This invention relates to the design, manufacture and use of cleaning brushes and more particularly bristle brushes including a hub and several outwardly extending bristles. In a particular aspect, the brushes are injection molded and include bristles having projecting cleaning structures presenting multiple cleaning edges. The brushes may comprise an assembly of separate components, or may be formed as integral, one-piece units. In one aspect, the brushes are produced by folding a planar brush precursor to reposition the bristles relative to the hub. The brushes may include integral structures for facilitating attachment to a support structure. The brushes are well suited for use in cleaning a variety of surfaces, and have a particular application in the washing and cleaning of vehicles.
This invention further relates to devices, systems and methods relating to the washing of vehicles. The devices include elongated stanchions which hang vertically and contain brushes which bear against the vehicle as it is washed. In embodiments, the stanchions support wavelike brush carriers to which the brushes are mounted. In particular embodiments, the brush carriers include apertures in which the brushes are received. Ancillary components may also be included. The systems and methods include the manipulation of the stanchions to move the stanchions relative to the washing vehicle.
The art is well known relative to automatic vehicle washing. Such systems typically use rotating brushes and hang-down mitting curtains, which collectively have become the preferred industry standard equipment for automatically washing vehicles. The prior art discloses using a variety of cleaning materials for rotating brushes and hang-down mitting curtains, including polyethylene and polypropylene extruded strands, strips of synthetic felt, plastic fabric, and open and closed cell foam plastic. Even the use of cardboard and leather-board in rotating brushes has been disclosed as washing elements.
It is apparent from the prior art that a continuing objective in new developments for bristle brush arrangements has been to achieve and maintain good cleaning action from the tip speed and contact of the bristle tip ends with the surface being cleaned. For example, orbital type movement of the bristle tips of a toothbrush has long recommended as part of dental hygiene guidance.
As shown in the art, this objective is easier to achieve with rotating brushes when they are used in cleaning flat or uniform type surfaces (e.g., street sweeping brushes) and can be rotated at relatively high speeds, e.g., 100-120 RPMs. However, it has always been difficult for automatic vehicle washing systems to use rotating bristle type brushes to properly and safely wash a vehicle. This is because vehicle shapes, sizes, and types of exterior painted surfaces and coatings represent extraordinary challenges for automatic vehicle washing equipment employing rotating brushes. It is important to achieve the proper tip speed and contact of rotating bristle brush tips. Also, the brushes must be gentle and soft, and be able to closely follow and penetrate the intricate contours of the various types of vehicles. If the rotating brushes do not operate in a precise manner, i.e., proper rotational speed and brush crush, vehicle damage can result, including: micro hazing and marring of the vehicle's exterior painted and coated surfaces; damage to antennae; and damage to mirrors. Also, the rotating cylinder housings which hold the brush strips are generally made of aluminum or stainless steel and are quite heavy once the wash media is attached. They are also costly to manufacture and maintain.
More recent prior art discloses means for rotating brushes using different bristle media consisting in part of felt, cotton and polyester woven fabric, foam, and closed cell foam. These types of materials can be rotated at much slower speeds, typically 60-100 RPMs, and can be configured to include multiple cleaning edges to help penetrate the recessed areas of vehicles. The prior art discloses very unique ways to incorporate differently configured washing media into a rotating brush, and also addresses the rotational requirements by achieving varying rotational RPM's of a brush.
Vehicle washes use single direction rotary type brushes that perform best when rotary brushes wash with the tips of the bristles. However, rotary type brushes frequently miss areas of the car's exterior surface, e.g., recessed windows, louvers, mirrors, moldings, etc., —because their inherent single direction rotation and inconsistent “crush” pressure causes overlaps that do not allow for consistent bristle tip cleaning of the stated areas.
Additionally, the prior art relating to hang-down mitting curtains is also extensive. The art relates to both the mechanical movement of mitting curtains for improved agitating type washing actions, and the material and design configurations of the curtains to provide better vehicle washing of the irregularities of vehicle surfaces. There is further but limited prior art which discloses complex means for rotating, reciprocating and oscillating type vehicle washing brush media, vibrating brush media, and flexible brushes.
Although advancements in automatic vehicle washing equipment have been significant over the years, there still remain many problem areas that need improvement. These problem areas include vehicle damage caused by rotating brushes; overuse of water and chemicals by the rotating brushes flinging solution away from the vehicle due to the centrifugal action of the rotating brushes; excessive noise caused by the rotating brush actions and mitting curtains which cause a slapping effect against the vehicle; parts of the vehicle remaining uncleaned due to missing washing actions caused by rotating brushes rotating in only one direction and being unable to consistently clean with its bristle tips, frequently overlapping recessed parts of the vehicle's surfaces; excessive use of electrical power; complex multiple pieces of washing equipment being required; equipment wear, with replacement and repair being costly and time consuming; and original capital investment required for automatic vehicle washing equipment, buildings, and land.
This disclosure effectively addresses these problem areas with novel improvements that will be readily apparent through the reading and understanding of the following summary and description of the invention.
This disclosure relates to the design, production and use of brushes comprising a hub and multiple, outwardly-extending bristles. The brushes in embodiments include several bristles which extend equiradially from a hub at an acute angle to the central axis of the hub. The bristles include a large number of nubs which extend from the shaft of the bristle. The disclosure includes brushes formed as an assembly of components, or as an integrated, optionally molded, one-piece unit. In an embodiment, the brushes are formed by molding the hub and bristles in a planar form and then folding the bristles to their final position. The brushes include structures configured for mounting to an external support. The disclosure further describes methods of making the brushes, brushing apparatus including the brushes, and systems using the brushing apparatus.
The present invention in one aspect is directed to a brush comprising a hub and a plurality of bristles attached thereto, each bristle including an elongated shaft extending from a proximal end to a distal tip, and each bristle having the proximal end attached to the hub. The bristles extend from the hub at an acute angle to the central axis of the hub, and each bristle has an array of multiple cleaning structures extending outwardly from the shaft. In embodiments, the hub and/or the bristles form an annular recess or other structure which receives a variety of support structures.
In another aspect, the brushes are formed from a molded brush precursor. The brush precursor provides a cylindrical hub and bristles in a first position in which each of the bristles extends radially, preferably equiradially, from the hub in a plane orthogonal to the central axis of the hub. The hub and bristles have a second position in which the bristles extend at an acute angle relative to the central axis of the hub. In a method of making a brush, the hub and bristles are formed integrally with the bristles extending coplanar with the hub, and the brush is formed by folding the bristles from the first position to the second position. The bristles are then locked in the second position. In one embodiment, the hub and/or bristles form an annular recess and a locking component is received within the recess. The locking component may comprise, for example, a ring-shaped locking collar, or it may include a webbing including an aperture which receives the annular recess of the brush which is inserted while in the second position.
The brushes are useful in a variety of applications. The brushes may be received within differing types of support structures adapted for particular uses. For example, the support structure may simply be a locking collar received by the annular recess. A number of alternative support structures and applications are disclosed herein, although these are not to be taken as limiting.
In a particular application, an array of a number of the brushes is mounted to vertically-extending, flexible stanchions. These stanchions are arranged adjacent one another, and are moved vertically to function as a washing system for vehicles. In this application, an object of the invention is to provide a soft bristle brush arrangement for the washing of vehicles, particularly one that is vehicle-friendly and which eliminates the conventional rotating of the brushes for cleaning.
The stanchion-mounted bristle brush assemblies are moved against the vehicle's exterior surfaces. The stanchion movements include vibratory oscillation; up-and-down scrubbing; in-and-out scrubbing; and side-to-side scrubbing. These all constitute vehicle-friendly movements replicating much the same as a person would perform when carefully washing a vehicle with a soft cloth wash mitt or brush. The described washing movements using multiple soft flexible bristle brushes are also worker-friendly, because they do not include rotating type brushes.
Another preferred aspect of the disclosure is a bristle brush having integral attachment means that securely fastens the brush to a material such as a composited stanchion without requiring any additional hardware. In general, the brushes may comprise any common locking feature such as those using complementary shapes providing a form, press or snap fit.
A further aspect of the disclosed brushes is an injection molded, multiple bristle brush as described herein produced as a single part that does not require additional manufacturing or processing for its assembly or installation as a brush, representing a significant cost savings with injection molded bristle brush manufacturing. The brushes do not require tufting, stapling, fusing, bonding, channeling, or crimping that are common sub-assembly types of manufacturing processes associated with other forms of multi-step bristle brush manufacturing.
This disclosure also applies to devices, systems and methods for washing vehicles which do not require the previously-described brushes. The inventive washing devices comprise stanchions which include wavelike brush carriers which may be used with a variety of brushes, including but not limited to the unique brushes disclosed herein. The wavelike brush carriers support cleaning brushes and position them in a variety of positions, and at a variety of angles, to facilitate efficient and effective cleaning of vehicles. Spray nozzle, lights, and other ancillary components may also be provided.
The foregoing and other uses, features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments of the invention, as illustrated in the accompanying drawings.
Disclosed herein are brushes providing uniquely advantageous cleaning of surfaces. The bristles of the disclosed brushes have circumferential cleaning edges which provide high-resolution surface cleaning using less water, less chemicals, less energy, and without causing damage. The brushes comprise a number of bristles including shafts extending outwardly from a hub. A variety of cleaning structures are positioned on the shafts. The brushes are secured to support structures for moving the brushes against surfaces to be cleaned. The brushes in certain embodiments are particularly adapted for use in the cleaning of vehicles in an automated vehicle washing system.
The present invention in one aspect comprises a brush including a hub and a plurality of bristles attached thereto. Each bristle includes an elongated shaft extending from a proximal end to a distal tip. Each bristle has the proximal end attached to the hub. The bristles extend from the hub at an acute angle to a central axis of the hub. Each bristle has an array of multiple cleaning structures extending outwardly from the shaft. The hub and/or the bristles may form a locking structure, such as an annular recess configured to be received within a complementary component, such as a locking collar or an aperture in a support structure.
Referring to
In an embodiment, hub 12 includes a central axis 22, and shafts 16 extend parallel to or at an angle to central axis 22. In an embodiment, the bristles extend at an outward, acute angle of no more than 45°, preferably 15°-35°. The bristles may be positioned symmetrically or asymmetrically about central axis 22. Wedge-shaped gussets 24 may be provided to strengthen the positioning of the shafts. A locking structure 26, shown as an annular recess, may be provided to facilitate attachment of hub 12 to a support structure.
In accordance with the present invention, a bristle 14 comprises a shaft 16 carrying a variety of cleaning structures 18. The term “shaft” refers to an elongated member which is generally linear in shape and may include a central axis 28 and a distal tip 30. The bristles may be straight, curved, angled or combinations thereof.
The shaft of each bristle includes a proximal end 17 secured to the hub. The shaft may extend from the hub at a range of angles, and a variety of such angles may be used for a given brush. The angles are selected based on the intended use of the brush. The angle(s) are also selected to ensure that the bristles are positioned to move effectively relative to nearby bristles. Typically, the bristle shafts will extend at an angle in the range of 0° to 45°, preferably 15° to 35°, relative to the central axis 22 of the hub.
The shaft is formed from a durable material which is suitably pliant and resilient for holding the cleaning components adjacent a surface to be cleaned. The shaft may have any cross section that provides the desired strength and flexibility. For example, the cross section may be an irregular or regular shape, and it may vary along the length of the shaft. A “regular” cross section refers to one which comprises a cross section that has the shape of a regular polygon. Preferred cross-sectional shapes include round, oval, square, pentagonal, hexagonal, octagonal, etc. In embodiments, the shaft has a number of lengthwise surfaces, for example eight in the case of an octagonal shaft, and cleaning structures may extend from each of these surfaces. The shafts may also include through holes 20, shown in
The shafts of the bristles support a number of cleaning structures 18 extending outwardly therefrom. In embodiments, cleaning structures 18 are preferably formed integrally with the shaft, as by extrusion molding. The variety and number of such cleaning structures are selected based on the composition of the bristles and the intended use of the brush. Examples of cleaning structures are shown throughout the figures.
One form of a cleaning structure is referred to herein as a “nub”. The term “nub” refers to a relatively small diameter projection extending from the shaft with a size and position to contact a surface to be cleaned. Referring to
Nubs thereby present several surfaces for contacting and cleaning a surface, including the side wall surfaces 34 and the end surfaces 36. The junction between side walls 34 and end surfaces 36 may be smooth or rough. In one aspect, the junction between a side wall 34 and an end surface 36 is rounded, and in another aspect the junction provides a corner edge 38 which may further enhance the cleaning action of the nub.
The bristles have multiple nubs attached to each shaft. The number of nubs on a shaft may vary depending on the size of the brush, the use of the brush, and the cleaning effect desired. In embodiments, a bristle includes at least 10, at least 50, or even at least 100 nubs. The nubs may be arranged in patterns or may be irregularly positioned on the shaft. The number, shape and arrangement of the nubs may differ for different portions of a bristle. In one embodiment, the total number of individual nubs 32 per bristle 14 is approximately 120, with cleaning edges per bristle of approximately 960. In such an embodiment there are approximately 7,680 cleaning edges per brush.
Shafts 16 terminate in end portions or tips 30 which may have a variety of shapes. Shaft tips 30 thereby provide another form of a cleaning structure 18. The shaft tip may have any of a variety of shapes adapted to enhance the cleaning action of the bristle, and may include other cleaning structures as described herein. The end portion of the bristle may be pointed, rounded, or have a flat or irregular surface. Shaft tip 30 thereby provides a cleaning surface positioned to contact a surface to be cleaned.
Shaft 16 may also support one or more wiper blades 40. The term wiper blade refers to a component extending from the shaft in a position to act in the manner of a scraper of the surface to be cleaned. Along with the nubs, the wiper blades provide excellent cleaning, and help in retaining the chemical solution during the washing process. Referring to
In embodiments, the bristles include more than one wiper blade, preferably two or more wiper blades, located along the shaft. The contact surfaces of the wiper blades may be variously oriented relative to the longitudinal axis of the shaft. For example, the contact surface of a wiper blade may be parallel to or angled from longitudinal axis 28 of shaft 16. The wiper blades of a bristle may vary in number and in position along the length of the shaft. Also, the wiper blades may be located adjacent to or nested within the nubs, or may be located spaced from the nubs.
The cleaning structures 18 may further comprise a wide variety of other regularly or irregularly shaped structures. Referring to
The components of the brushes may be formed from a variety of suitable materials. In a preferred embodiment, thermoplastic media and/or thermoset media are used. These materials have a generally rubbery, soft touch and feel, are highly flexible and shock absorbing, are chemically resistant, are resistant to Ozone, have high elasticity, and can be recycled. Materials such as low-density polyethylene (LDPE), high density polyethylene (HDPE), and reinforced PVC, to name a few, also provide excellent composited brush structures. Examples of materials also include any and all polymer alloys, such as thermoplastic polyurethane (TPU), thermoplastic elastomers (TPE), and thermoplastic vulcanizate (TPV).
The parts of the brush may need some stiffness and or “extra” strength in the hub area for some designs. This may be obtained from “two shot molding”, which involves sequential injection of a hard polymer followed by an over-molding of a soft polymer. This brings the mixed physical properties together in one part. This may also be done with insert molding where a previously molded part is inserted into an open mold and when the mold is closed a different polymer is shot over or around the inserted part giving the two-tone effect of different properties. This adds strength and durability to a soft exterior part by providing a hard, internal part via molding.
An example of a good quality co-polymer thermoplastic media bristle brush as described herein is formed from injected molded TPV produced by ExxonMobil Chemical Company and having the following properties:
The brushes of the present disclosure may be formed in various manners. In one approach, the brush components are formed separately and then combined. In another approach, at least some of the brush components are formed as integral units. In a preferred embodiment, all of the brush components are formed as an integral unit. As used herein, the term “integral” refers to the components comprising a single, unitary structure, such as obtained by injection molding or 3D additive manufacturing.
The brushes in one embodiment are produced by assembling separate components, or by molding the brushes as integral components. In this respect, the brushes may be referred to as “Formed Brushes”.
In embodiments, the brushes are formed from a brush precursor 80. The brush precursor includes a hub and bristles which are integrally formed in a generally planar shape, as shown in
In a particular aspect, the hub and bristles of the brush are injection molded to form the brush precursor. The bristles are then repositioned relative to the hub to provide the bristles at the desired angle(s) to the hub. The brush precursor initially has the bristles in a first position relative to the hub, in which, for example, the bristles are oriented relative to the central axis of the hub to facilitate injection molding of the bristles in unison with the hub. To facilitate molding, the hub may have a planar configuration and the bristles are formed in a first position extending in a coplanar fashion with the hub. That is, the attachments of the bristle shafts define a plane with the hub, and the bristles extend in the plane orthogonal to the central axis of the hub.
The bristles are then moved to a second position extending at an angle to the central axis of the hub. For example, in a preferred embodiment the bristles are folded relative to the hub to form a brush having the bristles in the second position. In the second position, the bristles may extend parallel to or at an angle to the central axis of the hub. The resulting Folded Brush may comprise any of the features associated with a Formed Brush, and vice versa. For example, a Formed Brush and a Folded Brush may both have a “squid-like” appearance with the bristles extending at an acute angle of not more than 45°, such as 15° to 35°, relative to the central axis of the hub. For this reason, the brushes of the present invention are also sometimes collectively referred to as the SQUID′ brushes.
Hub 12 is cylindrical in shape and has a central axis 22. The center of the hub may be solid (
The brush precursor 80 is preferably molded as a single, integral unit. As shown in
The bristles of the brush precursor are folded inward from the first position to the second position to form a Folded Brush 98. Referring to
The brushes are easily formed by hand, or by mechanical means, by simultaneously pushing upwardly and inwardly on the interior side of the hub 12 while collectively rotating down the proximal ends of the bristles. The wedge-shaped gussets 96 are thereby brought together. As shown in
The Folded Brushes may also include a system for locking the bristles in the second position relative to the hub. Such locking systems may be as simple as the use of an adhesive, sonic welding, or other means for directly securing the bristles together, for example by connecting wedge portions of adjacent gussets 96.
Alternatively, the bristles and/or the hub may include mechanical features that are used to secure the bristles in position. In such embodiments, separate locking members may secure the bristles together in the second position. For example, a locking collar may be applied surrounding the bristles and holding them in place. In one approach, at least one of the hub and the bristles defines a structure formed complementary to the locking member. As shown in the drawings, an exemplary complementary structure 26 may comprise an annular recess 102 defined by the hub and/or bristles. Referring to
Referring to
In another aspect, the locking mechanism can be used to dictate the angles of the bristles in the second position. For example, the bristles of the Folded Brush may be angled based on the configuration of the locking mechanism. Considering the Folded Brush of
It will be appreciated that various other mechanical configurations can operate in a similar manner. For example, the brush may instead include an annular ridge received in an annular recess of a locking mechanism. Further, other mechanical couplings providing a form fit, press fit, snap fit, or the like, can be adapted to lock the bristles in the second position.
The brushes may be used in a variety of ways and for a variety of purposes. For example, the Formed Brushes exemplified in
In embodiments, the locking structure is also used to secure the brush to a support structure. For example,
In other embodiments, the folded brush may be directly inserted into a support structure which also functions as the locking mechanism.
By way of example, a particular utility of the Squid Brushes is in the cleaning of vehicles. Shown in
A preferred aspect is a brush apparatus comprising an array of brushes supported on a composite stanchion as shown in
The brushing apparatus may also provide additional components to enhance the utility of the SQUID′ Brushes. As shown in
Also shown in
In addition, other devices of interest may be positioned within or extending through the central apertures 82. By way of example, LED tubing 156 positions an LED light source 158 at the end of the central aperture. Such lighting allows for better visibility of the cleaning of the vehicle, and also can provide an interesting visual effect for persons in a vehicle being cleaned.
As known in the art, the cleaning effect of the brushing apparatus can be enhanced by having the stanchions, and therefore the brushes, move relative to the vehicle during cleaning. The type of relative movement between the stanchions and the vehicle can be varied, including up-and-down, translated, rotary, oscillating, etc. Also, the stanchion may be moved relative to a stationary vehicle, or the vehicle may be moved through a stationary vehicle washing system.
The structural and material makeup of the injection molded bristle brush can be flexibly formulated with many different specifications. By way of example, it has been found that an exemplary embodiment includes approximately eight (8) bristles with an overall length of approximately 3″. The bristles have even or uneven lengths, a textured shaft diameter of approximately 0.250″, and a length of approximately 1″. In one embodiment, each bristle has approximately six rows, each row having approximately twenty nubs, and each nub having approximately eight cleaning edges for the remaining bristle length of approximately 2″ and an overall outside diameter of approximately 0.375″.
The annular recess of the brushes (upon being fold-formed into a Squid shape) has a cylindrical shape having an approximate inside diameter of 1.125″ and outside proximal and distal shoulder diameters of approximately 1.375. The inside height dimension of the cylindrical shoulder is approximately 0.250″.
After the brush assembly has been inserted into the stanchion's approximate 1″ diameter hole and approximate 0.250 thickness, the annular recess experiences an approximate 0.065″ compression throughout the shoulder area to secure its attachment to the stanchion.
Thus, in an embodiment, an aspect of the present invention is a multiple soft bristle brush assembly that is manufactured (e.g., injection molded) in a planar form which is then subsequently formed into a geometrical shape (resembling the profile of a squid). Each bristle may include a wedge-shaped, gusseted shaft with multiple projections (nubs) having cleaning edges circumferentially around the shaft. The brushes may be received in any type of support. In a particular embodiment, the brushes are mounted to a stanchion comprising an elongate material which may hold numerous brushes and which may be moved against a surface to be cleaned. The brushes preferably include a formed locking recess for simple insertion into the composited type stanchion. The stanchion contains multiple soft bristle brushes each having bristles with multiple cleaning type tips (nubs) throughout the profile of the bristles which provide continuous total brush cleaning regardless of how the bristles of the brush may deflect during the washing process.
In embodiments, disclosed are vehicle washing devices and systems using the Squid Brushes. The devices comprise suspended linear composited stanchions which are fully populated with Squid brushes and which are generally non-rotating type. The articulating brushes achieve excellent high-resolution vehicle cleaning requiring significantly less water, chemical, and energy to operate.
The soft bristles of the Squid brushes with their circumferential cleaning edges have been shown to reach inwardly to totally clean even the toughest to reach areas of the vehicle—ledges, crevices, nooks and crannies often found with recessed windows, lights, door handles, mirrors, and grills. The washing process is extremely quiet in its operation, and almost totally eliminates the possible incidence of vehicle damage, because conventional brush rotation and required crush of the rotating brushes has been eliminated.
A vehicle washing brush apparatus and system in accordance with the present invention, provides soft bristle brushes which are self-fastening without the need for ancillary attachment parts; are light weight; are easy to assemble, install, replace, and service; and have purchase costs that are significantly reduced.
The invention further includes vehicle washing systems and methods which may advantageously use the foregoing described brushes and related components. Provided are photographs of a system exemplifying structures and features of the system.
Referring to
This center component 300 includes a support structure 302 including sides 304 and top support 306. These may comprise any suitable material for supporting the components of the system hereafter described. Advantageously, the center component has a low profile which leaves considerable clearance for a vehicle to be washed, while also not requiring an excessive amount of room outside of the support structure.
As shown in
The brush supports may have a wave-like form. This form provides for having the brushes contact a vehicle at various angles in order to effectively clean surfaces of varying shapes and positions. With the wave-like form, it is apparent that some brushes extend somewhat upwardly, others extend straight out, and yet others extend somewhat downwardly.
In use, the center component moves the brushing units as they contact the vehicle to be washed. In a preferred embodiment, the vehicle is moved relative to the center component, which is fixed to the floor. Alternatively, the center unit is moved as a vehicle is held stationary. It will be appreciated that the relative movement of the vehicle toward the brushing units will cause the brushing units to move against the vehicle front, up and onto the vehicle hood, and continuing on over the front windshield and the top of the vehicle. As the movement continues, the brushing units will move along the back of the vehicle, such as onto the back trunk hood and/or into and against the bed of a truck.
As previously mentioned, the wave-like form of the brush supports will cause the brushes to move against surfaces of the vehicle at differing angles, which can facilitate a thorough washing of all of the various surfaces of the vehicle. As will be discussed hereafter, the movement of the brush supports, and therefore of the brushes, relative to a vehicle further contributes to the thorough washing of the vehicle. The brush supports are formed of a material having a selected degree of flexibility, which can be determined to optimize the flexing of the brush supports as they interact with the vehicle surfaces.
From the front view it is shown that an exemplary embodiment includes five brush supports, each having rows of four brushes. The brushes are sized and positioned to provide overlapping coverage of the vehicle surfaces. The brushes are also positioned along the edges of each brush support to assure overlapping coverage between brush supports. The brush supports are also positioned so that the outer brush supports align with and can ride along the outside surfaces of the vehicle hood and roof, as well as the rails of a pickup truck. The interior brush supports are positioned to cover the central surfaces of the vehicle, including to fully span the width of the bed of a pickup truck.
Also as described later in more detail, the brush supports may carry associated components. For example, spray nozzles are spaced throughout the brush supports to direct fluids against the vehicle. The placement of these nozzles is highly advantageous as it applies the liquids directly at the location intended. This is contrasted from prior art systems where the liquids may be dropped only onto the upper facing surfaces of the vehicle, or the liquids may be applied by the rotation of large brushes. The use of such brushes is further inefficient as the brushes fling the liquids in all directions such that only a small arc of the rotation directs the liquids against the vehicle.
The use of the nozzles adjacent the brushes in the present system is thereby seen to provide an efficient use of liquids employed in vehicle washing. This has ecological benefits as the total amount of such liquids can be reduced. It also is economical in that reducing the amount of liquids used means that there is less expense in reclaiming or disposing of the liquids.
The brush supports may also include lights. For example, strip LED lighting can be provided which extends, such as vertically, along the brush supports. This lighting has both a practical use and an aesthetic effect for occupants of the vehicle as it is being washed.
Referring to
One aspect of the stanchions is that they are secured together to provide lateral stability to the movement of the brush supports. As shown in
The interconnection of the stanchions serves several purposes. The connections in general impart overall strength and relative rigidity of the brushing units. Also, the connection of the outer stanchions through the center stanchion allows the outer stanchions to be positioned to ride on the outside edges of the vehicle, including the rails of a pickup truck bed, without falling off to the outside. The overall weight also is applied in a manner that evens out the pressure applied to the vehicle.
The curved bottom portion of the brush support serves several purposes. As is apparent in the drawings, the curved bottom provides that brushes located in that area extend in varying directions ranging from horizontal, to angled downwardly, to extending straight down. This assures efficient and effective cleaning of the surfaces of a vehicle as the vehicle moves relative to the brush support. The curved bottom also provides increasing flexing of the brush support as the brushes move across changing surfaces of the vehicle, such as in the transition from the vehicle hood to the front windshield.
In a similar manner, the brush supports in certain embodiments include two or more curved portions extending along the length of the stanchions. As shown in
In
The stanchions and/or brush supports may also carry nozzles 344 used to deliver fluids to the vehicle. As previously mentioned, this is particularly advantageous in providing a delivery of fluids closely directed to the surfaces of the vehicle. Both the lights and the nozzles may be placed in any configuration that is considered to be effective in the system.
The motion of the stanchions can be achieved, for example, by the use of a crankshaft component 346 for the stanchion mount. This translates the rotary motion of a motor to the up-and-down and in-and-out motion of the brushes.
The crankshaft component includes a series of aligned crank arms 348 having corresponding first and second ends. The crankshaft component is mounted to rotate about an axis which extends through the midpoints of the crank arms. A drive shaft, such as from a motor, is aligned with the axis of rotation of the crankshaft component.
Alternate stanchions are mounted on supports extending between the first ends of adjacent crank arms, such as at 350. The other stanchions are mounted on supports extending between the second ends of adjacent crankshafts. The alternating stanchions are thereby mounted on arms which extend in opposite directions from the axis. As a result, rotation of the crank shaft component causes the outer stanchions 316 and 318 and center stanchion 320 to move upward as the intermediate stanchions 324 and 326 move downward.
A supporting strap 364 is shown in
The present invention provides a system and related method for washing vehicles using novel and highly effective washing brushes, brush supports and stanchions, as well as systems for oscillating the stanchions as the brushes ride against the vehicle surfaces. These systems are supported by ancillary components which may comprise conventional systems known in the art. For example, known drive motors and supports may be used, including existing hydraulic fluid systems. Fluids may be delivered to the inventive system by conventional sources.
In
The articulating system includes a bank of brushing structures as previously described. The articulation is used to move the bank of brushing structures against any or all of the front, sides and rear of the vehicle as the vehicle and system 400 are moved relative to one another. For example, in a conventional approach a vehicle is moved forward into engagement with the washing system. The articulating system may first be positioned in front of the vehicle with the brushing units parallel to the front of the vehicle. Due to the articulation, the brushing units may even be moved along with the vehicle a distance to provide for prolonged brushing of the vehicle front.
As the vehicle continues to move relative to the system 400, the bank of brushing units is moved toward the outside of the vehicle, while engaging the vehicle at the front corner. Still further, the bank of brushing units continues to pivot until the brushing units extend parallel to the side of the vehicle. The bank of brushing units may be maintained in this position as the vehicle continues to move forward, thus causing the brushing units to move along the side of the vehicle towards the rear end.
As for the front end, the bank of brushing units are rotated around the rear corner of the vehicle to thoroughly wash the corner components of the vehicle. Eventually, the bank of brushing units is rotated until the brushing units extend parallel to the rear of the vehicle. Also as before, the articulation can be used to have the brushing units “follow” the vehicle, which allows the brushing of the rear of the vehicle to be maintained for a period of travel of the vehicle.
Disclosed is a suspended linear composited stanchion which is fully populated with brushes having a generally non-rotating type of car washing action. The articulating brushes achieve excellent high-resolution vehicle cleaning requiring significantly less water, chemicals, and energy to operate.
Number | Date | Country | |
---|---|---|---|
63212873 | Jun 2021 | US | |
63274186 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17591041 | Feb 2022 | US |
Child | 17845227 | US |