An image forming apparatus refers to an apparatus which prints printing data generated at a terminal apparatus like a computer on a printing medium such as paper. As examples of such an image forming apparatus, there may be copiers, printers, facsimiles, scanners, or multi-function printers (MFPs) which multiply implement functions of the aforementioned apparatuses through one apparatus, etc.
Hereinafter, various examples will be described with reference to the drawings. The examples described below may be implemented while being modified into several different forms.
A description that one element is “connected to” another element may be interpreted to include both the case where one element is ‘directly connected to’ another element, and the case where one element is ‘connected to another element through still another element.’ Also, a description that one element “includes” another element can be interpreted to mean that other elements may additionally be included, but not that other elements are excluded, unless there is a specific description to the contrary. Each example may be implemented or operated independently, but each example may also be implemented or operated in combination.
The term “image forming job” may refer to any of various kinds of jobs (e.g., copying, printing, scanning, or faxing) related to an image such as formation of an image, generation/storing/transmission of an image file, etc. Also, the term “job” may refer not only to an image forming job, but also include any of a series of processes necessary for performing an image forming job.
The term “printing data” may refer to data converted to a printable format at a printer. If a printer supports direct printing, a file itself may become printing data.
The term “image printing apparatus” may refer to an apparatus that prints printing data generated at a terminal apparatus like a computer on a recording medium such as paper. As examples of such an image forming apparatus, there may be copiers, printers, facsimiles, scanners, or multi-function printers (MFPs) which multiply implement functions of the aforementioned apparatuses through one apparatus, etc.
The term “user” may refer to a person who performs manipulations for an image forming apparatus.
The term “background phenomenon” may refer to toner that remains on a photosensitive drum or a transfer device. Toner that remains due to a background phenomenon may pollute a rear surface of a transfer device or a printing medium.
Examples described herein may prevent pollution of a rear surface of a transfer device or a printing medium by a background phenomenon according to a state of a photosensitive drum.
Referring to
In an example, the image forming apparatus 100 may identify whether there is a background and, if there is a background, apply a cleaning bias voltage that is adjusted by an offset bias voltage to the transfer device. For example, the image forming apparatus 100 may identify whether there is a background by applying a voltage of a set pattern to the photosensitive drum by using a power device. In an example, the voltage of the set pattern may be a voltage wherein a number of times of applying a voltage set for a specific time period, a voltage size, and an application cycle are changed. In case a background exists, a background of a specific pattern may be formed on the transfer device by the voltage of the set pattern. The image forming apparatus 100 may detect a signal from the background by using an optical sensor. The image forming apparatus 100 may acquire a size ratio of a periodic component based on a frequency of the detected signal. In case the size ratio of the periodic component is greater than or equal to a specific size ratio, the image forming apparatus 100 may determine that a background exists.
In case the image forming apparatus 100 determines that a background exists, an offset bias voltage corresponding to the size ratio of the periodic component may be applied to the existing cleaning bias voltage. For example, an offset bias voltage may be a bias voltage that reduces an absolute value of a cleaning bias voltage. Also, an offset bias voltage may be a voltage that changes according to the acquired size ratio of the periodic component, the printing speed, or the temperature or the humidity of a surrounding environment of the image forming apparatus, and may indicate a positive correlation with the temperature or the humidity of the surrounding environment. As an example, an offset bias voltage may be generated as a table corresponding to the acquired size ratio of the periodic component, the printing speed, and the temperature or the humidity of the surrounding environment of the image forming apparatus, and stored in the memory.
Accordingly, the image forming apparatus 100 may acquire an offset bias voltage corresponding to the acquired size ratio of the periodic component, the printing speed, and the temperature or the humidity of the surrounding environment of the image forming apparatus 100 from the memory, and adjust the existing cleaning bias voltage based on the acquired offset bias voltage. The image forming apparatus may remove the background as much as possible by applying the cleaning bias voltage adjusted based on the offset bias voltage to the transfer device.
In
Referring to
The power device 110 may apply a voltage to the photosensitive drum 120 according to control of the processor 150. For example, the photosensitive drum 120 may have a form of a roller. In a case in which the image forming apparatus 100 is to print in black and white, the photosensitive drum 120 may include one organic photo conductor (OPC). In a case in which the image forming apparatus 100 is to print in color, the photosensitive drum 120 may include a plurality of OPCs corresponding to a yellow (Y) color, a magenta (M) color, a cyan (C) color, and a black (K) color. The image forming apparatus 100 may apply a voltage of a set pattern to the photosensitive drum 120 by using the power device 110 and identify whether remaining toner (i.e., background) exists in the transfer device. For example, a voltage of a set pattern may be a voltage wherein a set number of times of applying a voltage, an application cycle, or a voltage size are changed.
The photosensitive drum 120 may transmit toner to the transfer device 130 based on the applied voltage. As an example, in a case in which the image forming apparatus 100 is to print in black and white, the transfer device 130 may include a transfer roller 131 and a transfer belt 132. In a case in which the image forming apparatus 100 is to print in color, the transfer device 130 may include an intermediate transfer roller 136, an intermediate transfer belt 137, and a transfer roller 138. In a case in which a background exists in the photosensitive drum 120, the photosensitive drum 120 may transmit remaining toner of a specific pattern to the transfer device 130 based on the voltage of the set pattern.
The transfer device 130 may transmit toner transmitted from the photosensitive drum 120. In case the image forming apparatus 100 performs an image forming job, the transfer device 130 may transfer the transmitted toner to a printing medium 1. In an example in which the image forming apparatus 100 identifies whether remaining toner exists in the transfer device 130, remaining toner of a specific pattern corresponding to the voltage applied to the photosensitive drum 120 may be formed in the photosensitive drum 120 or the transfer device 130. The optical sensor 140 may detect the remaining toner of the photosensitive drum 120 or the transfer device 130. For example, the optical sensor 140 may include a light emitting module and a light receiving module. The light emitting module of the optical sensor 140 may irradiate light on the remaining toner of a specific pattern formed in the photosensitive drum 120 or the transfer device 130, and the light receiving module may receive input of reflected light and detect the remaining toner. A signal detected by the optical sensor 140 may be transmitted to the processor 150, and the processor 150 may determine whether remaining toner exists based on the signal detected by the optical sensor 140.
The processor 150 may control an operation of the image forming apparatus 100. The processor 150 may change the surface potential of the photosensitive drum 120 by a voltage of a set pattern by using the power device 110. Also, the processor 150 may control the optical sensor 140 to detect whether remaining toner exists in the photosensitive drum 120 or the transfer device 130.
The processor 150 may acquire a size ratio of a periodic component based on the frequency of the signal detected by the optical sensor 140. In a case in which the acquired size ratio of the periodic component is greater than or equal to a specific size, the processor 150 may determine that remaining toner exists. The processor 150 may adjust the existing cleaning bias voltage by using an offset bias voltage corresponding to the size ratio of the periodic component based on an offset bias table. For example, remaining toner may have a negative charge. Accordingly, the cleaning bias voltage may be a negative voltage. The offset bias voltage may be a bias voltage that reduces the absolute value of the cleaning bias voltage. The cleaning bias voltage adjusted by the offset bias voltage may separate the remaining toner from the transfer device. The image forming apparatus 100 may include a cleaner (not shown) to clean the separated remaining toner.
In an example, although not illustrated in
Hereinafter, an example process wherein the image forming apparatus 100 determines whether remaining toner exists and removes the remaining toner will be described.
For preventing generation of a background, pollution of toner may be removed from the transfer device. As an example, polluted toner on the transfer device may be removed by applying a voltage (or, a current) of the same polarity as that of the toner to the transfer device. However, in case the toner receives stress (e.g., the toner is not charged to a desired or expected level), the background may not be removed.
Referring to
Referring to
The image forming apparatus may measure a background. In an example, measurement of a background may refer to detection of remaining toner of the photosensitive drum or the transfer device. For example, measurement of a background may be performed at a time point when the image forming apparatus is warming-up, a time point of tone reproduction curve (TRC) of the image forming apparatus, etc. For example, the time point of TRC may refer to a time point when the image forming apparatus periodically checks the image forming engine and adjusts the set value, etc. As an example, the time point of TRC may include a time point when an image forming job of greater than or equal to a threshold number of pages was performed, a time point when the image forming apparatus was turned on after being turned off for greater than or equal to a set time, etc.
Referring to
When the image forming apparatus changes the surface potential of the photosensitive drum, the image forming apparatus may generate an exposure marker 11 for distinguishing the start and the end for each color. That is, the image forming apparatus may display an exposure marker 11 to distinguish the start and the end of an operation of detecting remaining toner on the photosensitive drum or the transfer device at the starting point and the ending point of providing a voltage of a set pattern. For example, when an image forming apparatus printing in black and white starts and ends an operation of identifying whether remaining toner exists, the exposure marker 11 may be formed on the surface of the photosensitive drum. When an image forming apparatus printing in color starts and ends an operation of identifying whether remaining toner exists for each color, the exposure marker 11 may be transmitted from the charged photosensitive drum to the transfer belt and formed on the transfer device. According to a change of the surface potential of the photosensitive drum for each color, toner of a specific pattern for each color may be transmitted to the transfer belt as illustrated in
Remaining toner wherein a pattern has been formed may be detected by using an optical sensor (e.g., color tone detector (CTD) sensor). The image forming apparatus may perform frequency analysis for a signal of the pattern of the detected remaining toner. For example, the image forming apparatus may perform analysis by using an S wave in the case of Y, M, and C, and perform analysis by using a P wave in the case of K. For example, the image forming apparatus may convert a detected signal by fast Fourier transform (FFT), and acquire the magnitude of a periodic component, and the size ratio of the periodic component in the frequency area. The image forming apparatus may determine whether a background was generated based on the acquired size ratio of the periodic component. As an example, in a case in which the size ratio of the periodic component is greater than or equal to 20%, a background may be generated, and the size ratio of the periodic component and generation of a background may show a positive correlation. The image forming apparatus may adjust a cleaning bias voltage with an offset bias voltage based on the size ratio of the periodic component. The image forming apparatus may remove the background by applying the adjusted cleaning bias voltage to the transfer device. For example, the offset bias voltage may be a bias voltage that reduces the absolute value of the cleaning bias voltage.
An example image forming apparatus may control a cleaning bias voltage based on variables of a printing environment. For example, the image forming apparatus may control a cleaning bias voltage in consideration of the acquired size ratio of the periodic component, the printing speed, the temperature, the humidity, etc. of the surrounding environment of the image forming apparatus. An offset bias voltage may have a positive correlation with at least one of the temperature or the humidity of the surrounding environment of the location in which the image forming apparatus is located. The image forming apparatus may store an offset table including the acquired size ratio of the periodic component and an offset bias voltage corresponding to the size ratio of the periodic component in consideration of variables of the printing environment. For example, the environment (ENV) 0 (the 0th environmental state) illustrated in
If it is determined that the acquired size ratio of the periodic component is high, the image forming apparatus may increase the cleaning bias voltage as illustrated in the offset table.
Referring to
The image forming apparatus may detect remaining toner by acquiring a size ratio of a periodic component based on a frequency of a signal detected from the transfer device or the photosensitive drum at operation S920. For example, the image forming apparatus may perform an operation of identifying whether remaining toner exists at a time point of a warming-up operation, TRC, etc. The image forming apparatus may acquire the size ratio of the periodic component based on the frequency of a signal of the pattern of the remaining toner detected by using an optical sensor. In case the acquired size ratio of the periodic component is greater than or equal to a set size ratio, the image forming apparatus may determine that remaining toner exists.
In case the acquired size ratio of the periodic component is greater than or equal to a set size ratio, the image forming apparatus may adjust the cleaning bias voltage for removing the remaining toner based on an offset bias voltage corresponding to the size ratio of the periodic component at operation S930. For example, the offset bias voltage may be a bias voltage that reduces the absolute value of the cleaning bias voltage. Also, the offset bias voltage may be a voltage that changes according to the acquired size ratio of the periodic component, the printing speed, the temperature, or the humidity of the surrounding environment of the image forming apparatus. The offset bias voltage may be indicated as a positive correlation with the temperature and the humidity of the surrounding environment of the image forming apparatus.
In an example, the image forming apparatus may store an offset table including the size ratio of the periodic component and an offset bias voltage corresponding to the size ratio of the periodic component in the memory.
The image forming apparatus may remove the remaining toner by providing the adjusted cleaning bias voltage to the transfer device at operation S940. The transfer device may be provided with the cleaning bias voltage to which the offset bias voltage was applied from the power device according to control of the processor and remove the remaining toner that remains in the transfer device.
Referring to
The image forming apparatus may determine whether the size ratio of the periodic component is greater than or equal to 20 at operation S1020. If the size ratio of the periodic component is smaller than 20, the image forming apparatus may maintain the currently set cleaning bias voltage at operation S1030. The image forming apparatus may perform a cleaning process based on the set cleaning bias voltage at operation S1040.
On the other hand, if the size ratio of the periodic component is greater than or equal to 20, the image forming apparatus may apply an offset value corresponding to the size ratio of the periodic component in the stored cleaning bias offset table to the currently set cleaning bias voltage at operation S1050. That is, the image forming apparatus may adjust the cleaning bias voltage by applying an offset value to the currently set cleaning bias voltage. The image forming apparatus may perform a cleaning process of the transfer device based on the adjusted cleaning bias voltage at operation S1040.
The aforementioned example control process of a cleaning bias voltage executed in an image forming apparatus may be implemented in a form of a non-transitory computer-readable recording medium storing instructions that can be executed by a computer or a processor, or data. A non-transitory computer-readable recording medium 300 may store instructions related to the aforementioned example operations of an image forming apparatus. For example, the computer-readable recording medium 300 may include instructions 310 for changing a surface potential of a photosensitive drum to a voltage of a set pattern, instructions 320 for detecting remaining toner by acquiring a size ratio of a periodic component based on the frequency of a signal detected from a transfer device or a photosensitive drum, instructions 330 for adjusting a cleaning bias voltage used for removing remaining toner based on an offset bias voltage corresponding to a size ratio of a periodic component in case the acquired size ratio of the periodic component is greater than or equal to a set size ratio, and instructions 340 for removing remaining toner by providing an adjusted cleaning bias voltage to a transfer device.
Such a non-transitory computer-readable recording medium may include a read-only memory (ROM), a random-access memory (RAM), a flash memory, a CD-ROM, a CD-R, a CD+R, a CD-RW, a CD+RW, a DVD-ROM, a DVD-R, a DVD+R, a DVD-RW, a DVD+RW, a DVD-RAM, a BD-ROM, a BD-R, a BD-R LTH, a BD-Res, a magnetic tape, a floppy disk, a magneto-optical data storage apparatus, an optical data storage apparatus, a hard disk, a solid-state disk (SSD), and instructions or software, related data, data files, and data structures. Also, the non-transitory computer-readable recording medium may be any apparatus that can provide instructions or software, related data, data files, and data structures to a processor or a computer so that the processor or the computer can execute instructions.
While examples of the disclosure have been shown and described, the disclosure is not limited to the aforementioned examples, and it is apparent that various modifications can be made by those having ordinary skill in the art to which the disclosure belongs, without departing from the gist of the disclosure as claimed by the appended claims, and such modifications are within the scope of the descriptions of the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0140568 | Oct 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/037988 | 6/18/2021 | WO |