Electrographic printing or copying apparatuses are known; see for example WO 98/39691 A2 (U.S. Pat. No. 6,246,856 B1). In such a printing or copying apparatus, charge images of the images to be printed are generated by a character generator on a photoconductor element (for example a photoconductor belt or a photoconductor drum) charged to a charge potential by a charging unit via discharging to a discharge potential. The photoconductor element is subsequently moved past developer stations, respectively per color given color printing. These developer stations transport developer (comprised of toner and carrier, for example) to the photoconductor element. Toner transfers to the photoconductor element and inks this corresponding to the charge images on the photoconductor element. In color printing the toner images collected into a color image on a transfer belt are ultimately transfer-printed onto a printing substrate web and are fixed thereon. The precise workflow of the printing method can be learned from WO 98/39691 A2, the content of which is herewith incorporated into this disclosure.
The cleaning unit 4 can, for example, have cleaning brushes 9 to remove the residual toner image from the surface of the photoconductor belt 3. The hairs of the cleaning brushes 9 lie at an electrical potential whose polarity is chosen so that the charged toner particles deposit on the brush hairs. The toner particles are thereby pushed from the surface of the photoconductor belt 3 by the mechanical brushing process in order to subsequently be able to electrostatically accumulate on the brush hairs. From a roller arrangement with a cleaning roller 10 that sweeps across the brush hairs of the cleaning brush 9 that have accumulated toner particles, the toner particles are again transferred via electrical fields from the brush hairs of the cleaning brush 9 to the cleaning roller 10 and are mechanically cleaned therefrom.
A method to operate an electrophotographic copying apparatus in which a cleaning of the photoconductor is conducted after the end of the copying operation is known from DT 25 57 622 A1. The photoconductor is thereby initially recharged in a pre-cleaning station. The photoconductor is then cleaned in a cleaning station with the aid of a triboelectrically charged brush.
DE 690 14 411 T2 describes an image generation apparatus that operates according to the electrophotographic principle. The apparatus has a cleaning device that recharges the residual toner on the photoconductor drum and subsequently cleans this by means of a brush.
The toner particles are slid across the photoconductor belt 3 by the mechanical detaching of the toner particles on the photoconductor belt 3 by the brush hairs of the cleaning brush 9, which has the result that the finest toner components accumulate on the surface of the photoconductor belt 3. This contamination grows over the course of the printing operation into a film on the surface of the photoconductor belt 3. The film interferes with the exposure of the surface of the photoconductor belt 3 and leads to disruption relevant to the print image.
To prevent the formation of the film on the surface of the photoconductor belt 3, a cleaning arrangement RA (for example with a gummy cleaning blade) is arranged on the surface of the photoconductor belt 3 in order to prevent the build-up of this film. Deposits of the smallest particles are removed from the photoconductor belt 3 by the cleaning arrangement RA before a growth of the film can be created.
The composition of the film is comprised of the smallest toner particles (for example silica) with a size of a few nanometers. These small particles are held on the surface of the photoconductor belt 3 with very strong adhesion forces. The electrical and mechanical forces of the brush hairs of the cleaning brush 9 are not sufficient to detach these particles from the surface of the photoconductor belt 3. This means that the cleaning arrangement RA must be pressed onto the surface of the photoconductor belt 3 with a correspondingly large force in order to capture and move the particles.
Since these particles (for example silica) are also very abrasive, the photoconductor belt 3 is slowly but continuously eroded during the cleaning. This has the result that the transport layer of the photoconductor 3 becomes increasingly thinner. Furthermore, the uniformity of the wear across the width of the photoconductor belt 3 becomes ever poorer with the increase of the wear. Two problems thereby occur that negatively affect the print quality:
It is an object to specify a cleaning arrangement in which the wear of a moving element to be cleaned in an electrographic printing apparatus is minimal. In particular, it is an object to keep the wear of the surface and the non-uniformity of the wear across the surface of a photoconductor belt as low as possible in the cleaning.
In a cleaning arrangement for a moving element to be cleaned in an electrographic printing apparatus, a cleaning element is provided that has a cleaning member for cleaning which rests on a surface of the moving element to be cleaned. A drive unit for the cleaning element is provided that actuates the cleaning element such that the cleaning member cleans the surface of the moving element to be cleaned region-by-region.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the preferred embodiments/best mode illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and such alterations and further modifications in the illustrated devices and such further applications of the principles of the invention as illustrated as would normally occur to one skilled in the art to which the invention relates are included.
The cleaning arrangement thus has a cleaning element and an actuator element. The cleaning element provides a cleaning member that rests on the surface of the element to be cleaned and cleans the toner components from the surface of the element to be cleaned.
In order to keep the wear low, a drive unit actuates the cleaning element such that the cleaning element does not always rest on the surface regions of the element to be cleaned.
Via the preferred embodiment, the time in which wear is caused, in which the cleaning members rest on the element to be cleaned, is reduced. The wear is thereby no longer as great per time unit.
In the following, the preferred embodiment in connection with a photoconductor belt is described as an element to be cleaned, without the invention being limited to this. Namely, the element to be cleaned could also be a photoconductor drum or a transfer belt.
In a first embodiment of the invention, the posed problem can be solved in that the cleaning element has a cleaning member that extends across an entire width of the photoconductor belt when the cleaning element is operated such that said cleaning member rests on the photoconductor belt only in time intervals. In this mode of operation, the cleaning means is pivoted onto the photoconductor belt for cleaning and is pivoted away from the photoconductor belt again after a predetermined time interval. This process is continuously repeated, wherein the time during which the cleaning means rests on the photoconductor belt is adjusted such that the photoconductor belt is sufficiently cleaned; however, the wear of the photoconductor belt is thereby kept to a minimum. For example, the time interval can comprise at least one complete revolution of the photoconductor belt.
In a second embodiment of the invention, the cleaning arrangement has the function units listed in the following:
It is advantageous when the cleaning element of the second embodiment is arranged such that it can be displaced in a guide aligned transverse to the movement direction of the photoconductor belt so that it can be moved back and forth in the guide transverse to the photoconductor belt.
In the second embodiment, a drive spindle driven by a drive motor can be provided as a drive unit with which the cleaning element is coupled such that the cleaning element is moved in the guide upon rotation of the drive spindle. If the drive motor is executed such that it can change its rotation direction, the cleaning element (and therefore the cleaning member) can be moved in both directions transversely across the photoconductor belt. The cleaning member of the cleaning element thereby continuously rests on the photoconductor belt and cleans a partial region of the surface of the photoconductor belt.
The guide can be designed as a guide rail and guide groove, wherein the guide rail in the cleaning arrangement is arranged transverse to the photoconductor belt and interacts with the guide groove arranged in the cleaning element. If the cleaning element has a sled with the guide groove with which it is directed on the guide rail, wherein the sled is coupled with the drive spindle, the sled (and therefore the cleaning member) can be moved back and forth on the guide rail transverse to the photoconductor belt, for example via rotation of the drive spindle in the one or the other direction.
A sufficient cleaning of the photoconductor belt is then achieved when, in the second embodiment, the width of the cleaning member is chosen in a range from ½ to 1/10 of the width of the photoconductor belt.
The cleaning member can be realized as a cleaning blade that is aligned in the direction of the movement of the photoconductor belt.
If the cleaning element provides a cleaning blade as a cleaning member, the cleaning arrangement according to the preferred embodiment can have the following function units:
Since the cleaning blade in the second embodiment is narrower than the photoconductor belt and is moved back and forth on the photoconductor belt, the time during which wear is produced (in which the cleaning blade rests on the photoconductor belt) is reduced. The erosion of the transport layer of the photoconductor belt is thereby less per time unit, and the photoconductor belt can therefore be used longer.
An additional advantage according to the second embodiment is that no load angle changes occur in the drive motor for the photoconductor belt because the force of friction of the cleaning blade that counteracts the movement of the photoconductor belt remains constant since the cleaning blade does not need to be pivoted away from the photoconductor belt during the printing process. Thus no print image disruptions occur in finely rastered surfaces.
An additional advantage of the preferred embodiment, and in fact in both embodiments, is that the lifespan of the photoconductor belt is increased. The photoconductor belt is an expensive consumable material that must be swapped out depending on the wear. In electrographic printing apparatuses that operate in a high speed environment, the lifespan of the photoconductor belt is a decisive cost factor that is of great importance for the profitability of a printing system.
The print quality over the run time of the photoconductor belt is additionally maintained longer because the layer thickness difference over the width of the photoconductor belt can be kept down over a longer time period since the absolute average wear per time period is less significant.
The units essential for the explanation of the preferred embodiment are shown in the drawing Figures; parts that are non-essential for the function of the preferred embodiment, such as covering of the cleaning arrangement or housing parts, are omitted.
In the following explanation, the cleaning arrangement RA has a cleaning element RE that provides a cleaning blade (for example) for the cleaning of the element to be cleaned (in the following a photoconductor belt 3).
A drive unit AM1 (for example a cam device NE with a cam 16 driven by a cam motor M and an arm 17) can be used to pivot onto and away from the cleaning blade 11, of which drive unit AM1 only the arm 17 and the cam 16 are shown in
Corresponding to
For this mode of operation, the cam device NE can be used when the cam motor M driving the cam 16 is controlled corresponding to the predetermined time intervals.
A second embodiment of the invention (which is called cleaning device RA2 in the following and is subsequently described) arises from
To clean the photoconductor belt 3, the cleaning arrangement RA2 thus has the cleaning element RE2 with a cleaning blade 18 that is borne corresponding to
The drive unit AM2 has a drive motor 24, a drive spindle 23 driven by the drive motor 24 and a guide rail 25 to guide the sled 19. The drive spindle 23 is coupled with the sled 19 such that the cleaning element RE2 can be moved on the guide rail 25 via rotation of the drive spindle 23. For this the sled 19 of the cleaning element RE2 has the guide groove 22 in which the guide rail 25 is arranged.
The sled 19 of the cleaning element RE2 is thus coupled with the drive 23 such that the sled 19 (and therefore the cleaning blade 18) can be moved transversely across the photoconductor belt 3 in one or the other direction via rotation of the drive spindle 23 in one or the other direction. Via this embodiment of the cleaning arrangement RA2 it is possible to move the cleaning blade 18 back and forth, wherein the cleaning blade 18 is set so as to continuously rest on the photoconductor belt 3 for cleaning due to the elastic force of the torsion spring 28 (see
A section through the cleaning element RE2 at the point B-B of
In the second embodiment of the cleaning arrangement RA2, the movement of the cleaning element RE2 occurs via a drive spindle 23. The preferred embodiment is not limited to this; rather, any drive unit AM2 can be used that can move the cleaning element RE2 back and forth.
In the cleaning arrangement RA2, a cam device with which the cleaning element RE2 can be pivoted off of the photoconductor belt 3 (for example in printing pauses) or can be pivoted onto the photoconductor belt 3 again after the print pauses can likewise be provided corresponding to
While preferred embodiments have been illustrated and described in detail in the drawings and foregoing description, the same are to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention both now or in the future are desired to be protected.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 061 638.9 | Dec 2008 | DE | national |