This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2011-264624 filed Dec. 2, 2011.
1. Technical Field
The present invention relates to a cleaning device and an image forming apparatus including the cleaning device.
2. Summary
According to an aspect of the invention, a cleaning device includes a first cleaning member that is brought into contact with and separated from a surface of an endless belt at a predetermined timing and cleans the surface, the endless belt being looped over plural rollers including a driving roller; a second cleaning member that cleans the surface of the endless belt, the second cleaning member being disposed upstream of the first cleaning member and downstream of the driving roller in a movement direction in which the endless belt moves, the second cleaning member being in contact with the endless belt so as to prevent a tension variation in a tension of the endless belt from affecting the driving roller, the tension variation occurring when the first cleaning member is brought into contact with and separated from the endless belt; and a third cleaning member that cleans the surface of the endless belt, the third cleaning member being disposed downstream of the first cleaning member in the movement direction of the endless belt, a contact state in which the third cleaning member is in contact with the endless belt being switched from a first contact state to a second contact state so as to reduce the tension variation, which occurs when the first cleaning member is brought into contact with and separated from the endless belt.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings.
In
The image of the document 2, which has been read by the image reader 3, is sent to an image processor 12 as, for example, image data of three colors that are red (R), green (G), and blue (B). The image processor 12 performs, on the image data of the document 2, predetermined image processing operations such as shading correction, displacement correction, brightness/color conversion, gamma correction, frame erasing, and color/movement edition. The image data, which has been subjected to the predetermined image processing operations by the image processor 12, is converted to image data of four colors that are cyan (C), magenta (M), yellow (Y), and black (K) by the image processor 12. The colors of image data converted by the image processor 12 are not limited to these four colors, which are cyan (C), magenta (M), yellow (Y), and black (K). Alternatively, the colors may be six colors including high-chroma cyan (HC) and high-chroma magenta (HM). Further alternatively, the number of colors may be any appropriate number. Image data may be input to the image processor 12 from a personal computer or the like through a communication line (not shown).
The present exemplary embodiment includes plural image forming units that form images by using toners of different colors.
That is, as illustrated in
Each of the image forming units 13Y, 13M, 13C, and 13K for yellow (Y), magenta (M), cyan (C), and black (K) is an integrated unit. The image forming units 13Y, 13M, 13C, and 13K, excluding image exposure devices 16Y, 16M, 16C, and 16K described below, are independently removable from the image forming apparatus body 1.
As illustrated in
The photoconductor drums 14Y, 14M, 14C, and 14K of the image forming units 13Y, 13M, 13C, and 13K for yellow (Y), magenta (M), cyan (C), and black (K) are charged to a predetermined negative potential by scorotrons 15Y, 15M, 15C, and 15K. Subsequently, the image processor 12 successively outputs image data of corresponding colors to the image exposure devices 16Y, 16M, 16C, and 16K of the image forming units 13Y, 13M, 13C, and 13K for yellow (Y), magenta (M), cyan (C), and black (K). The image exposure devices 16Y, 16M, 16C, and 16K emit laser beams LB in accordance with the image data; the surfaces of the corresponding photoconductor drums 14Y, 14M, 14C, and 14K are scanned by the laser beams in the main scanning direction (the axial direction of the photoconductor drum); and thereby electrostatic latent images are formed on the surfaces of the photoconductor drums 14Y, 14M, 14C, and 14K. The developing devices 17Y, 17M, 17C, and 17K reversely develop the electrostatic latent images, which have been formed on the photoconductor drums 14Y, 14M, 14C, and 14K, to form toner images composed of negatively charged toners of yellow (Y), magenta (M), cyan (C), and black (K).
As illustrated in
The intermediate transfer belt 20 is looped over plural rollers including a driving roller 22, a driven roller 23, a tension roller 24, and a back-support roller 25 with a predetermined tension. The back-support roller is disposed in a second transfer region. The driving roller 22 is rotated by a dedicated driving motor (not shown) that is capable of rotating at a highly constant speed. The intermediate transfer belt 20 is driven by the driving roller 22 in the direction of arrow B at a predetermined speed that is substantially the same as the rotation speed (circumferential speed) of the photoconductor drums 14Y, 14M, 14C, and 14K. The intermediate transfer belt 20 is, for example, an endless-belt-shaped synthetic resin film that is made from a plastic resin such as a polyimide resin or a polyamide-imide resin.
A second transfer roller 27 is in pressed contact with the back-support roller 25 with the intermediate transfer belt 20 and a second transfer belt 26 therebetween, and a second transfer bias voltage is applied to the second transfer roller 27. The toner images of yellow (Y), magenta (M), cyan (C), and black (K), which have been overlappingly transferred to the intermediate transfer belt 20, are simultaneously second-transferred to a recording sheet 28, which is an example of a recording medium, due to the second transfer voltage. After the toner images of the four colors have been transferred, the recording sheet 28 is peeled off the second transfer belt 26 and transported by a transport belt 29 to a fixing device 30, which is an example of a fixing unit. The fixing device 30 fixes the toner images, which have been transferred to the recording sheet 28, onto the recording sheet 28 by using heat and pressure. Then, the recording sheet 28 is output to an output tray 31 that is disposed outside of the image forming apparatus body 1.
As illustrated in
The cleaning devices 18Y, 18M, 18C, and 18K cleans the surfaces of the photoconductor drums 14Y, 14M, 14C, and 14K from which the toner image have been first-transferred. A belt cleaning device 37, which is disposed adjacent to the driving roller 22, cleans the surface of the intermediate transfer belt 20 from which the toner images have been second-transferred.
As illustrated in
The second transfer unit 40 is an integrated unit. The second transfer unit 40 is movable by a contact/separation mechanism 401 in directions such that the second transfer belt 26, which is looped over the second transfer roller 27, is brought into contact with and separated from the intermediate transfer belt 20.
As illustrated in
The meandering control roller 41 controls meandering of the second transfer belt 26 by moving, in a direction that intersects the axial direction, the position of an end thereof in the axial direction on the basis of, for example, an output of an edge sensor (not shown) that detects an edge of the second transfer belt 26. A coil spring S, which is an example of an elastic member, applies a force to the meandering control roller 41 in a direction extending from the inside toward the outside of the second transfer belt 26, and thereby a predetermined tension (of, for example, about 40 N) is applied to the second transfer belt 26.
As with the intermediate transfer belt 20, the second transfer belt 26 is, for example, an endless-belt-shaped synthetic resin film that is made from a plastic resin such as a polyimide resin or a polyamide-imide resin.
The second transfer roller 27 functions as a driving roller that drives the second transfer belt 26 in the direction of arrow C at a predetermined speed that is slightly higher than that of the intermediate transfer belt 20. As illustrated in
The torque limiter 52, which is included in the driving system for driving the second transfer roller 27, transmits only a torque that is equal to or smaller than a set value in order to prevent occurrence of an image defect that is so-called banding. However, the set value of the torque limiter 52 should not be too high, because, if the set value of the torque limiter 52 is too high, an image defect (so-called banding) may occur due to a mismatch between the speed of the second transfer belt 26 and the speed of the intermediate transfer belt 20. On the other hand, if the set value of the torque limiter 52 is too low, the effect of preventing occurrence of an image defect (so-called banding) is not sufficiently obtained.
As illustrated in
As illustrated in
Examples of the predetermined timing at which the cleaning blade 54 is brought into contact with the surface of the second transfer belt 26 to clean the surface are as follows: when the image forming apparatus is switched on, when the cumulative number of the recording sheets 28 on which images have been formed reaches a predetermined value, when the cumulative number of revolutions of the photoconductor drum 14 reaches a predetermined value, and when the cumulative number of pixels of images formed on the photoconductor drum 14 reaches a predetermined value.
The cleaning operation using the cleaning blade 54 is performed while, for example, the second transfer unit 40 is separated from the intermediate transfer belt 20 as illustrated in
The cleaning blade 54 is brought into contact with and separated from the surface of the second transfer belt 26 at a predetermined timing in order to prevent the following failures that may occur if the cleaning blade 54 is always in pressed contact with the surface of the second transfer belt 26. If the cleaning blade 54 is made from a synthetic resin such as a polyurethane, friction between the cleaning blade 54 and the surface of the second transfer belt 26 is too high because friction-reducing effect due to toner is not expected because only a small amount of toner adheres to the second transfer belt 26, and thereby a failure such as abrasion of the cleaning blade 54 may occur. If the cleaning blade 54 is made from a metal, although abrasion does not occur, the surface of the second transfer belt 26 may be scratched by the cleaning blade 54, and thereby the life of the second transfer belt 26 may be shortened.
When the cleaning blade 54 scrapes the surface of the second transfer belt 26 at a predetermined scraping depth, the cleaning blade 54 is pressed against the surface with a load of about 15 N over a length of 300 mm in a widthwise direction, which intersects the movement direction of the second transfer belt 26. Thus, a load of about 15N is applied to the second transfer belt 26 when the cleaning blade 54 is in contact with the second transfer belt 26, and no load is applied to the second transfer belt 26 when the cleaning blade 54 is separated from the second transfer belt 26. Therefore, the load applied to the second transfer belt 26 varies widely and thereby the tension of the second transfer belt 26 varies widely depending on whether or not the cleaning blade 54 is in contact with the surface of the second transfer belt 26. However, the variation in the tension of the second transfer belt 26 is accommodated by the coil spring S, which supports the meandering control roller 41, and the like, so that the speed of the second transfer belt 26 only negligibly varies even if the tension of the second transfer belt 26 varies.
As illustrated in
However, the tension of the second transfer belt 26, which decreases due to the contact with the upstream and downstream cleaning brushes 55 and 56 of the cleaning device 43 as described above, is not considerably affected by the upstream and downstream cleaning brushes 55 and 56 because these brushes are in contact with the second transfer belt 26 in substantially a constant manner, except when the cleaning blade 54 is brought into contact with and separated from the second transfer belt 26.
In contrast, when the cleaning blade 54 is brought into contact with and separated from the surface of the second transfer belt 26, a load applied to the second transfer belt 26 varies widely within the range of about 15 N and thereby a large variation in the tension of the second transfer belt 26 occurs. If such a large variation in the tension of the second transfer belt 26 occurs, control of meandering of the second transfer belt 26, which is performed by the meandering control roller 41, may become unstable. Moreover, the state of contact between the second transfer belt 26 and the cleaning brushes 55 and 56 and the cleaning blade 54 may become unstable, which may lead to a cleaning failure.
For this reason, in the present exemplary embodiment, the upstream cleaning brush 55 is disposed so as be in contact with a part of the surface of the second transfer belt 26 that is supported by the first support roller 44, and the downstream cleaning brush 56 is disposed so as to be in contact with a part of the surface of the second transfer belt 26 that is supported by the fourth support roller 47. Examples of residual substances remaining on the surface of the second transfer belt 26 include toner and toner additives, which have been transferred from the intermediate transfer belt 20, and paper dust of the recording sheet 28. The toner transferred from the intermediate transfer belt 20 includes toner that is charged with the negative polarity, which is the normal charge polarity; and toner that is charged with the positive polarity, which is opposite to the normal charge polarity, due to application of transfer biases at the first transfer position and the second transfer position.
As illustrated in
The upstream cleaning brush 55, which is disposed on the upstream side in the movement direction of the second transfer belt 26, primarily removes residual toner adhering to the second transfer belt 26 and charged with the positive polarity, which is opposite to the normal charge polarity of toner. For this purpose, a bias voltage having the negative polarity, which is the same as the normal charge polarity, is applied to the upstream cleaning brush 55 by a first bias power supply 59. The downstream cleaning brush 56, which is disposed on the downstream side in the movement direction of the second transfer belt 26, primarily removes residual toner adhering to the second transfer belt 26 and charged with the negative polarity, which is the same as the normal charge polarity. For this purpose, a bias voltage having the positive polarity is applied to the downstream cleaning brush 56 by a second bias power supply 60. Alternatively, a bias voltage having the positive polarity, which is opposite to the normal charge polarity of toner, may be applied to the upstream cleaning brush 55, which is disposed on the upstream side in the movement direction of the second transfer belt 26; and a bias voltage having the negative polarity, which is the same as the normal charge polarity of toner, may be applied to the downstream cleaning brush 56, which is disposed on the downstream side in the movement direction of the second transfer belt 26. However, because toner that adheres to the second transfer belt 26 is more likely to have the opposite polarity due to application the first transfer bias voltage or the second transfer bias voltage, the toner may be first removed by applying a negative bias voltage to the upstream cleaning brush 55.
Recovery rollers 61 and 62 are disposed so as be in contact with the back sides of the two cleaning brushes 55 and 56. The recovery rollers 61 and 62 are metal rollers or metal brush rollers that are, for example, grounded. The recovery rollers 61 and 62 recover residual substances such as toner, which have been removed by the two cleaning brushes 55 and 56, by electrostatically attracting the residual substances. Then, recovery blades 63 and 64, which are in pressed contact with the surfaces of the recovery rollers 61 and 62, scrape off the residual substances from the recovery rollers 61 and 62, and the residual substances are contained in a housing 69 of the cleaning device 43, which also serves as a recovery container. As necessary, the recovery rollers 61 and 62 are rotated in directions opposite to the rotation directions of the cleaning brushes 55 and 56 by the driving motors 57 and 58 through gears or the like. Alternatively, toner and the like may be recovered from the two cleaning brushes 55 and 56 not by using the recovery rollers 61 and 62 but by using bar-shaped or plate-shaped flicker members that are disposed so as to be in contact with surfaces of the cleaning brushes 55 and 56.
Among the two cleaning brushes 55 and 56, the upstream cleaning brush 55 is disposed so as to be in contact with a part of the surface of the second transfer belt 26 that is supported by the first support roller 44 with a constant load that is in a predetermined range. The cleaning brush 55 rotates in a direction opposite to the movement direction of the surface of the second transfer belt 26. Therefore, the upstream cleaning brush 55, which is rotated in the opposite direction while being in pressed contact with the surface of the second transfer belt 26, applies a substantially constant load to the second transfer belt 26. Even if the tension of the second transfer belt 26 varies when the cleaning blade 54, which is disposed downstream of the upstream cleaning brush 55, is brought into contact with and separated from the surface of the second transfer belt 26, the variation in the tension of the second transfer belt 26 is prevented from transmitted upstream.
Among the two cleaning brushes 55 and 56, the downstream cleaning brush 56 is disposed so as to be in contact with a part of the surface of the second transfer belt 26 that is supported by the fourth support roller 47 with a constant load that is in a predetermined range. If the tension of the second transfer belt 26 varies when the cleaning blade 54, which is located upstream of the downstream cleaning brush 56, is brought into contact with and separated from the surface of the second transfer belt 26, the contact state of the downstream cleaning brush 56 is changed from a first contact state to a second contact state by changing at least one of the rotation speed and the rotation direction of the cleaning brush 56 in accordance with the movement of the cleaning blade 54 with which the cleaning blade 54 is brought into contact with and separated from the surface of the second transfer belt 26. Thus, the downstream cleaning brush 56 serves to reduce the variation in the tension of the second transfer belt 26 when the cleaning blade 54 is brought into contact with and separated from the second transfer belt.
To be specific, as illustrated by a solid line in
On the other hand, as illustrated in
With the structure described above, the image forming apparatus including the cleaning device according to the present exemplary embodiment is capable of preventing a variation in the tension of the endless belt, which may occur when the cleaning member is brought into contact with and separated from the surface of the endless belt, in the following manner.
That is, as illustrated in
As illustrated in
As illustrated in
To prevent this, as illustrated in
As illustrated in
Therefore, toner charged with the polarity opposite to the normal charge polarity and toner charged with the normal charge polarity, which adhere to the surface of the second transfer belt 26, are removed from the surface of the second transfer belt 26 by a physical scraping effect due to the rotation of the two cleaning brushes 55 and 56 and the electrostatic attraction force. Then, the toner is recovered into the housing 69 of the cleaning device 43.
At this time, as illustrated by a solid line in
As described above, with the image forming apparatus, toner adhering to the surface of the second transfer belt 26 and charged with the polarity opposite to the normal charge polarity and toner adhering to the surface of the second transfer belt 26 and charged with the normal charge polarity are removed by the two cleaning brushes 55 and 56. However, residual substances such as toner additives and paper dust, whose particle diameter is smaller than that of the toner adhering to the surface of the second transfer belt 26, may not be sufficiently removed by the two cleaning brushes 55 and 56, and the residual substances may gradually become deposited on the surface of the second transfer belt 26 and adhere to the surface in a film-like shape.
To prevent this, as illustrated in
Residual substances, such as toner additives and paper dust, adhering to the surface of the second transfer belt 26 in a film-like shape are reliably removed by the cleaning blade 54, which is pressed into contact with the surface of the second transfer belt 26. However, when the cleaning blade 54 is pressed into contact with the surface of the second transfer belt 26, a load applied to the second transfer belt 26 is increased, and variation in the tension of the second transfer belt 26 occurs.
When variation in the tension of the second transfer belt 26 occurs, the meandering control roller 41 may fail to control meandering of the second transfer belt 26. Moreover, the cleaning performance of the cleaning blade 54 of the cleaning device 43 and the two cleaning brushes 55 and 56 may decrease.
To prevent this, in the present exemplary embodiment, as illustrated in
In the present exemplary embodiment, if switching the rotation speed of the downstream cleaning brush 56 to the second speed, which is lower than the normal speed, is ineffective, the rotation direction of the downstream cleaning brush 56 is changed to the opposite direction, which is opposite to the normal rotation direction, to assist driving of the second transfer belt 26. Thus, a large variation in the tension of the second transfer belt 26, which may occur when the cleaning blade 54 is pressed into contact with the surface of the second transfer belt 26, is more reliably prevented.
When the rotation speed and the rotation direction of the cleaning brush 56 are changed, a physical force F applied by the downstream cleaning brush 56 to the second transfer belt 26 changes as illustrated in
As is clear from
That is, in the second exemplary embodiment, as illustrated in
In this case, the contact/separation mechanism 401 is not necessary, so that the structure of the image forming apparatus is simplified. Moreover, it is not necessary to make the second transfer belt 26 be separable from the intermediate transfer belt 20, and thereby the productivity of the image forming apparatus is increased.
Description of other structures and functions, which are the same as those of the first exemplary embodiment, will be omitted.
In the exemplary embodiments described above, as illustrated in
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2011-264624 | Dec 2011 | JP | national |