1. Technical Field
The disclosure generally relates to the electronic display of documents. More particularly, the disclosure relates to the placement and use of ink and annotations in electronically displayed documents.
2. Related Art
Many factors today drive the development of computers and computer software. One of these factors is the desire to provide accessibility to information virtually anytime and anywhere. The proliferation of notebook computers, personal digital assistants (PDAs), and other personal electronic devices reflect the fact that users want to be able to access information wherever they may be, whenever they want. In order to facilitate greater levels of information accessibility, the presentation of information must be made gas familiar and comfortable as possible.
In this vein, one way to foster success of electronic presentations of information will be to allow users to handle information in a familiar manner. Stated another way, the use and manipulation of electronically-presented information may mimic those paradigms that users are most familiar with, e.g., printed documents, as an initial invitation to their use. As a result, greater familiarity between users and their “machines” will be engendered, thereby fostering greater accessibility, even if the machines have greater capabilities and provide more content to the user beyond the user's expectations. Once users feel comfortable with new electronic presentations, they will be more likely to take advantage of an entire spectrum of available functionality.
One manner of encouraging familiarity is to present information in an electronic book format in which a computer displays information in a manner that closely resembles printed books. In order to more completely mimic a printed book, users will need to have the ability to make textual notes to themselves, akin to writing in the margins of paper books. Users will also want to highlight selected portions, as these are active-reading activities of which a user would expect to see in an electronic book. Users will want to add drawings, arrows, underlining, strike-throughs, and the like, also akin to writing in paper books. Finally, users will want to add bookmarks.
The above-identified so-called “active-reading” activities are available. In the case of any computer application with GUI that displays text, it can be assumed that the displayed text is of primary significance to the user. If the process of adding ink-marks to the primary text negatively impacts the presentation of the primary text, then the user is unlikely to frequently ink-annotate the electronic information and/or is unlikely to have a satisfactory ink-annotation experience. As a result, the perception of electronic books (or e-Books) as a step forward from paper books will suffer. What is needed is a mechanism to enhance the e-Book ink-annotation feature to match or surpass a similar experience with paper books.
Handwriting, scribbling, and marking on text are the most highly developed skills humans have for capturing short and graphical comments on documents. Only when computers can support these activities can they match the handiness of paper. Handwriting need not be recognized by the computer in order to be useful. But, it must be applicable wherever one could expect to be able to handwrite on a displayed document page. The writing should be visible without requiring any additional obstruction of the document, and without requiring any change to the layout of the document. Known methods for annotating documents fall short of these goals. Further, always associating an annotation with a singular element (a given page, for example) may create difficulties in rendering when re-flowing the text of a document. These difficulties include rending the annotation on a page different from the original subject of the annotation.
The present invention provides a technique for adding electronic ink to an electronically displayed document. In the context of the present invention, a “document” encompasses all forms of electronically displayable information including but not limited to books, manuals, reference materials, picture books, etc. Electronic ink (also referred to as “ink” for simplicity) includes drawings, written text (or annotations), and highlighting. To create an annotation, a user selects an object in the document to locate where the annotation is to be placed. The computer system determines which object has been selected and anchors the ink or annotation. The user adds the annotation and, eventually, returns to reading the document. The annotations may be filtered, navigated, sorted, and indexed per user input. Annotations may include text annotations, drawings, highlights, bookmarks, and the like as is related to the general field of active reading. In one embodiment, the system modifies the content of the document to add an anchor to the document. In another embodiment, the system determines a file position associated with the selected object and anchors to the file position.
In the context of the present invention, a displayed “object” may include text, graphics, equations, and other related elements as contained in the displayed document. Annotations may include highlighting, adding textual notes, adding drawings (as one would expect to do with a pencil or pen to a paper book), and adding bookmarks.
Documents may be classified as modifiable and non-modifiable. In regards to modifiable documents, the system modifies the document to include the ink or annotation or at least adds a link at the location of the anchored object to the ink or annotation. In the case of non-modifiable documents, the system links the electronic ink to a file position in the non-modifiable document. The invention calculates the file position of, for example, the first character of the word (or other displayed element) and stores the file position with the annotation in a separate, linked local file. In a further embodiment, the file position anchoring of ink may be used in modifiable documents as well or when the non-modifiable document represents a non-modifiable portion of a file, with the annotations being added to a write-enabled portion of the file.
Another embodiment of the invention relates to scaling ink annotations to be rendered to look correct despite changing screen resolutions and screen sizes. Ink annotations are captured and stored as data points. Generally, the annotations are displayed as captured, meaning that the original data points are used to render the ink annotation. The problem is that screen resolutions may change or screen size may change, making the annotations be generated too large or too small for any subsequent viewing.
Here, the invention stores the annotation along with information regarding the system on which the annotation was captured including screen size and screen resolution. If the screen size or screen resolution is different on the displaying device from the stored information, the invention scales the data points defining the annotation to the new screen size or resolution.
Further, methods of anchoring an annotation to a point, an object, a range of objects, or a geometric region are known. But an ink stroke is unique among annotations in that its shape has a graphical meaning of its own, and further in that its shape and position may create multiple associations. However, these methods of anchoring have not maintained enough associations, nor have they provided logic for interpreting those associations along with the shapes of ink strokes, in order for those strokes to survive changes among the annotated elements.
To identify appropriate associations, the system and method first classifies the shape and then use this classification to help identify multiple independent elements that may be associated. The multiple independent anchors may include one or more objects and/or areas being annotated, as well as any other annotations that are near enough to be associated. Finally, the system and method use logic to transform the shape in complex ways when any of these other elements moves or changes.
These and other novel advantages, details, embodiments, features and objects of the present invention will be apparent to those skilled in the art from following the detailed description of the invention, the attached claims and accompanying drawings, listed herein, which are useful in explaining the invention.
The present invention relates to a system and method for capturing and associating annotations associated with a non-modifiable document.
Although not required, the invention will be described in the general context of computer-executable instructions, such as program modules. Generally, program modules include routines, programs, objects, scripts, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the invention may be practiced with any number of computer system configurations including, but not limited to, distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices. The present invention may also be practiced in personal computers (PCs), hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like.
A basic input/output system 260 (BIOS), containing the basic routines that help to transfer information between elements within the personal computer 200, such as during start-up, is stored in ROM 240. The personal computer 200 further includes a hard disk drive 270 for reading from and writing to a hard disk, not shown, a magnetic disk drive 280 for reading from or writing to a removable magnetic disk 290, and an optical disk drive 291 for reading from or writing to a removable optical disk 292 such as a CD ROM or other optical media. The hard disk drive 270, magnetic disk drive 280, and optical disk drive 291 are connected to the system bus 230 by a hard disk drive interface 292, a magnetic disk drive interface 293, and an optical disk drive interface 294, respectively. The drives and their associated computer-readable media provide nonvolatile storage of computer readable instructions, data structures, program modules and other data for the personal computer 200.
Although the exemplary environment described herein employs a hard disk, a removable magnetic disk 290 and a removable optical disk 292, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROMs), and the like, may also be used in the exemplary operating environment.
A number of program modules may be stored on the hard disk, magnetic disk 290, optical disk 292, ROM 240 or RAM 250, including an operating system 295, one or more application programs 296, other program modules 297, and program data 298. A user may enter commands and information into the personal computer 200 through input devices such as a keyboard 201 and pointing device 202. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 210 through a serial port interface 206 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB). A monitor 207 or other type of display device is also connected to the system bus 230 via an interface, such as a video adapter 208. In addition to the monitor, personal computers typically include other peripheral output devices (not shown), such as speakers and printers.
The personal computer 200 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 209. The remote computer 209 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 200, although only a memory storage device 211 has been illustrated in
When used in a LAN networking environment, the personal computer 200 is connected to the local network 212 through a network interface or adapter 214. When used in a WAN networking environment, the personal computer 200 typically includes a modem 215 or other means for establishing a communications over the wide area network 213, such as the Internet. The modem 215, which may be internal or external, is connected to the system bus 230 via the serial port interface 206. In a networked environment, program modules depicted relative to the personal computer 200, or portions thereof, may be stored in the remote memory storage device.
It will be appreciated that the network connections shown are exemplary and other techniques for establishing a communications link between the computers can be used. The existence of any of various well-known protocols such as TCP/IP, Ethernet, FTP, HTTP and the like is presumed, and the system can be operated in a client-server configuration to permit a user to retrieve web pages from a web-based server. Any of various conventional web browsers can be used to display and manipulate data on web pages.
In one embodiment, a pen digitizer 165 and accompanying pen or stylus 166 are provided in order to digitally capture freehand input. Although a direct connection between the pen digitizer 165 and the processing unit 210 is shown, in practice, the pen digitizer 165 may be coupled to the processing unit 210 via a serial port, parallel port or other interface and the system bus 230 as known in the art. Furthermore, although the digitizer 165 is shown apart from the monitor 207, it is preferred that the usable input area of the digitizer 165 be co-extensive with the display area of the monitor 207. Further still, the digitizer 165 may be integrated in the monitor 207, or may exist as a separate device overlaying or otherwise appended to the monitor 207.
In addition to the system described in relation to
A stylus could be equipped with buttons or other features to augment its selection capabilities. In one embodiment, a stylus could be implemented as a “pencil” or “pen”, in which one end constitutes a writing portion and the other end constitutes an “eraser” end, and which, when moved across the display, indicates portions of the display are to be erased. In another embodiment, the stylus may have only a writing portion on one or both ends. Other types of input devices, such as a mouse, trackball, or the like could be used. Additionally, a user's own finger could be used for selecting or indicating portions of the displayed image on a touch-sensitive or proximity-sensitive display. Consequently, the term “user input device”, as used herein, is intended to have a broad definition and encompasses many variations on well-known input devices.
Region 171 shows a feed back region or contact region permitting the user to determine where the stylus as contacted the digitizer. In another embodiment, the region 171 provides visual feedback when the hold status of the present invention has been reached.
Various schemes exist with which to store electronically displayable information. In a first embodiment, the ink or annotation is stored within the document at the anchor location. Or, an anchor link is inserted at or near the object associated with the ink to permit the layout renderer to properly render the document and added ink or annotation. Further, the system may anchor to a file position in the document. Various descriptions relate to the use of the file position as an anchor. It is appreciated that the other embodiments may be used as well to anchor the ink or annotations including modification of the document itself to include the annotation or an anchor link at the location of the anchor position.
The difference in the storage modes becomes relevant in the technique used to fix the file position for an annotation. If the file position is determined with one storage scheme, porting the file position to another storage scheme may not result in the same desired file position for an annotation. Thus, all annotations may be fixed to a file position based on the use of a single scheme. Preferably, the scheme used to hold the document while the document is being displayed is the scheme that is used to determine the file position. So, irrespective of whether the document is closed and compressed to another scheme, when reopened in the display scheme, the file position for the annotation remains the same as when created. Unicode may be the scheme used to display the document. Alternatively, UTF8 may be used as well as any other textual encoding or compression scheme to access the document for display.
In step 502, the system determines which object was selected by the user. This step relates to the conversion of the physical coordinates from the display device to coordinates inside the reader window. From this conversion, the object selected by the user is known.
Step 502A is optional. It relates to the user selection of an action post selection of the object. If the user is supplied with a menu after selection of the object and the function of adding an annotation is provided on the menu, step 502A relates to the selection of the adding the annotation function. An example of adding an annotation is described in detail in U.S. Ser. No. (BW 03797.84618), filed Dec. 7, 1999, entitled “Method and Apparatus for Capturing and Rendering Text Annotations For Non-Modifiable Electronic Content” whose contents are incorporated by reference for any essential subject matter.
Step 503 relates to the determination of the file position of the selected object. The file position may include the first byte of the selected object. Alternatively, the file position may be the first byte of the last character (or even the character following the last character) of the selected object. Selecting the first byte of the first character to determine the file position provides the advantage of displaying any annotation on the page of the beginning of the object, rather then on the next page if the object spans a page. Anyone of skill in the art will appreciate that any byte of the selected object (or surrounding the selected object) may be selected to provide the file position of the object. Alternatively, one may select a line in which the object resides or the paragraph or the portion of the page (e.g., the top, middle or bottom of the page).
The file position may be determined by counting the number of bytes from some known file position to the location of, for example, the first character of the selected object. The known file position may be the beginning of the file, or may be, for example, a previously noted file position for the beginning of the current paragraph. The counting step may be performed before or after generation of the annotation. Alternatively, the counting step may be performed in the background while the annotation is being created by the user. Note that annotation file positions may always stored as UTF-8 offsets within the text, as it stood before binary compression. However, the algorithm used to display the text works with Unicode characters. Therefore, in this example, it is necessary to work back from the selected object to a character with a known UTF-8 file position.
Because the binary file-format of the original publication (electronic book, document, etc.) intermixes markup (tags) with text, it is necessary to discount the bytes taken by such tags when calculating the file-position for the selected object (to which the annotation will be anchored). However, of these tags, many if not most do not take up a character-position on the display surface. Therefore, it is important to keep track of the starting file position of every run of text on the display, which corresponds to an unbroken run of text in the file. An “unbroken” run of text refers to text in the file that is not broken by a start- or an end-tag.
Therefore, the steps involved in accurately determining the file position for anchoring the annotation to the selected object may be generalized as:
Step 504 relates to creating a file to persist the annotation. While shown after step 503, it will be appreciated that it may occur prior to or during the determination of the file position of the object. In step 505, the file position is placed in the header of the file (or portion of the file) storing the created annotation. Alternatively, the file position may be appended to the file being viewed.
In step 603, the file position of the page is temporarily stored in memory.
In step 604, the system waits for either selection of an object or navigation to another page. More options are contemplated that do not need the file position for execution (for example, looking up a term in a reference document as disclosed in U.S. Ser. No. (BW 03797.84619) filed Dec. 7, 1999, entitled “Method and Apparatus for Installing and Using Reference Materials In Conjunction With Reading Electronic Content”, whose contents are incorporated herein by reference in its entirety for any enabling disclosure).
In step 605, once an object is selected, the relative position of the selected object is determined with reference to the first byte of the first object on the displayed page.
In step 606, the file position of the first byte of the first object on the page as determined in step 602 is retrieved from memory (as stored in step 603) and added to the relative position of the first byte of the selected object as determined in step 605 to determine the file position of the selected object.
In step 607, the file position of the selected object is stored along with the created annotation. These steps relating to the determination of the file position may occur before or after the annotation for the object. Alternatively, the file position may be preformed in the background while the annotation is being created. Those skilled in the art will appreciate that any number of techniques may be used to determine object position and still be considered to be within the scope of the present invention.
In step 702, the system determines the file position of the first object on the page.
In step 703, the system determines the file position of the last object on the page.
In step 704, the annotations stored for the document are searched to determine if any have file positions located between the file position determined in step 702 and the file position determined in step 703.
In step 705, if no annotations with a file position are located for display on the displayed page, the system waits for user input (including, for example, navigation to a new page or selection of an object for annotation, or any other action described herein).
In step 706, an annotation has been found that relates to an object on the page. The location of the object on the page is determined and the annotation is displayed for the object. The system for determining the location of the object may include subtracting the file position of the first object on the page from the file position of the annotated object. This difference is then used to determine how many bytes from the first character of the page is the annotated object. At this point, further annotations may be made, by returning from step 706 to step 705.
Alternatively, the system may count again from the beginning of the document to determine which object has been annotated. It will be appreciated by those skilled in the art that that numerous methods exist for displaying the annotation for the annotated object. The above examples are not intended to be limiting.
In the context of displaying the annotations that are determined to exist in a given “page” of the content (the unit of text being viewed by the user at any given time), the computer system will first validate a global state, which determines whether annotations should be rendered at all. For example, the user is provided with the ability to globally specify whether to show or hide drawing annotations (as well as text notes, bookmarks, highlights, etc.). Prior to displaying a particular annotation of an object, the computer system will check this global setting to determine whether or not to render the specific annotation. If the user has chosen to hide annotations of that particular type, the annotation will not be rendered.
Annotation Scaling
As to scaling annotations,
The following example is used. Let Poriginal(x,y) be the original position of a data point of an annotation. N(x,y) is the new screen resolution. O(x,y) is the original screen resolution. For each point Pnew(x,y), the new location of the scaled data point is given by the ratio of the new screen resolution over the old screen resolution for the x and y components of each:
Pnew((Poriginalx·Nx/Ox),(Poriginaly ·Ny/Oy))
This assumes that the x and y components are independent. So, various resolutions can easily be accommodated (for instance, 640×480 and 640×400).
An alternative embodiment includes normalizing ink annotations to a specified format. So, when displaying the ink annotations, the invention does not need to use the capturing screen resolution (because it in effect is already known due to the initial normalizing process). The system only needs to convert all retrieved annotations to fit the current screen res. Additional alternatives include minimizing processing by selecting the normalized resolution to correspond to the slowest computing platform.
Associating Ink Annotations with Information
In addition to permitting viewing of the underlying document despite numerous annotations, or document reflow or viewer modifications, and to avoid losing the power of the computer, these ink tasks may co-exist with traditional computing tasks. Specifically, to be useful on electronic documents, ink annotations should be able to survive changes in the underlying document.
Survival in this context means continuing to convey both graphical meaning of the ink strokes, and association with the elements being annotated, even as those elements move or change. The current invention includes a set of methods for classifying, anchoring and transforming ink annotations such that they survive changes among the annotated elements. See, for example,
The following description and associated Figures illustrate how ink and annotations may be transformed due to the change in appearance of a document. The document may change appearance due to a change in the content of the document or may change appearance due to a change in user preferences (for example, selecting a larger font size) without modification to the underlying document content. The transformation of ink in relation to both types of changes is considered to be part of the present invention.
The Starting Point: Stroke Classification and Multiple Independent Anchors
Ink annotations include graphical thoughts (sketches), verbal thoughts (handwritten words), and markings (e.g. underlining, highlighting, circling). Each of these has both graphical meaning of its own, and associations that may have changed its shape had the document been laid out differently. For example, with sketches it is important to keep accurate geometric relationships between the strokes (in X and Y), and to keep near in-line elements but not obscure them. With handwritten words, it is most important to keep words together and keep flow relationships between sequential words (in lines and columns). With marks on text, it is important to keep the associated portion of the mark properly related to the text it marks, in position and size, even as the text may change or move. To preserve the meaning and associations of ink annotations as the underlying elements move or change, the system and method recognize which strokes, and which groups of strokes, require each of these treatments.
First, a stroke's shape and the geometric region or regions in which it lies can be used to classify it into one of several types. Next, proximity to objects can be used to anchor the stroke in ways that serve as further classification.
1. The asterisk 1302 is a shape with graphical meaning (which the system and method do not need to recognize, only to preserve). It is located in a margin, where in addition to being anchored to the nearest in-line element, it can be considered primarily associated with the line that contains that element.
2. The words “This ink's over text” 1303 are a ‘chain of strokes’, the first of which was primarily related to the text immediately above or below it and the others primarily associated with the first to add meaning. To assure that the first stroke is associated with the correct word the system and method may use additional heuristics, or give anchor feedback to the user and allow manual correction. For example, the system may use an average or weighted average to determine a center of a ‘chain of strokes’ and associate the center with the nearest text. Also, the system may ask a user to select the text to which the annotation refers.
3. The words “underlying document's layout” are marked with a pair of strokes 1305, the first of which is considered to have marked the range of words (because it spans the range in a direction parallel to the line flow), and the second of which can be considered to have been chained to the first to add meaning. In an alternate embodiment, the system may also classify the second line as associated with the first line or associated with the same text as based on the time interval or on the presence of events between the creation of the first and second lines.
4. The vertical line 1308 in the left margin spans a range of words in the direction of column flow, and is considered to have marked the lines to the right of line 1308.
5. The outline 1306 of the words starting with “handwriting and sketches” is considered a group of segments, the horizontal ones marking words and the others marking lines.
6. The line 1309 connecting the outline to the margin note 1307 is a connector, with two primary anchors (one at each end) that may be completely independent elements.
7. The margin note 1307 itself is a chain of strokes related primarily to whichever of its strokes was laid down first, but also related to the margin and the text nearest that first stroke and the near end of the long line.
8. The words ‘This ink's in-line with text’ 1305 could have been meant as an annotation, but, because they were inserted into the flow of the text, they are classified as part of the document layout and not subject to anchoring and transformations.
In total, the system and method have five basic types of ink, only three of which are classified as annotations:
The system and method may use heuristics to anchor each stroke classified as an annotation. For example, first, the XY position in the window of the stroke's start gives a window anchor. Next, if the window's layout engine provides additional timely information about underlying regions and nearby elements, the system and method may create additional anchors used in the heuristics to support re-layout of the ink whenever an anchor element moves or changes. The following describes one example of heuristics, but it is appreciated that other heuristics may be used and are considered within the scope of the invention.
1. On finishing a stroke, the system and method check its proximity to other annotations with which it may also be associated.
2. The system checks its shape and, if linear, the system queries the layout engine for graphical regions to determine whether it fits in any one of three linear classes—parallel to a range of sequential elements (such as multiple text characters in a line, which may also include in-line ink or other objects), perpendicular to a sequence of such ranges (such as multiple lines in a column), or a connecting line associated with a pair of non-sequential elements. In one embodiment, the system uses a simple heuristic considering only height-to-width ratio and whether the ends are near opposite corners of the bounding box). If the width is greater than the height by a ratio (for example, the default may be 5×) and midpoints of the left and right edges of the bounding box mark text, it is classified as a horizontal text mark. If the nearest text is below, the system asks for object nearest above and chooses between them based on ratio of distances. This biases the classification of horizontal text marks as underlining (rather than ‘overlining’ which is assumed to be less common). If both ends mark in-line text or ink and its height is greater than width by a ratio (for example, the default may be 7×), it is classified as a vertical marking a range of lines. Otherwise if ends are near diagonal corners, it's a connecting line (may connect two in-line elements or connect one with a margin).
3. If the stroke or strokes is not classified as one of these linear classes, the system identifies the in-line element nearest the stroke's XY midpoint (including invisible in-line elements such as word space, tab space and line space) to use as an anchor. If the midpoint and the anchor element are horizontally apart by more than a threshold (for example, 0.2″), the system marks it as ‘side margin’. If they are vertically apart by more than a threshold, the system marks it as ‘top/bottom margin’.
4. If not in the margin, the system also notes the size of the anchor element so the ink can be re-scaled if the anchor element is re-scaled.
5. In addition to the window, region, and element anchors, the system also may link to any nearby overlaid element (typically an ink stroke, but could be an image, a shape or a text label). This is because if such overlaid elements form a sketch or word, maintaining their positions with respect to each other is more important than flowing with the embedded anchors. The resulting stroke chains—of which a handwritten word is an example—move and scale as units according to the position and scale of the first stroke in the chain. For example, if distance to a nearby ink stroke is below a threshold (for instance, 0.15″), an embodiment refers to this stroke as an additional anchor and flags the current stroke as ‘near ink’.
6. At this point, the system has identified enough embedded anchors and sufficiently classified this stroke so that, when the system is notified that an anchor has changed, the system may transform the ink annotation appropriately.
Transformations Of Various Stroke Classes In Response To Various Anchor Changes
The system uses heuristics to re-layout strokes when an anchor moves. The following describes the one embodiment of these heuristics, but many variations are possible. This description assumes western text (vertical columns, flowing left-to-right). Directions would flip and/or rotate for eastern, and bi-directional flows would flip back and forth from line to line. Examples include the following.
1. As shown in
2. As shown in
3. Ink whose primary anchors are ‘top/bottom margin’ (for example, asterisk 1302) re-position vertically only to keep distance from the line containing its anchor. It may be clipped vertically at the window edge if that margin shrinks. Document re-layout could move a top or bottom margin annotation to the next or previous page, where it would show in the same margin. Editing could cause multiple annotations to occupy the same margin, in which case the user needs to be able to move one without changing its anchoring.
4. A line that connects two points in text may have to be scaled and/or rotated and/or flipped in X and/or Y as the distance between its anchors changes.
5. As shown in
6. A line or segment marking a range of in-line elements should grow or shrink horizontally as the distance between its anchors changes. See
7. A stroke that is in any of the above stroke classifications and also near existing ink is re-positioned with that nearby ink, and scaled with it (unless the new ink is a connecting line, in which case it stretches to maintain associations at its ends). It is the association with nearby ink that allows words, in-line flows and sketches to keep together and thus preserve their graphical meaning.
Data Format, Rendering and Persistence
To make ink annotations useful across multiple systems and applications, a common way is needed to persist ink and related anchor information. The persistence format may carry the classification and anchoring info so that transformations can continue to convey the associations without losing the graphical meaning.
Annotations and ink include as persistence information a source, one or more links, and one or more targets. Ink annotations may also include information pertaining to each source as including one or more ink strokes with creation information (application, user, and time), plus optional style info (e.g. 12 pt., bold, red) and optional meaning info (e.g. sketch(es), word(s), paragraph(s) factoid type(s) and/or document type(s)). For an ink annotation, each link may include references to multiple independent anchors, some of which may be other annotations' sources.
Each ink annotation source may include:
Each ink annotation source may also include:
Each ink annotation link includes:
Each ink annotation link may also include:
Support from Layout Engines
Layout engines are known in the art. One well-known layout engine is that used in Trident, the layout engine for Microsoft Corporations' Internet Explorer browser. Other layout engines are known in the art. The layout engine determines positions of objects and regions. Thus, it may identify which objects are nearest an ink stroke, and which region or regions it falls in, and provide this info for inclusion in the annotation link. Specifically, the location of the nearest in-line object and the distance to that object will determine whether the annotation's flow is in-line, vertical (side margin), or none (top/bottom margin). Further, the layout engine may also give notice when any anchor appears, moves, or changes in appearance, so ink annotations can be transformed correctly.
In the foregoing specification, the present invention has been described with reference to specific exemplary embodiments thereof. Although the invention has been described in terms of various embodiments, those skilled in the art will recognize that various modifications, embodiments or variations of the invention can be practiced within the spirit and scope of the invention as set forth in the appended claims. All are considered within the sphere, spirit, and scope of the invention. The specification and drawings are, therefore, to be regarded in an illustrative rather than restrictive sense. Accordingly, it is not intended that the invention be limited except as may be necessary in view of the appended claims.
This application is related to U.S. Ser. No. 60/212,825, filed Jun. 21, 2000, entitled Methods for Classifying, Anchoring, and Transforming Ink Annotations” and U.S. Ser. No. 09/455,806, filed Dec. 7, 1999, entitled “Method and Apparatus For Capturing And Rendering Annotations For Non-Modifiable Electronic Content.”
Number | Name | Date | Kind |
---|---|---|---|
5146552 | Cassorla et al. | Sep 1992 | A |
5239466 | Morgan et al. | Aug 1993 | A |
5434965 | Matheny et al. | Jul 1995 | A |
5473742 | Polyakov et al. | Dec 1995 | A |
5572643 | Judson | Nov 1996 | A |
5613019 | Altman et al. | Mar 1997 | A |
5625833 | Levine et al. | Apr 1997 | A |
5632022 | Warren et al. | May 1997 | A |
5680636 | Levine et al. | Oct 1997 | A |
5682439 | Beernink et al. | Oct 1997 | A |
5687331 | Volk et al. | Nov 1997 | A |
5717879 | Moran et al. | Feb 1998 | A |
5727129 | Barrett et al. | Mar 1998 | A |
5729687 | Rothrock et al. | Mar 1998 | A |
5737599 | Rowe et al. | Apr 1998 | A |
5745116 | Pisutha-Arnold | Apr 1998 | A |
5760773 | Berman et al. | Jun 1998 | A |
5778404 | Capps et al. | Jul 1998 | A |
5790818 | Martin | Aug 1998 | A |
5801687 | Peterson et al. | Sep 1998 | A |
5821925 | Carey et al. | Oct 1998 | A |
5832263 | Hansen et al. | Nov 1998 | A |
5838914 | Carleton et al. | Nov 1998 | A |
5845262 | Nozue et al. | Dec 1998 | A |
5877757 | Baldwin et al. | Mar 1999 | A |
5889523 | Wilcox et al. | Mar 1999 | A |
5893126 | Drews et al. | Apr 1999 | A |
5893132 | Huffman et al. | Apr 1999 | A |
5918236 | Wical | Jun 1999 | A |
5920694 | Carleton et al. | Jul 1999 | A |
5931912 | Wu et al. | Aug 1999 | A |
5933140 | Strahorn et al. | Aug 1999 | A |
5937416 | Menzel | Aug 1999 | A |
5948040 | DeLorme et al. | Sep 1999 | A |
5950214 | Rivette et al. | Sep 1999 | A |
5978818 | Lin | Nov 1999 | A |
5983248 | De Rose et al. | Nov 1999 | A |
5986665 | Wrey et al. | Nov 1999 | A |
6011537 | Slotznick | Jan 2000 | A |
6012055 | Campbell et al. | Jan 2000 | A |
6018334 | Eckerberg et al. | Jan 2000 | A |
6018342 | Bristor | Jan 2000 | A |
6018742 | Herbert, III | Jan 2000 | A |
6035330 | Astiz et al. | Mar 2000 | A |
6049812 | Bertram et al. | Apr 2000 | A |
6052514 | Gill et al. | Apr 2000 | A |
6054990 | Tran | Apr 2000 | A |
6081829 | Sidana | Jun 2000 | A |
6088481 | Okamoto et al. | Jul 2000 | A |
6091930 | Mortimer et al. | Jul 2000 | A |
6094197 | Buxton et al. | Jul 2000 | A |
6101280 | Reynolds | Aug 2000 | A |
6118437 | Fleck et al. | Sep 2000 | A |
6122649 | Kanerva et al. | Sep 2000 | A |
6128007 | Seybold | Oct 2000 | A |
6157381 | Bates et al. | Dec 2000 | A |
6181344 | Tarpenning et al. | Jan 2001 | B1 |
6195679 | Bauersfeld et al. | Feb 2001 | B1 |
6195694 | Chen et al. | Feb 2001 | B1 |
6199082 | Ferrel et al. | Mar 2001 | B1 |
6205455 | Umen et al. | Mar 2001 | B1 |
6230171 | Pacifici et al. | May 2001 | B1 |
6239792 | Yanagisawa et al. | May 2001 | B1 |
6262719 | Bi et al. | Jul 2001 | B1 |
6271840 | Finseth et al. | Aug 2001 | B1 |
6279005 | Zellweger | Aug 2001 | B1 |
6279014 | Schilit et al. | Aug 2001 | B1 |
6289362 | Van Der Meer | Sep 2001 | B1 |
6301590 | Siow et al. | Oct 2001 | B1 |
6321244 | Liu et al. | Nov 2001 | B1 |
6331867 | Eberhard et al. | Dec 2001 | B1 |
6335727 | Morishita et al. | Jan 2002 | B1 |
6340967 | Maxted | Jan 2002 | B1 |
6356287 | Ruberry et al. | Mar 2002 | B1 |
6369811 | Graham et al. | Apr 2002 | B1 |
6389434 | Rivette et al. | May 2002 | B1 |
6393422 | Wone | May 2002 | B1 |
6405221 | Levine et al. | Jun 2002 | B1 |
6421065 | Walden et al. | Jul 2002 | B1 |
6446110 | Lection et al. | Sep 2002 | B1 |
6460058 | Koppolu et al. | Oct 2002 | B2 |
6486895 | Robertson et al. | Nov 2002 | B1 |
6490603 | Keenan et al. | Dec 2002 | B1 |
6535294 | Arledge, Jr. et al. | Mar 2003 | B1 |
6539370 | Chang et al. | Mar 2003 | B1 |
6549220 | Hsu et al. | Apr 2003 | B1 |
6560621 | Barile | May 2003 | B2 |
6571295 | Sidana | May 2003 | B1 |
20020097261 | Gottfurcht et al. | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
0 902 379 | Mar 1999 | EP |
001016983 | May 2000 | EP |
WO9620908 | Jul 1996 | WO |
WO9722109 | Jun 1997 | WO |
WO9806054 | Feb 1998 | WO |
WO8701481 | Mar 1998 | WO |
WO9809446 | Mar 1998 | WO |
WO9949383 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020049787 A1 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
60212825 | Jun 2000 | US |