
20040015554 | Wilson | Jan 2004 | A1 |
20040051736 | Daniell | Mar 2004 | A1 |
20040054928 | Hall | Mar 2004 | A1 |
20040088398 | Barlow | May 2004 | A1 |
20040139206 | Claudatos et al. | Jul 2004 | A1 |
20040143749 | Tajalli et al. | Jul 2004 | A1 |
20040167906 | Smith et al. | Aug 2004 | A1 |
20040172551 | Fielding et al. | Sep 2004 | A1 |
20040230963 | Rothman et al. | Nov 2004 | A1 |
20040243678 | Smith | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268149 | Aaron | Dec 2004 | A1 |
20050005006 | Chauffour et al. | Jan 2005 | A1 |
20050018651 | Yan et al. | Jan 2005 | A1 |
20050086047 | Uchimoto et al. | Apr 2005 | A1 |
20050091321 | Daniell et al. | Apr 2005 | A1 |
20050108516 | Balzer et al. | May 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114672 | Duncan et al. | May 2005 | A1 |
20050132346 | Tsantilis | Jun 2005 | A1 |
20050198519 | Tamura et al. | Sep 2005 | A1 |
20050228990 | Kato et al. | Oct 2005 | A1 |
20050235360 | Pearson | Oct 2005 | A1 |
20050257207 | Blumfield et al. | Nov 2005 | A1 |
20050257265 | Cook et al. | Nov 2005 | A1 |
20050260996 | Groenendaal | Nov 2005 | A1 |
20050262558 | Usov | Nov 2005 | A1 |
20050273858 | Zadok et al. | Dec 2005 | A1 |
20050283823 | Okajo et al. | Dec 2005 | A1 |
20050289538 | Black-Ziegelbein et al. | Dec 2005 | A1 |
20060004875 | Baron et al. | Jan 2006 | A1 |
20060015501 | Sanamrad et al. | Jan 2006 | A1 |
20060037016 | Saha et al. | Feb 2006 | A1 |
20060072451 | Ross | Apr 2006 | A1 |
20060075478 | Hyndman et al. | Apr 2006 | A1 |
20060080656 | Cain et al. | Apr 2006 | A1 |
20060085785 | Garrett | Apr 2006 | A1 |
20060101277 | Meenan et al. | May 2006 | A1 |
20060133223 | Nakamura et al. | Jun 2006 | A1 |
20060136910 | Brickell et al. | Jun 2006 | A1 |
20060136911 | Robinson et al. | Jun 2006 | A1 |
20060143713 | Challener et al. | Jun 2006 | A1 |
20060195906 | Jin et al. | Aug 2006 | A1 |
20060200863 | Ray et al. | Sep 2006 | A1 |
20060230314 | Sanjar et al. | Oct 2006 | A1 |
20060236398 | Trakic et al. | Oct 2006 | A1 |
20060259734 | Sheu et al. | Nov 2006 | A1 |
20060277603 | Kelso et al. | Dec 2006 | A1 |
20070011746 | Malpani et al. | Jan 2007 | A1 |
20070028303 | Brennan | Feb 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070039049 | Kupferman et al. | Feb 2007 | A1 |
20070050579 | Hall et al. | Mar 2007 | A1 |
20070050764 | Traut | Mar 2007 | A1 |
20070074199 | Schoenberg | Mar 2007 | A1 |
20070083522 | Nord et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070136579 | Levy et al. | Jun 2007 | A1 |
20070143851 | Nicodemus et al. | Jun 2007 | A1 |
20070157303 | Pankratov | Jul 2007 | A1 |
20070169079 | Keller et al. | Jul 2007 | A1 |
20070192329 | Croft et al. | Aug 2007 | A1 |
20070220061 | Tirosh et al. | Sep 2007 | A1 |
20070220507 | Back et al. | Sep 2007 | A1 |
20070253430 | Minami et al. | Nov 2007 | A1 |
20070256138 | Gadea et al. | Nov 2007 | A1 |
20070271561 | Winner et al. | Nov 2007 | A1 |
20070300215 | Bardsley | Dec 2007 | A1 |
20080005737 | Saha et al. | Jan 2008 | A1 |
20080005798 | Ross | Jan 2008 | A1 |
20080010304 | Vempala et al. | Jan 2008 | A1 |
20080022384 | Yee et al. | Jan 2008 | A1 |
20080034416 | Kumar et al. | Feb 2008 | A1 |
20080034418 | Venkatraman et al. | Feb 2008 | A1 |
20080052468 | Speirs et al. | Feb 2008 | A1 |
20080082977 | Araujo et al. | Apr 2008 | A1 |
20080120499 | Zimmer et al. | May 2008 | A1 |
20080141371 | Bradicich et al. | Jun 2008 | A1 |
20080163207 | Reumann et al. | Jul 2008 | A1 |
20080163210 | Bowman et al. | Jul 2008 | A1 |
20080165952 | Smith et al. | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080235534 | Schunter et al. | Sep 2008 | A1 |
20080282080 | Hyndman et al. | Nov 2008 | A1 |
20080294703 | Craft et al. | Nov 2008 | A1 |
20080301770 | Kinder | Dec 2008 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090038017 | Durham et al. | Feb 2009 | A1 |
20090043993 | Ford et al. | Feb 2009 | A1 |
20090055693 | Budko et al. | Feb 2009 | A1 |
20090063665 | Bagepalli et al. | Mar 2009 | A1 |
20090113110 | Chen et al. | Apr 2009 | A1 |
20090144300 | Chatley et al. | Jun 2009 | A1 |
20090150639 | Ohata | Jun 2009 | A1 |
20090249053 | Zimmer et al. | Oct 2009 | A1 |
20090249438 | Litvin et al. | Oct 2009 | A1 |
20090320140 | Sebes et al. | Dec 2009 | A1 |
20090328144 | Sherlock et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20100049973 | Chen | Feb 2010 | A1 |
20100071035 | Budko et al. | Mar 2010 | A1 |
20100100970 | Roy-Chowdhury et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100138430 | Gotou | Jun 2010 | A1 |
20100188976 | Rahman et al. | Jul 2010 | A1 |
20100250895 | Adams et al. | Sep 2010 | A1 |
20100281133 | Brendel | Nov 2010 | A1 |
20100293225 | Sebes et al. | Nov 2010 | A1 |
20100332910 | Ali et al. | Dec 2010 | A1 |
20110029772 | Fanton et al. | Feb 2011 | A1 |
20110035423 | Kobayashi et al. | Feb 2011 | A1 |
20110047542 | Dang et al. | Feb 2011 | A1 |
20110047543 | Mohinder | Feb 2011 | A1 |
20110077948 | Sharma et al. | Mar 2011 | A1 |
20110078550 | Nabutovsky | Mar 2011 | A1 |
20110093842 | Sebes | Apr 2011 | A1 |
20110093950 | Bhargava et al. | Apr 2011 | A1 |
20110113467 | Agarwal et al. | May 2011 | A1 |
20110119760 | Sebes et al. | May 2011 | A1 |
20110138461 | Bhargava et al. | Jun 2011 | A1 |
20110302647 | Bhattacharya et al. | Dec 2011 | A1 |
20120030731 | Bhargava et al. | Feb 2012 | A1 |
20120030750 | Bhargava et al. | Feb 2012 | A1 |
20120216271 | Cooper et al. | Aug 2012 | A1 |
20120278853 | Roy-Chowdhury et al. | Nov 2012 | A1 |
20120290827 | Bhargava et al. | Nov 2012 | A1 |
20120290828 | Bhargava et al. | Nov 2012 | A1 |
20120297176 | Bhargava et al. | Nov 2012 | A1 |
20130024934 | Sebes et al. | Jan 2013 | A1 |
20130091318 | Bhattacharjee et al. | Apr 2013 | A1 |
20130097355 | Dang et al. | Apr 2013 | A1 |
20130097356 | Dang et al. | Apr 2013 | A1 |
20130097658 | Cooper et al. | Apr 2013 | A1 |
20130097692 | Cooper et al. | Apr 2013 | A1 |
20130117823 | Dang et al. | May 2013 | A1 |
20130246044 | Sharma et al. | Sep 2013 | A1 |
20130246393 | Saraf et al. | Sep 2013 | A1 |
20130246423 | Bhargava et al. | Sep 2013 | A1 |
20130246685 | Bhargava et al. | Sep 2013 | A1 |
20130247016 | Sharma et al. | Sep 2013 | A1 |
20130247027 | Shah et al. | Sep 2013 | A1 |
20130247032 | Bhargava et al. | Sep 2013 | A1 |
20130247181 | Saraf et al. | Sep 2013 | A1 |
20130247192 | Krasser et al. | Sep 2013 | A1 |
20130247226 | Sebes et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1383295 | Dec 2002 | CN |
103283202 | Sep 2013 | CN |
1 482 394 | Dec 2004 | EP |
2 037 657 | Mar 2009 | EP |
2599026 | Jun 2013 | EP |
2599276 | Jun 2013 | EP |
2004524598 | Aug 2004 | JP |
WO 9844404 | Oct 1998 | WO |
WO 0184285 | Nov 2001 | WO |
WO 2006012197 | Feb 2006 | WO |
WO 2006124832 | Nov 2006 | WO |
WO 2008054997 | May 2008 | WO |
WO 2011059877 | May 2011 | WO |
WO 2012015485 | Feb 2012 | WO |
WO 2012015489 | Feb 2012 | WO |
WO 2012116098 | Aug 2012 | WO |
WO 2013058940 | Apr 2013 | WO |
WO 2013058944 | Apr 2013 | WO |
Entry |
---|
“What's New: McAfee VirusScan Enterprise, 8.8,” copyright 2010, retrieved on Nov. 23, 2012 at https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT—DOCUMENTATION/22000/PD22973/en—US/VSE%208.8%20-%20What's%20New.pdf, 4 pages. |
“McAfee Management for Optimized Virtual Environments,” copyright 2012, retrieved on Nov. 26, 2012 at AntiVirushttp://www.mcafee.com/us/resources/data-sheets/ds-move-anti-virus.pdf, 2 pages. |
Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, Apr. 1992, retrieved on Dec. 14, 2012 from http://www.ietf.org/rfc/rfc1321.txt, 21 pages. |
Hinden, R. and B. Haberman, “Unique Local IPv6 Unicast Addresses”, RFC 4193, Oct. 2005, retrieved on Nov. 20, 2012 from http://tools.ietf.org/pdf/rfc4193.pdf, 17 pages. |
“Secure Hash Standard (SHS)”, Federal Information Processing Standards Publication, FIPS PUB 180-4, Mar. 2012, retrieved on Dec. 14, 2012 from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 35 pages. |
U.S. Appl. No. 13/728,705, filed Dec. 27, 2012, entitled “Herd Based Scan Avoidance System in a Network Environment,” Inventor(s) Venkata Ramanan, et al. |
An Analysis of Address Space Layout Randomization on Windows Vista™, Symantec Advanced Threat Research, copyright 2007 Symantec Corporation, available at http://www.symantec.com/avcenter/reference/Address—Space—Layout—Randomization.pdf, 19 pages. |
Bhatkar, et al., “Efficient Techniques for Comprehensive Protection from Memory Error Exploits,” USENIX Association, 14th USENIX Security Symposium, Aug. 1-5, 2005, Baltimore, MD, 16 pages. |
Dewan, et al., “A Hypervisor-Based System for Protecting Software Runtime Memory and Persistent Storage,” Spring Simulation Multiconference 2008, Apr. 14-17, 2008, Ottawa, Canada, (available at website: www.vodun.org/papers/2008—secure—locker—submit—v1-1.pdf, printed Oct. 11, 2011), 8 pages. |
Shacham, et al., “On the Effectiveness of Address-Space Randomization,” CCS'04, Oct. 25-29, 2004, Washington, D.C., Copyright 2004, 10 pages. |
International Search Report and Written Opinion mailed Dec. 14, 2012 for International Application No. 04796-1087WO, 9 pages. |
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/020677 (9 pages). |
International Preliminary Report on Patentability and Written Opinion issued Jan. 29, 2013 for International Application No. PCT/US2011/024869 (6 pages). |
“Xen Architecture Overview,” Xen, dated Feb. 13, 2008, Version 1.2, http://wiki.xensource.com/xenwiki/XenArchitecture?action=AttachFile&do=get&target=Xen+architecture—Q1+2008.pdf, printed Aug. 18, 2009 (9 pages). |
Eli M. Dow, et al., “The Xen Hypervisor,” Informit, dated Apr. 10, 2008, http://www.informit.com/articles/printerfriendly.aspx?p=1187966, printed Aug. 11, 2009 (13 pages). |
U.S. Appl. No. 10/651,591, entitled “Method and System for Containment of Networked Application Client Software by Explicit Human Input,” filed Aug. 29, 2003, Inventor(s): Rosen Sharma et al. |
U.S. Appl. No. 11/379,953, entitled “Software Modification by Group to Minimize Breakage,” filed Apr. 24, 2006, Inventor(s): E. John Sebes et al. |
U.S. Appl. No. 12/291,232, entitled “Method of and System for Computer System State Checks,” filed Nov. 7, 2008, inventor(s): Rishi Bhargava et al. |
U.S. Appl. No. 12/426,859, entitled “Method of and System for Reverse Mapping Vnode Pointers,” filed Apr. 20, 2009, Inventor(s): Suman Saraf et al. |
U.S. Appl. No. 12/322,220, entitled “Method of and System for Malicious Software Detection Using Critical Address Space Protection,” filed Jan. 29, 2009, Inventor(s): Suman Saraf et al. |
U.S. Appl. No. 12/322,321, entitled “Method of and System for Computer System Denial-of-Service Protection,” filed Jan. 29, 2009, Inventor(s): Suman Saraf et al. |
Desktop Management and Control, Website: http://www.vmware.com/solutions/desktop/, printed Oct. 12, 2009, 1 page. |
Secure Mobile Computing, Website: http://www.vmware.com/solutions/desktop/mobile.html, printed Oct. 12, 2009, 2 pages. |
U.S. Appl. No. 12/615,521, entitled “System and Method for Preventing Data Loss Using Virtual Machine Wrapped Applications,” filed Nov. 10, 2009, Inventor(s): Sonali Agarwal, et al. [Published 2011/0113467 on May 12, 2011]. |
U.S. Appl. No. 12/636,414, entitled “System and Method for Managing Virtual Machine Configurations,” filed Dec. 11, 2009, Inventor(s): Harvinder Singh Sawhney, et al. |
U.S. Appl. No. 11/437,317, entitled “Connectivity-Based Authorization,” filed May 18, 2006, Inventor(s): E. John Sebes et al. |
U.S. Appl. No. 12/880,125, entitled “System and Method for Clustering Host Inventories,” filed Sep. 12, 2010, Inventor(s) Rishi Bhargava, et al. |
U.S. Appl. No. 12/903,993, entitled “Method and System for Containment of Usage of Language Interfaces,” filed Oct. 13, 2010, Inventor(s) Rosen Sharma, et al. |
Barrantes et al., “Randomized Instruction Set Emulation to Dispurt Binary Code Injection Attacks,” Oct. 27-31, 2003, ACM, pp. 281-289. |
Gaurav et al., “Countering Code-Injection Attacks with Instruction-Set Randomization,” Oct. 27-31, 2003, ACM, pp. 272-280. |
U.S. Appl. No. 13/012,138, entitled “System and Method for Selectively Grouping and Managing Program Files,” filed Jan. 24, 2011, Inventor(s) Rishi Bhargava, et al. |
Check Point Software Technologies Ltd.: “ZoneAlarm Security Software User Guide Version 9”, Aug. 24, 2009, XP002634548, 259 pages, retrieved from Internet: URL:http://download.zonealarm.com/bin/media/pdf/zaclient91—user—manual.pdf. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority (1 page), International Search Report (4 pages), and Written Opinion (3 pages), mailed Mar. 2, 2011, International Application No. PCT/US2010/055520. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (6 pages), and Written Opinion of the International Searching Authority (10 pages) for International Application No. PCT/U52011/020677 mailed Jul. 22, 2011. |
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration (1 page), International Search Report (3 pages), and Written Opinion of the International Search Authority (6 pages) for International Application No. PCT/US2011/024869 mailed Jul. 14, 2011. |
Tal Garfinkel, et al., “Terra: A Virtual Machine-Based Platform for Trusted Computing,” XP-002340992, SOSP'03, Oct. 19-22, 2003, 14 pages. |
U.S. Appl. No. 13/037,988, entitled “System and Method for Botnet Detection by Comprehensive Email Behavioral Analysis,” filed Mar. 1, 2011, Inventor(s) Sven Krasser, et al. |
U.S. Appl. No. 12/946,344, entitled “Method and System for Containment of Usage of Language Interfaces,” filed Nov. 15, 2010, Inventor(s) Rosen Sharma, et al. |
A-32 Intel® Architecture Software Developer's Manual, vol. 3B; Jun. 2006; pp. 13, 15, 22 and 145-146. |
Notification of International Preliminary Report on Patentability and Written Opinion mailed May 24, 2012 for International Application No. PCT/US2010/055520, 5 pages. |
Sailer et al., sHype: Secure Hypervisor Approach to Trusted Virtualized Systems, IBM research Report, Feb. 2, 2005, 13 pages. |
U.S. Application U.S. Appl. No. 13/558,277, entitled “Method and Apparatus for Process Enforced Configuration Management,” filed Jul. 25, 2012, Inventor(s) Rishi Bhargava et al. |
Kurt Gutzmann, “Access Control and Session Management in the HTTP Environment,” Jan./Feb. 2001, pp. 26-35, IEEE Internet Computing. |
U.S. Appl. No. 11/060,683, entitled “Distribution and Installation of Solidified Software on a Computer,” filed Feb. 16, 2005, Inventor(s): Bakul Shah et al. |
Myung-Sup Kim et al., “A load cluster management system using SNMP and web”, [Online], May 2002, pp. 367-378, [Retrieved from Internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/nem.453/pdf>. |
G. Pruett et al., “BladeCenter systems management software”, [Online], Nov. 2005, pp. 963-975, [Retrieved from Internet on Oct. 24, 2012], <http://citeseerx.lst.psu.edu/viewdoc/download?doi=1.1.1.91.5091&rep=rep1&type=pdf>. |
Philip M. Papadopoulos et al., “NPACI Rocks: tools and techniques for easily deploying manageable Linux clusters” [Online], Aug. 2002, pp. 707-725, [Retrieved from internet on Oct. 24, 2012], <http://onlinelibrary.wiley.com/doi/10.1002/cpe.722/pdf>. |
Thomas Staub et al., “Secure Remote Management and Software Distribution for Wireless Mesh Networks”, [Online], Sep. 2007, pp. 1-8, [Retrieved from Internet on Oct. 24, 2012], <http://cds.unibe.ch/research/pub—files/B07. pdf>. |
USPTO Jun. 5, 2013 Notice of Allowance from U.S. Appl. No. 11/437,317. |
USPTO Jun. 10, 2013 Notice of Allowance from U.S. Appl. No. 12/976,159. |
Datagram Transport Layer Security Request for Comments 4347, E. Rescorla, et al., Stanford University, Apr. 2006, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc4347.pdf, 26 pages. |
Internet Control Message Protocol Request for Comments 792, J. Postel, ISI, Sep. 1981, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/html/rfc792, 22 pages. |
Mathew J. Schwartz, “Palo Alto Introduces Security for Cloud, Mobile Users,” retrieved Feb. 9, 2011 from http://www.informationweek.com/news/security/perimeter/showArticled.jtml?articleID-22, 4 pages. |
Requirements for IV Version 4 Routers Request for Comments 1812, F. Baker, Cisco Systems, Jun. 1995, retrieved and printed on Oct. 17, 2011 from http://tools.ietf.org/pdf/rfc1812.pdf, 176 pages. |
The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198, Issued Mar. 6, 2002, Federal Information Processing Standards Publication, retrieved and printed on Oct. 17, 2011 from http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf, 20 pages. |
Zhen Chen et al., “Application Level Network Access Control System Based on TNC Architecture for Enterprise Network,” In: Wireless communications Networking and Information Security (WCNIS), 2010 IEEE International Conference, Jun. 25-27, 2010 (5 pages). |
USPTO Dec. 24, 2012 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
USPTO Jul. 16, 2013 Final Office Action from U.S. Appl. No. 13/032,851. |
International Search Report and Written Opinion, International Application No. PCT/US2012/026169, mailed Jun. 18, 2012, 11 pages. |
USPTO Feb. 28, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,249. |
International Search Report and Written Opinion, International Application No. PCT/US2012/057312, mailed Jan. 31, 2013, 10 pages. |
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/275,196. |
International Search Report and Written Opinion, International Application No. PCT/US2012/057153, mailed Dec. 26, 2012, 8 pages. |
U.S. Appl. U.S. Appl. No. 13/437,900, filed Apr. 2, 2012, entitled “System and Method for Interlocking a Host and a Gateway,” Inventors: Geoffrey Howard Cooper, et al. |
USPTO Mar. 1, 2013 Nonfinal Office Action from U.S. Appl. No. 13/437,900. |
USPTO Sep. 13, 2013 Final Office Action from U.S. Appl. No. 13/275,249. |
Narten et al., RFC 4861, “Neighbor Discovery for IP version 6 (IPv6)”, Sep. 2007, retrieved from http://tools.ietf.org/html/rfc4861, 194 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2012/026169, mailed Aug. 27, 2013, 8 pages. |
USPTO Oct. 2, 2013 Final Office Action from U.S. Appl. No. 13/275,196. |
USPTO Oct. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,892. |
USPTO Oct. 25, 2013 Nonfinal Office Action from U.S. Appl. No. 12/844,964. |
U.S. Appl. No. 14/045,208, filed Oct. 3, 2013, entitled “Execution Environment File Inventory,” Inventors: Rishi Bhargava, et al. |
PCT Application Serial No. PCT/US13/66690, filed Oct. 24, 2013, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,”, 67 pages. |
Patent Examination Report No. 1, Australian Application No. 2011283160, mailed Oct. 30, 2013. |
USPTO Sep. 27, 2013, Notice of Allowance from U.S. Appl. No. 13/437,900. |
PCT Application U.S. Appl. No. PCT/US13/71327, filed Nov. 21, 2013, entitled “Herd Based Scan Avoidance System in a Network Environment,”, 46 pages. |
USPTO Dec. 4, 2013 Nonfinal Office Action from U.S. Appl. No. 13/032,851. |
U.S. Appl. No. 14/127,395, entitled “Agent Assisted Malicious Application Blocking in a Network Environment,” filed Dec. 18, 2013, Inventors: Chandan CP et al. |
USPTO Dec. 26, 2013 Notice of Allowance from U.S. Appl. No. 13/275,249. |
USPTO Dec. 16, 2013 Notice of Allowance from U.S. Appl. No. 13/275,196. |
USPTO Jan. 13, 2014 Notice of Allowance from U.S. Appl. No. 13/437,900. |
Patent Examination Report No. 1, Australian Application No. 2011283164, mailed Jan. 14, 2014. |
Number | Date | Country | |
---|---|---|---|
20130024934 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11182320 | Jul 2005 | US |
Child | 12944567 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12944567 | Nov 2010 | US |
Child | 13629765 | US |