This application claims priority to the filing date of German Patent Application No. 10 2006 026 719.2 filed Jun. 8, 2006 the disclosure of which is incorporated herein by reference.
The invention relates to a claw pole stator for a stepping motor having a first and a second claw pole plate, each of which has a yoke and pole claws, the first and the second claw pole plate having the same number of pole claws and pole gaps and being disposed coaxially with respect to one another such that the pole claws of the first claw pole plate engage in the pole gaps of the second claw pole plate. A toroid coil is inserted between the first and the second claw pole plate. A claw pole stator of this type is known from EP 1 513 242 A1.
In the prior art, various types of claw pole stepping motors are known. In a common design, this type of motor comprises an inner rotor and a first stator coil as well as a second stator coil that are usually arranged such that they enclose the outside circumference of the rotor. Claw pole stepping motors having this construction are known, for example, from EP 1 263 115 A2 or US 2002/0005670 A1. In this construction, the outside diameter of the permanent magnet is restricted by the inside diameter of the stator, so that particularly in the case of compact motors, the required torque or forces, such as are needed for an actuating drive, cannot be achieved.
EP 1 513 242 A1 thus proposes a motor structure in which the stator coils are arranged such that the rotor magnet lies between the coils in an axial direction. This motor has smaller radial dimensions than the motor described above. The two stators comprising the stator coils enclose the rotor from opposing end faces, the pole claws of the two stators that are disposed on the opposing end faces of the rotor extending in an axial direction along the circumference of the rotor and encompassing it like a cup.
The pole claws or pole bridges shown in EP 1 513 242 A1 are rectangular, whereas the pole claws of EP 1 263 115 A2 are trapezoidal. Tests undertaken by the inventor have found that neither of these pole claw shapes is ideal with respect to the magnetic properties of the stepping motor.
It is an object of the invention to provide a claw pole stator for a stepping motor that is optimized with respect to its magnetic properties. A particular object is to achieve relatively low saturation of the magnetic stator plate material and to provide for an improved build up of forces in the motor.
According to the invention, in a claw pole stator of the type mentioned at the outset, the pole claws of the first claw pole plate is divided into a plurality of sections. A first section or base section that is connected to the yoke is substantially trapezoidal in shape and tapered, narrowing with increasing distance from the yoke. A second section, or middle section, adjoins the base section and is substantially rectangular in shape. This second section may also be slightly trapezoidal in shape, the side edges of the second section being less inclined than the side edges of the first section. Thus in the context of this invention, the “substantially rectangular” shape of the second section of the pole claws comprises both a fully rectangular section as well as a section having slightly inclined side edges which tapers in the same direction as the first section but whose inclination is not as steep as that of the first, trapezoidal section. In the particularly preferred embodiment of the invention, a third section, or end section, of the pole claws adjoins the second section, this end section tapering off into a substantially triangular or curved shape. Here, the inclination of the side edges is steeper than in the first section. The free end may be pointed or slightly rounded.
According to the invention, the shape of the pole claws is optimized so as to achieve the best possible magnetic properties for the claw pole stepping motor. The first region comprises the base of the claw poles, by means of which the claw poles are connected to the yoke of the claw pole plate. This region can prevent saturation of the ferromagnetic claw pole material. In practice, a trapezoidal shape has proved suitable for this purpose, the wide base of which is connected to the yoke and which then tapers, narrowing with increasing distance from the yoke. The second section of the claw poles is located approximately at its center and has mainly parallel or slightly trapezoidal side edges. This section is narrower than the first section and represents an ideal compromise between the need for the greatest possible distance to the adjacent pole claw of the second claw pole plate, necessary in order to prevent large leakage flux, and the need to have the widest possible pole so as to prevent saturation of the magnetic material. The end of the pole claw is tapered and/or rounded and is preferably formed by a third section that is substantially triangular in shape. The point of the triangle may, but need not be rounded. The shape is made triangular in order to reduce cogging torque such as is produced in fully rectangular or slightly trapezoidal pole claws, as known in the prior art.
In an alternative embodiment of the invention, the pole claws of the first claw pole plate is divided into only two sections, namely a base section that is connected to the yoke and an end section that adjoins the base section. As in the first embodiment, the base section is substantially trapezoidal in shape and tapered, narrowing with increasing distance from the yoke. The end section is triangular or curved, it being understood that the term curved includes both parabolic or approximately parabolic shapes as well as trapezoidal or approximately trapezoidal shapes having a rounded end. The side edges of this end section have a different inclination than the side edges of the base section. On the one hand, the exact geometry of the base section and of the end section is dependent on the geometry of the pole claws of the second claw pole plate, and, on the other hand, on the magnetic properties that are to be achieved, particularly the low magnetic saturation of the pole claws and the systematic influencing of clogging torque. The shape of the end section corresponds substantially to the shape of the pole claws of the second claw pole plate.
In the preferred embodiment of the invention, the pole claws of the first and of the second claw pole plate are oriented in the same direction with regard to their respective yoke and are displaced with respect to each other in their phase by an electrical angle of 180°. In this arrangement, the first claw pole plate has longer pole claws, having the sections as described above, and the second claw pole plate has shorter pole claws. The pole claws of the second claw pole plate are preferably substantially triangular in shape.
In this embodiment, the first and the second claw pole plate are disposed with respect to one another such that the second section, or middle section, of the pole claws of the first claw pole plate lies at approximately the same height in an axial direction as the yoke of the second claw pole plate. Here, the second section of the pole claws of the first claw pole plate has approximately the same width in a circumferential direction as the pole claws of the second claw pole plate. This means that at the height of the yoke of the second claw pole plate “equivalent” pole claws are formed, i.e. pole claws that have the same properties with respect to the saturation of the magnetic material. The region in which the second claw pole plate is bent is located approximately at the height of the second section of the first claw pole plate. The short pole claws of the second claw pole plate correspond to the third section of the first claw pole plate in their given shape.
Whereas in the case of the first claw pole plate, the pole claws are widened at the height of the yoke such that they are wider than the corresponding pole gaps, in the case of the second claw pole plate, the pole gaps are wider in a circumferential direction than the corresponding pole claws. Here, the widening of the pole claws of the first claw pole plate is used to generate the lowest possible magnetic resistance, whereas the pole gaps of the second claw pole plate have to be wide enough to accommodate the pole claws of the first claw pole plate.
The invention also provides a claw pole stepping motor having a first and a second claw pole stator having the construction as described above, the two claw pole stators being coaxially aligned with respect to one another and their pole claws facing each other. A rotor is inserted between the pole claws of the first and of the second claw pole stator.
The invention is described in more detail below with reference to the drawings. The figures show:
The first and the second claw pole plate 10, 12 are preferably punched out of a soft magnetic material, such as a galvanized steel plate, a silicon steel plate or from electromagnetic soft steel, the pole claws 16, 20 subsequently being bent at an angle of 90°. The claw pole plates are also referred to simply as pole plates in the prior art. The claw pole plates 10, 12 are magnetically connected to each other via the hub 22, the pole claws 16, 20 enclosing the rotor and being offset with respect to one another by an electrical angle of 180°. The hub 22 is likewise made of soft magnetic material and has a central aperture 28 for receiving the shaft (not illustrated in the figures).
As illustrated in
The stator arrangement according to the invention makes it possible to achieve the following effects and advantages. The first section or base section 30 of the long pole claws 16 is made as wide as possible in its bending region, where it is connected to the yoke 14, so as to generate the lowest possible magnetic resistance and to prevent saturation of the ferromagnetic claw pole material. This region is trapezoidal in shape because it is necessary to taper the pole claw at an increasing distance from the yoke 14 in respect of the pole gaps 26 of the second claw pole plate 12. The second section or middle section 32 of the long pole claws 16 can be largely parallel. The choice of width is a compromise between the need for the greatest possible distance to the adjacent pole claws 20 of the second claw pole plate 12, which is necessary to prevent leakage flux, and the need for the widest possible pole so as to prevent saturation of the magnetic material. The third section or end section 34 should be pointed as sharply as possible so as to reduce clogging torque which would otherwise be generated using a rectangular pole claw (dotted line in
Substantially the same effects can be achieved with the embodiment of the pole claw 16 illustrated in
The claw pole plates 10, 12, 10′, 12′ and the toroid coils 36, 36′ are connected to each other via hubs 22, 22′ and joined to form a stator unit. Furthermore, the spindle guide 42 is provided on at least one axial end of the claw pole stator, the spindle guide being connected to the hub 22′ and the claw pole plate 10′ for the purpose of guiding a shaft or spindle through the two stator arrangements and the rotor. In the embodiment of
The coils 36, 36′ may have, for example, a spool carrier made of plastics on which a wire is wound that is led out via connector pins. The rotor 40 may have, as known in the prior art, a ring magnet, a plurality of individual magnets that are mounted on a rotor body or a rotor core having embedded magnets or any other suitable construction. The construction of the coils 36, 36′ and of the rotor 40 are not a subject matter of this invention.
All the components of the stepping motor shown in
Identification Reference List:
Number | Date | Country | Kind |
---|---|---|---|
DE 102006026719.2 | Jun 2006 | DE | national |