Classification is a fundamental task in pattern recognition. Linear discriminant analysis is often used for pattern recognition primarily because of its simplicity, consistent treatment, and performance.
Most of the existing work directed to the structural analysis of classes is based upon maximizing the ratio of the between-class scatter to the within-class scatter (this ratio is called the Fisher criterion). However, the singularity of the within-class scatter matrix (or its variants) usually leads to computational issues when performing the generalized eigen-value analysis that is performed to solve the linear discriminant problem. Recently, use of a discrepancy criterion (i.e., for maximizing the difference, rather than the ratio, between the between-class scatter and the within-class scatter) has been investigated to avoid the singularity problem of the Fisher criterion.
This Summary is provided to introduce a selection of representative concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in any way that would limit the scope of the claimed subject matter.
Briefly, various aspects of the subject matter described herein are directed towards a technology by which semi-Riemannian geometry is used with a set of labeled samples (e.g., corresponding to supervised learning) to learn a discriminant subspace for classification. In one aspect, the labeled samples are used to learn the geometry of a semi-Riemannian submanifold.
In one aspect, for each sample of a set of samples, the K nearest classes corresponding to that sample are determined, along with the nearest samples to that sample that are in other classes, and the nearest samples to that sample that are within the same class as that sample. The distances between these samples are computed.
In one aspect, learning the discriminant subspace comprises computing a metric matrix, e.g., based on the computed distances between samples. In turn the metric matrix is used to compute a projection matrix that corresponds to the discriminant subspace.
In online classification, as a new sample is received, it is projected into a feature space by use of the projection matrix. The sample is classified based on this projection.
Other advantages may become apparent from the following detailed description when taken in conjunction with the drawings.
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
Various aspects of the technology described herein are generally directed towards applying semi-Riemannian geometry to supervised learning to generalize discrepancy criterion or criteria. To this end, learning a discriminant subspace for classification is based upon learning the geometry of a semi-Riemannian submanifold. As will be understood, this provides a different methodology for classification, which can avoid the singularity problem in the Fisher criterion-based algorithms, and also achieves improved and more stable classification performance.
It should be understood that any of the examples described herein are non-limiting examples. As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various ways that provide benefits and advantages in computing and classification in general.
As will be understood, a discrepancy criterion can be interpreted using a language of semi-Riemannian geometry. Further, based on semi-Riemannian geometry, a more complete description of discrepancy criterion-based linear discrimination is provided herein. In one aspect, a new algorithm referred to herein as semi-Riemannian Discriminant Analysis (SRDA) is provided for supervised discriminant subspace learning.
As will be understood and as described below, various components in the offline process compute the projection matrix 104. These include components/mechanisms for determining a sample's K nearest classes (block 118), for determining the nearest samples in other classes (block 120), for determining the nearest samples in the sample's own class (block 122), and for computing the distances between the sample and the other samples (block 124). Further provided is a metric matrix computation mechanism (block 126) and a projection matrix computation mechanism 128. The operations of each of these components are described below.
As set forth herein, what matters to the discrimination of a sample is its K nearest neighbor (KNN) classes, rather than all the available classes. Namely, the KNN classes of the sample dominate the capability of discrimination. Thus one aspect (blocks 118, 120 and 122) is directed to mining the structural relationship between a sample being evaluated and its KNN classes. These KNN classes provide K degrees of discriminability of the sample. The class to which this sample belongs also provides a degree of discriminability. Thus every sample is associated with (K+1) degrees of discriminability.
A sample may be viewed on a discriminant manifold of an intrinsic dimension (K+1). To provide the coordinate of that sample in the discriminant space within which the discriminant manifold resides, one approach uses the dissimilarities between the sample and several samples in each of its KNN classes and the class to which it belongs. More particularly, a dissimilarity vector of the dissimilarities between the sample and the chosen samples comprises the coordinate of this sample in the discriminant space. This discriminant space is the ambient space of the discriminant manifold described herein.
With respect to general fundamentals of semi-Riemannian geometry, the following table lists a number of mathematical notations used herein:
j
Semi-Riemannian geometry is the geometry of semi-Riemannian manifolds, in which semi-Riemannian manifolds are smooth manifolds equipped with semi-Riemannian metric tensors. The metric matrix of a semi-Riemannian space Nvn is of the form:
where
g(r,r)=rTGr={hacek over (r)}T{hacek over (Λ)}{hacek over (r)}−{circumflex over (r)}T{hacek over (Λ)}{hacek over (r)}
The vector r is called space-like if g(r,r)>0 or r=0, time-like if g(r,r)<0, and null if g(r,r)=0 and r≠0.
With respect to learning on the semi-Riemannian manifold, given the above-described geometrization of class structures, learning a discriminant subspace reduces to learning the geometry of a semi-Riemannian manifold. In one implementation, this is accomplished in two general steps. A first step determines the metric tensors of the ambient discriminant space. A second step determines the linear projection matrix (step 314 of
The metric tensor is leaned based on the nullity of the ambient space, which is a characteristic of semi-Riemannian spaces, and based on the smoothness of some discrete functions. Once the metric tensor is determined, the projection matrix is found to maximize the sum of norms of the projected samples, measured by the metrics of the ambient space. Because of the structure of the metric of the ambient semi-Riemannian space, the sum of norms of the projected samples comprises the discrepancy of the between-class scatter and the within-class scatter of the projected samples.
Unlike traditional classification frameworks, the classification framework described herein models class structures as a semi-Riemannian submanifold embedded in an ambient semi-Riemannian space. As a result, as described above, learning a discriminant subspace for classification reduces to learning the geometry of the semi-Riemannian submanifold.
The KNN classes of a sample are those classes (of number K) whose class centers are the closest, among all the available classes, to a given/selected sample. As described above, each sample is considered to have (K+1) degrees of discriminability, that is, K from its KNN classes, plus one degree that comes from the class to which that sample belongs. Such (K+1) degrees of discriminability can be conceived as a point on a (K+1)-dimensional manifold M1K+1. If its metric matrix is chosen as the following form:
then M1K+1 is a semi-Riemannian manifold with index 1.
The positive definite part of the metric matrix GM measures the between-class quantity, while the negative definite part measures the within-class quantity.
Turning to embedding discriminant manifolds into ambient semi-Riemannian spaces,
Based on the concept of discriminant manifold, the coordinates of points on M1K+1 need to be computed. Dissimilarities may be applied from each sample to its KNN classes and the class to which is belongs as the intrinsic coordinate. The between-class dissimilarity can be measured by the distances of this sample xi to {hacek over (K)} samples in each of its KNN classes. The within-class dissimilarity can be measured by the distances (step 310) of this sample to {circumflex over (K)} samples in the class to which it belongs. The between-class dissimilarities and the within-class dissimilarities may be represented as
and
respectively. Putting them together, dx
which is the ambient space of M1K+1. In general, K,{hacek over (K)},{circumflex over (K)} are small positive integers. Thus, N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)} is a low-dimensional ambient space; the dimensions of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)} and M1K+1 are independent of the dimension of the sample space.
Learning the discriminant subspaces is directed to determining the projection matrix U (step 314) from the original sample space to a low-dimensional space (called the feature space). To do so, the metric matrix of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)} needs to be determined (step 312) in order to utilize the geometric property of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)}.
To compute U, the metric matrix of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)} is needed. To this end, there is described a method to determine the metric matrix of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)}. In the following, it is assumed that the feature space is Euclidean, i.e., the norm of y in the feature space is defined as: ∥y∥l
Suppose that the metric matrix GiN at every sample point xi has already been determined. As described above, a goal of subspace learning is to maximize the between-class distance while minimizing the within-class distance. This can be accomplished by using the metric matrix GiN, i.e., by maximizing where yi is the low-dimensional representation of xi. Then all such g(dy
which can be found to be:
where
is the binary selection matrix of size m×(K{hacek over (K)}+{circumflex over (K)}+1) whose structure is that (Si)pq=1 if the q-th vector in Yi is the p-th vector in Y, and D is the matrix of difference operator:
The technique of rewriting the left hand side of (1) as the right hand side of (1) is called alignment. It is well known in subspace learning theory that the matrix Y that maximizes (1) simply consists of the eigen-vectors of L corresponding to the first c largest eigen-values if c-dimensional nonlinear embedding of class structures are wanted. For isometric linear embedding, i.e., the sample vector and the feature vector are related as: x=Uy, where UTU=Ic×c, then U consists of the eigen-vectors of XLXT corresponding to the first c largest eigen-values.
The metric GiN is a factor that governs the geometry of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)}. GiN and includes two parts: the positive definite part {hacek over (Λ)}i and the negative definite part −Âi.
To determine {hacek over (Λ)}i, {hacek over (d)}y
The larger component {hacek over (d)}y
where {hacek over (F)} is the first difference operator:
{hacek over (F)}=└I
(K{hacek over (K)}−1)×(K{hacek over (K)}−1)0(K{hacek over (K)}−1)×1┘+└0(K{hacek over (K)}−1)×1−I(K{hacek over (K)}−1)×(K{hacek over (K)}−1)┘.
To determine {circumflex over (Λ)}i, after determining {hacek over (Λ)}i, i can be determined accordingly by setting N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)} locally null: g(dx
where {circumflex over (F)} is the difference operator similar to {hacek over (F)}. The solutions to (2) and (3) are respectively:
The enforcement of nullity of N{hacek over (K)}K{hacek over (K)}+{circumflex over (K)} is in effect to balance the between-class scatter {hacek over (d)}x
{circumflex over (Λ)}i←γ{circumflex over (Λ)}i, {hacek over (Λ)}i←(1−γ){hacek over (Λ)}i, (5)
where γε[0.5,1].
With the above formulated framework using semi-Riemannian spaces, a specific algorithm, called semi-Riemannian Discriminant Analysis (SRDA), is provided for classification or discriminant subspace learning. The algorithm is summarized in Table 2, where the elements in {hacek over (S)}x
As represented in
The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote computer storage media including memory storage devices.
With reference to
The computer 410 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer 410 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 410. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above may also be included within the scope of computer-readable media.
The system memory 430 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 431 and random access memory (RAM) 432. A basic input/output system 433 (BIOS), containing the basic routines that help to transfer information between elements within computer 410, such as during start-up, is typically stored in ROM 431. RAM 432 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 420. By way of example, and not limitation,
The computer 410 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media, described above and illustrated in
The computer 410 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 480. The remote computer 480 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 410, although only a memory storage device 481 has been illustrated in
When used in a LAN networking environment, the computer 410 is connected to the LAN 471 through a network interface or adapter 470. When used in a WAN networking environment, the computer 410 typically includes a modem 472 or other means for establishing communications over the WAN 473, such as the Internet. The modem 472, which may be internal or external, may be connected to the system bus 421 via the user input interface 460 or other appropriate mechanism. A wireless networking component 474 such as comprising an interface and antenna may be coupled through a suitable device such as an access point or peer computer to a WAN or LAN. In a networked environment, program modules depicted relative to the computer 410, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
An auxiliary subsystem 499 (e.g., for auxiliary display of content) may be connected via the user interface 460 to allow data such as program content, system status and event notifications to be provided to the user, even if the main portions of the computer system are in a low power state. The auxiliary subsystem 499 may be connected to the modem 472 and/or network interface 470 to allow communication between these systems while the main processing unit 420 is in a low power state.
While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.