Pursuant to 35 U.S.C. §119, this application claims the benefit of the earlier filing date of Provisional Application Ser. No. 61/615,188, filed Mar. 23, 2012, entitled “Cleaner Unit for Removing Waste Toner within an Image Forming Device”.
None.
None.
1. Field of the Disclosure
The present disclosure relates generally to electrophotographic imaging devices such as a printer or multifunction device having printing capability, and in particular, to a cleaner unit assembly used for cleaning a photoconductive drum.
2. Description of the Related Art
Image forming devices such as copiers, laser printers, facsimile machines, and the like, include a photoconductive drum having a rigid cylindrical surface that is coated along a defined length of its outer surface. The surface of the photoconductive drum is charged to a uniform electrical potential and then selectively exposed to light in a pattern corresponding to an original image. Those areas of the photoconductive surface exposed to light are electrically discharged thereby forming a latent electrostatic image on the photoconductive surface. A charged developer material, such as toner, is brought into contact with the photoconductive drum's surface by a developer roller such that the charged toner attaches to the discharged areas of the photoconductive surface. The toner on the photoconductive drum is then transferred onto a recording medium, such as a media sheet or a transfer belt for subsequent transfer to a media sheet.
During transfer of the toner to the recording medium, some of the toner may not be transferred and may remain on the photoconductive drum. If not removed, such residual toner may contaminate the charge roll or inadvertently transfer to a subsequent media sheet resulting in print defects. Accordingly, removal of the residual toner is necessary prior to preparing the photoconductive drum to receive a new image in order to prevent or reduce the likelihood of print defects.
In preparation for a next imaging forming cycle, the photoconductive surface may be optionally discharged and cleaned by a cleaner blade. The cleaner blade may be positioned in proximity to the photoconductive drum such that its edge contacts the photoconductive surface to wipe off residual toner therefrom. However, the cleaner blade pressed against the photoconductive drum may become damaged when operated under low lubrication. Toner acts as a lubricant which prevents friction at the cleaner blade edge from getting too high. If there is no lubrication at the cleaner blade edge, the frictional forces acting on the cleaner blade may cause the cleaner blade to flip.
The cleaner blade may extend well across the entire length of the photoconductive drum including an imaging region at a central portion and the non-imaging regions at end portions thereof. Since the non-imaging end regions of the photoconductive drum typically receive little or no toner, the end sections of the cleaner blade are more prone to low lubrication. In addition, the end sections of the cleaner blade lack stiffness relative to central portions thereof and end seals that prevent leaks at the ends of the cleaner blade press against the back side of the cleaner blade which increases the frictional force at the cleaner blade ends. As a result, cleaner blade flip typically starts at the cleaner blade ends and progresses across the full length of the cleaner blade.
Some approaches to solving cleaner blade flip problems include minimizing the length of the blade, applying lubricants to the cleaning blade itself or the photoconductive drum surface, modifying blade end sealing designs, and reducing forces applied at the ends of the cleaner blade by modifying blade support bracket designs. These methods, however, may have drawbacks in terms of cost and reliability. For example, minimizing blade width requires tight tolerances of the cleaner unit assembly which may still result in at least some level of blade end lubrication problems. Meanwhile, lubricants are typically not reliable as they are removed over the course of operation and can be subject to assembly variation when applied by human operators. End sealing design modifications, on the other hand, can act to reduce blade end forces but come at the cost of a compromise to sealing performance. Furthermore, modifying cleaner blade bracket designs to vary a load gradient across the cleaner blade adds cost and complexity to the cleaner unit assembly.
Based upon the foregoing, there is a need for a simple and a low cost solution for preventing cleaner blade failures.
Embodiments of the present disclosure provide a cleaning device that mitigates cleaner blade failures by reducing or substantially eliminating friction at the ends of the cleaner blade. In an example embodiment, a device for cleaning a photoconductive member in an image forming device includes a blade extending across the photoconductive member and having an edge that contacts a surface of the photoconductive member to remove toner therefrom. The device also includes an elongated seal disposed adjacent the blade and extending across a length of the blade such that an opening for receiving removed toner is formed between the elongated seal and the blade. The elongated seal includes at least one tab projecting at each longitudinal end thereof that extends between the blade and the photoconductive member so as to prevent a longitudinal end section of the edge of the blade from contacting the surface of the photoconductive member. In this way, the end sections of the blade's edge are not subject to heightened frictional forces such that occurrences of blade flips are reduced or substantially eliminated.
In another example embodiment, an imaging unit includes a photoconductive member having respective end portions and a cleaner blade extending across the photoconductive member and contacting a surface of the photoconductive member to remove toner therefrom. A lower seal is disposed adjacent the cleaner blade and extends across the length of the cleaner blade such that an opening for capturing removed toner is formed between the cleaner blade and the lower seal. The lower seal includes first and second tabs projecting at opposite ends thereof and extending between the cleaner blade and the photoconductive member such that longitudinal end sections of the cleaner blade are prevented by the first and second tabs from contacting the surface of the photoconductive member at the respective end portions thereof.
In another example embodiment, an imaging unit includes a photoconductive member having respective end portions. A cleaner blade extends across the photoconductive member and has an edge that contacts a surface of the photoconductive member to remove toner therefrom. A lower seal is disposed adjacent the cleaner blade and extends across the length of the cleaner blade such that an opening for capturing removed toner is formed between the cleaner blade and the lower seal. At least two tabs are disposed between the cleaner blade and the photoconductive drum at opposed ends of the cleaner blade. The at least two tabs prevent longitudinal end sections of the edge of the cleaner blade from contacting the surface of the photoconductive member at the respective end portions thereof.
The above-mentioned and other features and advantages of the disclosed embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of the disclosed embodiments in conjunction with the accompanying drawings, wherein:
It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
Terms such as “first”, “second”, and the like, are used to describe various elements, regions, sections, etc. and are not intended to be limiting. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Furthermore, and as described in subsequent paragraphs, the specific configurations illustrated in the drawings are intended to exemplify embodiments of the disclosure and that other alternative configurations are possible.
Reference will now be made in detail to the example embodiments, as illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
In
In the embodiment shown in
Controller 28 includes a processor unit and associated memory 29, and may be implemented as one or more Application Specific Integrated Circuits (ASICs). Memory 29 may be any volatile and/or non-volatile memory such as, for example, random access memory (RAM), read only memory (ROM), flash memory and/or non-volatile RAM (NVRAM). Alternatively, memory 29 may be in the form of a separate electronic memory (e.g., RAM, ROM, and/or NVRAM), a hard drive, a CD or DVD drive, or any memory device convenient for use with controller 28. Controller 28 may be, for example, a combined printer and scanner controller.
In the present embodiment, controller 28 communicates with print engine 30 via a communications link 50. Controller 28 communicates with imaging unit 32 and processing circuitry 44 thereon via a communications link 51. Controller 28 communicates with toner cartridge 35 and processing circuitry 45 therein via a communications link 52. Controller 28 communicates with media feed system 38 via a communications link 53. Controller 28 communicates with scanner system 40 via a communications link 54. User interface 36 is communicatively coupled to controller 28 via a communications link 55. Processing circuit 44, 45 may provide authentication functions, safety and operational interlocks, operating parameters and usage information related to imaging unit 32 and toner cartridge 35, respectively. Controller 28 serves to process print data and to operate print engine 30 during printing, as well as to operate scanner system 40 and process data obtained via scanner system 40.
Computer 24, which may be optional, may be, for example, a personal computer, electronic tablet, smartphone or other hand-held electronic device, including memory 60, such as volatile and/or non-volatile memory, an input device 62, such as a keyboard or keypad, and a display monitor 64. Computer 24 further includes a processor, input/output (I/O) interfaces, and may include at least one mass data storage device, such as a hard drive, a CD-ROM and/or a DVD unit (not shown).
Computer 24 includes in its memory a software program including program instructions that function as an imaging driver 66, e.g., printer/scanner driver software, for imaging apparatus 22. Imaging driver 66 is in communication with controller 28 of imaging apparatus 22 via communications link 26. Imaging driver 66 facilitates communication between imaging apparatus 22 and computer 24. One aspect of imaging driver 66 may be, for example, to provide formatted print data to imaging apparatus 22, and more particularly, to print engine 30, to print an image. Another aspect of imaging driver 66 may be, for example, to facilitate collection of scanned data.
In some circumstances, it may be desirable to operate imaging apparatus 22 in a standalone mode. In the standalone mode, imaging apparatus 22 is capable of functioning without computer 24. Accordingly, all or a portion of imaging driver 66, or a similar driver, may be located in controller 28 of imaging apparatus 22 so as to accommodate printing and scanning functionality when operating in the standalone mode.
Print engine 30 may include laser scan unit (LSU) 31, imaging unit 32, and a fuser 37, all mounted within imaging apparatus 22. The imaging unit 32 further includes a cleaner unit 33 housing a waste toner removal system and a photoconductive drum and developer unit 34 which is removably mounted within print engine 30 of imaging apparatus 32. In one embodiment, the cleaner unit 33 and developer unit 34 are assembled together and installed onto a frame of the imaging unit 32. The toner cartridge 35 is then installed on or in proximity with the frame in a mating relation with the developer unit 34. Laser scan unit 31 creates a latent image on the photoconductive drum in the cleaner unit 33. The developer unit 34 has a toner sump containing toner which is transferred to the latent image on the photoconductive drum to create a toned image. The toned image is subsequently transferred to a media sheet received in the imaging unit 32 from media input tray 39 for printing. Toner remnants are removed from the photoconductive drum by the waste toner removal system. The toner image is bonded to the media sheet in the fuser 37 and then sent to an output location or to one or more finishing options such as a duplexer, a stapler or hole punch.
Referring now to
As mentioned, the toner cartridge 35 removably mates with the developer unit 34 of imaging unit 32. An exit port (not shown) on the toner cartridge 35 communicates with an inlet port 205 on the developer unit 34 allowing toner to be periodically transferred from the toner cartridge 35 to resupply the toner sump in the developer unit 34.
Cleaner unit 33 of imaging unit 32 may include a cleaning assembly 320 for removing residual toner that remains on the photoconductive drum 305 after the transfer of the toner image to the media sheet or transfer belt. Cleaning assembly 320 may be positioned to contact the surface of the photoconductive drum 305 to remove residual toner therefrom.
Referring to
As described above, respective longitudinal end sections 401 of the cleaning edge 400D are more susceptible to blade flips because of lack of lubrication and increased friction due to additional forces introduced by the ends seals 404 that may cause the end sections 401 of the cleaning edge 400D to catch onto the rotating photoconductive drum 305 and follow same, thereby flipping the blade end sections 401. Once a blade flip starts at the end sections 401 of the cleaning edge 400D, the blade flip may then progress across the full length of the cleaner blade 400 until the cleaner blade 400 is fully flipped.
According to example embodiments of the present disclosure, blade flips may be mitigated by at least partially eliminating friction between the cleaner blade 400 and the photoconductive drum 305 at their respective ends. According to the example embodiment shown in
As the photoconductive drum 305 rotates, the inside edges 512 of the tabs 500 may create relatively deep scratches or form wear rings on the surface coating of the photoconductive drum 305 that may extend around its entire circumference. If the charge roller 301 contacts the wear rings, a short circuit may occur. To prevent a short circuit from occurring, the inside edges 512 of the tabs 500 may be positioned outside the surface of the photoconductive drum 305 that contacts and is charged by the charge roller 301. As shown in
In another example embodiment, the tabs 500 may be separate strips or tabs that are coupled and/or attached to the ends of the lower seal 402 and/or end seals 404. In other example embodiments, tabs 500 may be integrally formed as a unitary piece with the end seals 404. As shown for example in
In another example embodiment, tabs 500 may have a different form or shape. For example,
The example embodiment of
In another example embodiment, tabs 500 may have a different form or shape. For example,
In other alternative embodiments, tab 500A may include features that may direct toner to the photoconductive drum 305, such as toner particles that pass directly underneath the bottom surface of the tab 500A facing and abutting against the surface of the photoconductive drum 305, towards a cleaning region where they may be redirected by the angled inside edge section 512B towards the cleaning edge 400D for removal from the surface of the photoconductive drum 305, as shown in
In
In another alternative embodiment, tab 500A may include one or more cutout sections or slots extending through tab 500A that may create passageways for escaped toner to move back into the cleaning region. In
Though
Alternatively, each tab 500A may include slits 560 extending through the tab 500A, as shown in
It is contemplated that the tabs 500 and 500A may be of other various geometrical shapes or profiles and may be of different lengths and/or dimensions or angular orientations as would occur to those skilled in the art. For example,
It is understood that the cleaner assembly as described above can be utilized to remove residual waste toner from a photoconductive drum of an imaging device irrespective of the particular architecture selected for the toner cartridge, developer unit and photoconductive unit. For example, the cleaner assembly may be used in a removable imaging unit, such as imaging unit 32, as well as a removable toner cartridge unit that includes a charge roll and photoconductive drum.
The description of the details of the example embodiments have been described using the cleaning unit assembly for the photoconductive drum. However, it will be appreciated that the teachings and concepts provided herein are applicable to other residual and/or waste toner removal systems as well.
The foregoing description of several methods and example embodiments has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5404216 | Numagami et al. | Apr 1995 | A |
5455665 | Baba et al. | Oct 1995 | A |
6553195 | Korfhage et al. | Apr 2003 | B2 |
6744999 | Bloemen et al. | Jun 2004 | B2 |
20030059227 | Korfhage et al. | Mar 2003 | A1 |
20090269106 | Fujii | Oct 2009 | A1 |
20100028045 | Kawakami et al. | Feb 2010 | A1 |
Entry |
---|
Machine translation of JP 2009-162849, publication date: Jul. 23, 2009. |
International Search Report for counterpart PCT application PCT/US2013/033521, Jun. 13, 2013. |
Number | Date | Country | |
---|---|---|---|
20130287429 A1 | Oct 2013 | US |