Cleaning device and ink-jet printer

Information

  • Patent Grant
  • 6769758
  • Patent Number
    6,769,758
  • Date Filed
    Thursday, April 5, 2001
    23 years ago
  • Date Issued
    Tuesday, August 3, 2004
    20 years ago
Abstract
A cleaning device for cleaning a nozzle surface of an ink-jet head has a first wiping member for wiping a nozzle surface of an ink-jet head and a second wiping member for wiping the first wiping member, and a lever driving mechanism for moving the first wiping member between a retracted position located away from the nozzle surface and a wiping position for wiping the nozzle surface. The second wiping member is formed of an elastic body and is arranged within a moving path of the first wiping member, so that it contacts with the first wiping member for only a limited period, whereby reducing in wear of these wiping members.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a cleaning device for wiping a nozzle surface of an ink-jet head in an ink-jet printer, and an ink-jet printer employing the cleaning device.




2. Description of the Related Art




An ink-jet printer performs printing on a printing paper by ejecting ink droplets from respective ink nozzles of an ink-jet head. Upon occurrence of clogging of respective ink nozzles, printing quality can be lowered, and, in worst case, printing becomes impossible. Clogging of the ink nozzle can be caused when the ink in the ink nozzle is dried to increase viscosity or when paper dust deposits on the nozzle surface where the ink nozzles are arranged.




Therefore, a cleaning device is mounted in the ink-jet printer. A carriage mounting the ink-jet head is regularly moved to the position to oppose the cleaning device which is positioned out of printing range. Then, the cleaning device is used to wipe the nozzle surface and discharge ink of increased viscosity from the ink nozzles.




The typical cleaning device includes a lock lever for locking the ink-jet head carried by the carriage at a cleaning position, a head cap for covering the nozzle surface of the ink-jet head locked at the cleaning position, an ink suction pump for forcedly sucking the ink from respective ink nozzles in the condition where the head cap is fitted, and a wiper blade formed with a rubber plate or the like for wiping the nozzle surface. The wiper blade is moved to a wiping position capable of contacting with the nozzle surface only when the nozzle surface is wiped, so that the wiper blade is prevented from unnecessary wearing. On the other hand, the lock lever and the wiper blade are driven by a driving motor of an ink suction pump from a viewpoint of down-sizing of the device and whereby for obtaining compact ink-jet printer.




As the wiper blade in the cleaning device of the ink-jet printer, one has been proposed in Japanese Unexamined Patent Publication No. Showa 62-251145. In this publication, the wiper blade includes a main blade constructed rotatably and a sub-blade fixed within a region where the main blade moves. The ink or the like deposited on the main blade is wiped by the sub-blade for preventing the deposit on the main blade from being transferred back to the nozzle surface.




It has also been proposed that, from a viewpoint of preventing clogging of the ink nozzles, the ink-jet printer has the ink-jet head whose nozzle surface faces downward. In the ink-jet printer of this type, with respect to the ink-jet head which reciprocates horizontally with the nozzle surface facing downward, the wiper blade is elevated upward from below to wipe the nozzle surface.




However, in the cleaning device which moves the wiper blade up and down, since the ink-jet head passes horizontally above the device, paper dust or the like deposited on the nozzle surface may drop into an opening portion where the wiper blade passes, to deposit on the wiper blade. Deposition of foreign matter, such as paper dust, on the wiper blade is not desirable because it may be deposited again on the nozzle surface during wiping of the nozzle surface.




Therefore, the sub-blade may be placed within the motion path of the wiper blade and wipe it for removing the foreign matter deposited thereon. However, unless the contact condition is appropriately controlled, both blades may wear within a short period. Of course, wearing of the wiper blade can be reduced by shifting the sub-blade. However, since the member for moving the sub-blade has to be provided separately, the number of parts is inherently increased.




Next, in the conventional cleaning device, in view of reduction in number of parts of the device and down-sizing of the printer, the driving motor of the ink suction pump is also used as a driving source of the wiper blade and the lock lever. In general, rotational torque of the driving motor of the ink suction pump is taken out via a friction type power transmission path to deliver to the wiper blade and the lock lever.




When the wiper blade is moved in a condition that it is contacted with the sub-blade, due to a frictional force between the blades, a large driving force is required in comparison with the case where the wiper blade is driven to move without contacting the sub-blade. The conventional driving mechanism is, however, designed to transmit power only by means of frictional force, so that the driving force for the wiper blade tends to lack, and the wiper blade may not be moved. Likewise, if an external force acts on the wiper blade while moving in a certain cause, the wiper blade may be impossible to move.




In order to obtain a reliable movement of the wiper blade, the driving force to be transmitted must be increased. However, since the friction type power transmission path to the wiper blade and the lock lever from the ink suction pump is common, the driving force for moving the lock lever is inevitably increased. If the driving force for moving the lock lever becomes large, the following problem may occur.




Namely, since position control of the ink-jet head is performed precisely, it can be expected that the ink-jet head may be accurately positioned in opposition to the cleaning device. However, when unexpected external force is applied, the ink-jet head may stop at a position offsetting from the position opposing to the cleaning device, namely a locking position by the lock lever. In such cases, when the driving force for moving the lock lever is excessively large, the ink-jet head may be damaged by the lock lever.




On the other hand, the friction type power transmission path for transmitting the driving force to the lock lever and the wiper blade, is constituted by a rotary type friction clutch to which a rotational torque of the driving motor of the ink suction pump is transmitted, and a cam mechanism for converting rotational motion into a reciprocal motion of the wiper blade and the lock lever.




In this case, depending upon rotational amount of the friction clutch, the wiper blade and the lock lever are moved linearly in reverse directions. Namely, when the cleaner lever is moved to a wiping position where it contacts with the nozzle surface, the lock lever is moved to an unlock position, and conversely, when the wiper blade is moved away from the nozzle surface, the lock lever reaches a lock position for locking the ink-jet head.




Since the wiping position of the wiper blade and the lock position of the lock lever are predetermined, strokes of respective levers are determined on the basis of these positions. As a result, the stoke of each lever has to be excessively long in comparison with a case where both levers are moved by separate power transmission paths or driving sources, which is undesirable for down-sizing of the cleaning device.




SUMMARY OF THE INVENTION




An object of the present invention is to provide a cleaning device having a main wiper member for wiping a nozzle surface of an ink-jet head and a sub-wiper member for wiping the main wiper member, which is capable of reducing wearing of these wiper members.




Another object of the present invention is to provide a cleaning device having a main wiper member for wiping a nozzle surface of an ink-jet head and a sub-wiper member for wiping the main wiper member, which can prevent deposition of foreign matter, such as paper dust dropping from the ink-jet head, on the main wiper member.




A further object of the present invention is to provide a cleaning device having a wiper member for wiping a nozzle surface of an ink-jet head, which is able to certainly move the wiper member between a wiping position and a retracted position thereof.




A still further object of the present invention is to provide a cleaning device which converts a rotational torque taken out via a friction clutch from a common rotational driving source into a linear motion of a lock lever for locking an ink-jet head via a cam mechanism and into a linear motion of a cleaner lever mounted on the wiper member for wiping a nozzle surface of the ink-jet head, for restricting strokes of a lock lever and a cleaner lever to be minimum.




A yet further object of the present invention is to provide an ink-jet printer having the novel cleaning device as set forth above.




According to the first aspect of the present invention, a cleaning device for cleaning a nozzle surface of an ink-jet head, comprises:




a first wiping member for wiping the nozzle surface;




a cleaner lever for supporting the first wiping member;




a lever driving mechanism for moving the first wiping member between a retracted position located away from the nozzle surface and a wiping position for wiping the nozzle surface; and




a flat plate form second wiping member formed of an elastic body arranged within a motion path of the first wiping member so as to contact with the first wiping member.




With the cleaning device according to the present invention, within a limited part of the moving path of the first wiping member between the wiping position and the retracted position, the first wiping member contacts with the second wiping member. This means that the contact period of time between the first and second wiping members is short, and excessive wearing of both wiping members can be prevented.




In the cleaning device according to the present invention, when the first wiping member is designed to move between the retracted position and the wiping position located above the retracted position, it is preferable that the second wiping member is placed at a position above the retracted position and below the wiping position of the first wiping member.




With this constitution, when the first wiping member is retracted, the second wiping member is located above the first wiping member to close the moving path of the first wiping member. Therefore, even when foreign matter, such as paper dust or the like falls down from the ink-jet head passing above the first wiping member, such foreign manner will never deposit on the first wiping member.




The cleaner lever may have a third wiping member which is able to contact with the second wiping member while the cleaner lever is moving. With such constitution, since the foreign matter deposited on the second wiping member is wiped by the third wiping member, the foreign matter deposited on the second wiping member will never transferred to the first wiping member again.




The second wiping member may be supported by a first supporting member at a side surface on the side of the retracted position of the first wiping member and by a second supporting member at a side surface on the side of the wiping position of the first wiping member, wherein a length of a portion of the second wiping member projecting from the first supporting member is shorter than the that of a portion of the second wiping member projecting from the second supporting member.




When the length of the projected portions of the second wiping member is different at both sides, in comparison with the case where it is the same at both sides, it is possible to reduce the frictional force applied on the second wiping member when the first wiping member is moved in a condition that it is contacted with the second wiping member. This can reduce wearing of the second wiping member, permitting a long period of use of the second wiping member.




A tip end surface of the first wiping member may contact with the side surface of the second wiping member. By this, the second wiping member can be certainly contacted with the edge portion of the first wiping member, and at the same time, it can be deflected at the edge portion of the first wiping member. Therefore, the foreign matter deposited on the edge portion of the first wiping member can be uniformly removed.




The lever driving mechanism may includes:




a rotary driving source;




a gear train to be driven by the rotary driving source;




a friction type clutch lever which is frictionally engaged with one of gears constituting the gear train by means of a predetermined biasing force and is arranged coaxially with the gear;




a first cam mechanism for converting rotation of the clutch lever into movement of the cleaner lever; and




a tooth portion formed on the clutch lever which engages with the gear train when the clutch lever is within a predetermined rotational angular range.




The thus constituted lever driving mechanism is able to transmit the driving force of the rotary driving source via either one of or both of frictional engagement and mechanical engagement. Therefore, by appropriately setting the range to transmit the driving force through mechanical engagement, even when external force act on the cleaner lever, reliable movement thereof can be assured.




The tooth portion may come into engagement with the gear train when the first wiping member is being moved in a condition contacting with the second wiping member.




When the first and second wiping members become contacted with each other, the cleaner lever supporting the first wiping member bears large resistance from the second wiping member. This may cause to deteriorate steady movement of the cleaner lever driven by frictional transmission of the driving force. However, in the present invention, where the first and second wiping members are in contact, driving force is also transmitted via mechanical engagement to the cleaner lever. Therefore, even when resistance from the second wiping member is applied, the cleaner lever can be moved steadily.




The first cam mechanism may include a first cam follower formed in the cleaner lever, a first cam surface contacting with the first cam follower while the cleaner lever moves to the wiping position, and a second cam surface contacting with the first cam follower while the cleaner lever moves to the retracted position, wherein the first and second cam surfaces are arranged at a predetermined angle with respect to each other.




Since the cleaner lever is moved with the cam surfaces having different angles, the cleaner lever can be certainly moved to the desired direction.




The cleaning device may further comprise a lock lever for locking the ink-jet head at a predetermined position, wherein the lever driving mechanism includes a second cam mechanism for converting a rotational force of the rotary driving source into a driving force for moving the lock lever between a locking position for fixing the ink-jet head and an unlocking position away from the ink-jet head.




In this case, it is desirable that the first cam mechanism includes a first cam follower formed in the cleaner lever, the first cam follower following a first cam region for reciprocally moving the cleaner lever between the wiping position and the retracted position according to rotation of the clutch lever, and a second cam region for holding the cleaner lever at the retracted position even when the clutch lever is rotated. It is also desirable that the second cam mechanism includes a second cam follower formed in the lock lever, the second cam follower following a third cam region for reciprocally moving the lock lever between the locking position and the unlocking position according to rotation of the clutch lever and a fourth cam region for holding the lock lever at the unlocking position even when the clutch lever is rotated.




With this constitution, since the cleaner lever and the lock lever can be moved only by a necessary amount of distance, the stoke can be necessary minimum value, to contribute to down-sizing of the device.




Particularly, it is preferred that while the first cam follower is operated in the first cam region, the second cam follower is operated in the fourth cam region, and when the first cam follower is shifted in operation into the second cam region, the second cam follower is shifted into operation in the third cam region.




In the typical constitution, the second cam region is defined by an arc shaped cam groove centered at a rotational center of the clutch lever, and the fourth cam region is also defined by an arc shaped groove centered at the rotational center of the clutch lever.




On the other hand, the cleaning device may further comprise an ink pump device for sucking ink from ink nozzles of the ink-jet head, wherein the rotary driving source is a motor for driving the ink pump device.




Next, according to the present invention, there is provided a cleaning device for cleaning a nozzle surface of an ink-jet head, which comprises:




a first wiping member for wiping the nozzle surface;




a cleaner lever for supporting the first wiping member; and




a lever driving mechanism moving the first wiping member between a retracted position located away from the nozzle surface and a wiping position for wiping the nozzle surface; wherein the lever driving mechanism includes:




a rotary driving source;




a gear train to be driven by said rotary driving source;




a friction type clutch lever which is frictionally engaged with one of gears constituting the gear train by means of a predetermined biasing force and is arranged coaxially with the gear;




cam mechanism for converting rotation of the clutch lever into movement of the cleaner lever; and




a tooth portion formed on said clutch lever which engages with the gear train when the clutch lever is in a predetermined rotational angular range.




It is preferable that the cam mechanism includes a first cam follower formed in the cleaner lever, a first cam surface contacting with the first cam follower while the cleaner lever moves to said wiping position, and a second cam surface contacting with the first cam follower while the cleaner lever moves to the retracted position, and wherein the first and second cam surfaces are arranged at a predetermined angle with respect to each other.




It is also preferable that the cam mechanism includes a cam follower formed in the cleaner lever, the cam follower following a first cam region for reciprocally moving the cleaner lever between the wiping position and the retracted position according to rotation of said clutch lever, and a second cam region for holding the cleaner lever at the retracted position even when the clutch lever is rotated.




The second cam region can be defined by an arc shaped cam groove centered at a rotational center of the clutch lever.




Next, according to the present invention, there is provided a cleaning device for cleaning a nozzle surface of an ink-jet head, which comprises:




a lock lever for locking said ink-jet head at a predetermined position; and,




a lever driving mechanism for moving the lock lever between a locking position for fixing the ink-jet head and an unlocking position away from the ink-jet head, wherein




the lever driving mechanism includes:




a rotary driving source;




a gear train to be driven by said rotary driving source;




a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with the gear;




cam mechanism for converting rotation of the clutch lever into movement of the lock lever; and




a tooth portion formed on said clutch lever which engages with the gear train when the clutch lever is in a predetermined rotational angular range.




Here, it is preferable for the cam mechanism to have a cam follower formed in the lock lever, the cam follower following a third cam region for reciprocally moving the lock lever between the locking position and the unlocking position according to rotation of the clutch lever and a fourth cam region for holding the lock lever at the unlocking position even when the clutch lever is rotated.




The fourth cam region can be defined by an arc shaped groove centered at rotational center of the clutch lever.




While, according to the present invention, there is provided a cleaning device for cleaning a nozzle surface of an ink-jet head, which comprises:




a first wiping member for wiping the nozzle surface;




a cleaner lever for supporting the first wiping member;




a lock lever for locking the ink-jet head at a predetermined position; and




a lever driving mechanism which moves the first wiping member between a retracted position located away from the nozzle surface and a wiping position for wiping the nozzle surface, and moves the lock lever between a locking position for fixing the ink-jet head and an unlocking position away from the ink-jet head, wherein




the lever driving mechanism includes:




a rotary driving source;




a gear train to be driven by said rotary driving source;




a friction type clutch lever which is frictionally engaged with one of gears constituting the gear train by means of a predetermined biasing force and is arranged coaxially with the gear;




a first cam mechanism for converting rotation of the clutch lever into movement of the cleaner lever; and




a second cam mechanism for converting rotation of the clutch lever into movement of the lock lever.




It is preferable for the first cam mechanism to include a first cam follower formed in the cleaner lever, the first cam follower following a first cam region for reciprocally moving the cleaner lever between the wiping position and the retracted position according to rotation of the clutch lever, and a second cam region for holding the cleaner lever at the retracted position even when the clutch lever is rotated. Likewise, the second cam mechanism preferably includes a second cam follower formed in the lock lever, the second cam follower following a third cam region for reciprocally moving the lock lever between the locking position and the unlocking position according to rotation of the clutch lever and a fourth cam region for holding the lock lever at the unlocking position even when the clutch lever is rotated.




It is also preferable that, while the first cam follower is operated in the first cam region, the second cam follower is in the fourth cam region, and when the first cam follower is moved into the second cam region, the second cam follower is shifted into operation in the third cam region.




According to the second aspect of the invention, an ink-jet printer is provided, which comprises:




an ink-jet head;




a cleaning device which is arranged offsetting from a printing region of the ink-jet head and is constructed as set forth above; and




a carriage carrying the ink-jet head for reciprocally moving along a moving path passing through the printing region and a position opposing to the cleaning device.




By the ink-jet printer according to the present invention, since cleaning of the nozzle surface of the ink-jet head can be certainly performed by the cleaning device, printing can be realized without degradation of printing quality due to clogging of nozzles or the like. In addition, since the cleaning device can be installed in relatively narrow space, down-sizing of the ink-jet printer can also be realized.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be understood more fully from the detailed description given hereinafter and from the accompanying drawings of the preferred embodiment of the present invention, which, however, should not be taken to be limitative to the invention, but are for explanation and understanding only.




In the drawings:





FIG. 1

is a perspective view showing a cleaning device and an ink-jet head in an ink-jet printer having the cleaning device, to which the present invention is applied;





FIG. 2

is an exploded perspective view showing the major portion of the cleaning device of

FIG. 1

;





FIG. 3

is a general front elevation of the cleaning device and the ink-jet head illustrated in a position where an elastic blade is in a retracted position;





FIG. 4

is a general front elevation of the cleaning device and the ink-jet head illustrated in a position where an elastic blade is in a wiping position;





FIGS. 5A and 5B

are perspective views showing a cleaner lever and the elastic blade mounted in the cleaning device of

FIG. 1

;





FIGS. 6A

,


6


B and


6


C are an explanatory illustrations showing wiping operation of a sub-blade in the cleaning device of

FIG. 1

;





FIG. 7

is an illustration showing positional relationship between a first cam mechanism, a second cam mechanism and a tooth portion of a clutch lever of the cleaning device of

FIG. 1

;





FIG. 8

is an illustration showing positional relationship between a first cam mechanism, a second cam mechanism and a tooth portion of a clutch lever of the cleaning device of

FIG. 1

, illustrated in a position where only cleaner lever is placed in a retracted position;





FIG. 9

is an illustration showing positional relationship between a first cam mechanism, a second cam mechanism and a tooth portion of a clutch lever of the cleaning device of

FIG. 1

, illustrated in a position where the cleaner lever and the lock is placed in their retracted positions;





FIG. 10

is n illustration showing positional relationship between a first cam mechanism, a second cam mechanism and a tooth portion of a clutch lever of the cleaning device of

FIG. 1

, illustrated in a position where only the lock lever is placed in its retracted position;





FIG. 11

is an illustration showing positional relationship between a first cam mechanism, a second cam mechanism and a tooth portion of a clutch lever of the cleaning device of

FIG. 1

, illustrated in a position where only the cleaner lever is placed in its wiping position; and





FIG. 12

is an illustration showing positional relationship between a first cam mechanism, a second cam mechanism and a tooth portion of a clutch lever of the cleaning device of

FIG. 1

, illustrated in a position where the lock lever abuts against the side of the ink-jet head before it reaches its wiping position.











DESCRIPTION OF THE PREFERRED EMBODIMENT




The present invention will be discussed hereinafter in detail in terms of the preferred embodiment of a cleaning device and an ink-jet printer according to the present invention with reference to the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be obvious, however, to those skilled in the art that the present invention may be practiced without these specific details. In other instance, well-known structure are not shown in detail in order to avoid unnecessary obscurity of the present invention.




An overall structure of an ink-jet printer is similar to the conventionally known serial type ink-jet printer, and therefore in this disclosure, illustration and disclosure thereof is eliminated. Hereinafter, only a cleaning device and a carriage mounting an ink-jet head will be illustrated and disclosed.





FIG. 1

is a perspective view showing a cleaning device and an ink-jet head in an ink-jet printer having a cleaning device, to which the present invention is applied, and

FIG. 2

is an exploded perspective view showing the major portion of the cleaning device of FIG.


1


.




At first, with reference to

FIGS. 1 and 2

, the overall structure of the ink-jet head


2


and the cleaning device


10


in the shown embodiment of the ink-jet printer will be discussed. The ink-jet head


2


is mounted on a carriage


82


in a condition that a nozzle surface


3


faces downward. The carriage


82


carrying the ink-jet head


2


can be moved reciprocally along a horizontal direction as indicated by arrows A and B in FIG.


1


.




The cleaning device


10


is arranged at a position out of a printing region by the ink-jet head


2


. The cleaning device


10


includes a head cap


12


, an elastic main blade


26


as a first wiping member for wiping the nozzle surface


3


of the ink-jet head


2


, an elastic sub-blade


51


as a second wiping member for wiping the elastic wiping blade


26


, a pump unit


14


for sucking ink from ink nozzles (not shown) arranged on the nozzle surface


3


of the ink-jet head


2


, and a lock lever


61


for locking the carriage


82


mounting the ink-jet head


2


at a position (cleaning position) shown in

FIGS. 1 and 2

.




As the ink-jet head


2


approaches the cleaning position as shown in

FIGS. 1 and 2

, the head cap


12


is moved upward guided by a cam groove


11




b


formed in the housing


11


, to fit on the nozzle surface


3


. After positioning the ink-jet head


2


at the cleaning position and fitting the head cap


12


on the nozzle surface


3


, the lock lever


61


is moved upward to lock the carriage


82


. At this locked condition, the pump unit


14


is driven, so that ink can be sucked and discharged from the ink nozzles arranged on the nozzle surface


3


. On the other hand, by placing the lock lever


61


at an unlocking position, the elastic wiping blade


26


as the first wiping member is moved at a height to contact with the nozzle surface


3


. At this condition, the ink-jet head


2


is reciprocally moved to allow the elastic wiping blade


26


to wipe foreign matter, such as paper dust or the like, deposited on the nozzle surface


3


. While, the elastic sub-blade is located horizontally on the moving path of the elastic wiping blade


26


, which contacts with the elastic wiping blade


26


passing therethrough and wipes the foreign matter deposited on the elastic wiping blade


26


.





FIGS. 3 and 4

are general front elevations of the cleaning device and the ink-jet head, in which

FIG. 3

shows the elastic wiping blade


26


in its retracted position and

FIG. 4

shows the elastic wiping blade


26


in its wiping position for wiping the nozzle surface


3


.

FIGS. 5A and 5B

are a perspective view showing a cleaner lever, on which the elastic wiping blade


26


is mounted, and

FIGS. 6A

,


6


B and


6


C are a partial side elevation showing a relationship of position between the elastic wiping blade and the elastic sub-blade.




Referring to

FIGS. 1

to


6


C, the detailed structure of the shown embodiment of the cleaning device


10


will be discussed. The shown embodiment of the cleaning device


10


has a housing


11


of compressed box shape and formed of a synthetic resin or the like. The housing


11


is mounted vertically on a device frame (not shown) of the ink-jet printer


1


. From the upper end portion of the housing


11


, a horizontal frame portion


11




a


is projected toward the back surface side of the housing. On the horizontal frame portion


11




a


, a box shaped head cap


12


is mounted in a condition facing upward and movable between an upper position for covering the nozzle surface


3


and a lower retracted position.




At the vertically intermediate position of the housing


11


, a circular concave portion


13


projecting backward is formed, in which a generally cylindrical pump unit


14


(ink suction pump) is accommodated. A driving support shaft


15


of the pump unit


14


is rotatable in forward and reverse directions as shown by arrows C and D (see FIG.


2


).




On the lower side position of the pump unit


14


, a driving motor


71


(rotary driving source) is mounted on the housing


11


, whose output shaft


71




b


projects in parallel to the driving support shaft


15


and is fixedly provided on its tip end with a pinion gear


71




a


. A stepped gear


72


is also mounted rotatably on the housing


11


, which is formed with a large diameter gear


72




a


and a small diameter gear


72




b


, these gears being formed coaxially. The large diameter gear


72




a


is meshed with a pinion gear


71




a


, while the small diameter gear


72




b


is meshed with a pump gear


16


which is coaxially mounted on the driving support shaft


15


of the pump unit


14


. Accordingly, a rotational torque of the driving motor


71


is transmitted to the pump gear


16


via the pinion gear


71




a


and stepped gear


72


.




The pump unit


14


is formed with engaging portions


14




a


on the ring shaped end surface. In opposition, an engaging portion


16




a


is formed on the side surface of the pump gear


16


. Accordingly, after the pump gear


16


is rotated to engage its engaging portion


16




a


with the engaging portion


14




a


of the pump unit


14


, it drives to rotate the pump unit


14


.




(Clutch Lever)




Next, on the driving support shaft


15


of the pump unit


14


, a friction engagement type clutch lever


17


is pivotably mounted in the condition superposed on the surface side of the pump gear


16


. The clutch lever


17


has a clutch portion


17




b


having a substantially disk shape of the substantially same size as the pump gear


16


, and a fan-shaped lever portion


17




c


formed integrally on and extending radially from the clutch portion


17




b.






The clutch portion


17




b


of the clutch lever


17


is biased by a compression coil spring


81


toward the side surface of the pump gear


16


, so that it is rotated by and together with the pump gear


16


unless slip is occurred between its frictional surface and the corresponding frictional surface of the pump gear


16


. Thus, the clutch lever


17


is driven by the driving motor


71


via a gear train comprised by the pinion gear


71




a


, stepped gear


72


and pump gear


16


, and via frictional engagement between it and the pump gear


16






As can be seen from

FIGS. 2 and 3

, on the outer peripheral end surface of the clutch portion


17




b


of the clutch lever


17


, a tooth portion


17




m


(meshing portion) engageable with the small gear


72




b


of the stepped gear


72


, is formed over a predetermined angular range. Over the predetermined rotational angular range of the clutch lever


17


, the tooth portion


17




m


is held in meshed condition with the small gear


72




b


. In this meshed condition, the clutch lever


17


is driven by the driving motor


71


via meshing engagement of the tooth portion


17




m


and the stepped gear


72


, as well as via the frictional engagement.




It should be noted that as can be seen from

FIGS. 1

to


3


, on the upper end portion and the lower end portion of the housing


11


, a first engaging portion


21


and a second engaging portion


22


defining upper and lower pivoting ends of the lever portion


17




c


of the clutch lever


17


is formed.




(Elastic Wiping Blade and Elastic Sub-blade)




Next, a cleaner lever


25


, on a tip end of which the elastic wiping blade


26


is mounted, is placed on the surface side of the lever portion


17




c


of the clutch lever


17


and is partly overlapped with the lever portion


17




c


. As shown in

FIGS. 5A and 5B

, the cleaner lever


25


has a main body portion


25




a


formed of synthetic resin into substantially L-shaped flat plate form, for example. The main body portion


25




a


includes a lever portion


25




b


extending in a longitudinal direction and an arm portion


25




c


formed to extend substantially perpendicular to the lever portion


25




b.






On the arm portion


25




c


of the cleaner lever


25


, the elastic wiping blade


26


(first wiping member) is mounted. The elastic wiping blade


26


is an essentially rectangular plate formed by laminating a rubber material


26




a


of a predetermined thickness (for example, about 0.8 mm) and a felt material


26




b


of a predetermined thickness (for example, about 0.7 mm). A tip end face of the elastic wiping blade


26


serves as a first blade portion. The rubber material


26




a


has a wiping function for wiping off the ink or the like on the nozzle surface


3


, and the felt material


26




b


has a rubbing function for wiping to absorb the ink or the like on the nozzle surface


3


.




The lower end edge portion of the elastic blade


26


is mounted on the arm portion


25




c


in a condition overlapping with the arm portion


25




c


of the cleaner lever


25


with a predetermined width. The overlapping portion is covered with a metal blade


27


(third wiping member). The metal blade


27


is a thin plate slightly greater than the arm portion


25




c


of the cleaner lever


25


and is arranged to be tightly fitted to the rubber material


26




a


of the elastic wiping blade


26


.




The lower end edge of the metal blade


27


is slightly extended from the lower end edge of the arm portion


25




c


of the cleaner lever


25


. The extended portion serves as the third blade portion


27




a


. The third blade portion


27




a


is parallel to the first blade portion


26




c


of the elastic wiping blade


26


.




The thus constituted cleaner lever


25


is movable vertically along first and second guide grooves


41


and


42


formed in the housing


11


. The first guide groove


41


extends vertically from the intermediate position of the housing


11


to the upper portion of the housing


11


. In the upper end portion of the guide groove


41


, a corner groove


43


extending horizontally to the first engaging portion


21


, is continuously formed.




The second guide groove


42


is formed on the lower side of the first guide groove


41


and extends vertically from the intermediate position of the housing


11


to the lower portion of the housing


11


. These first and second guide grooves


41


and


42


are arranged in parallel with a given distance d1.




The cleaner lever


25


is formed at the end portion on the side of the arm portion


25




a


and at the other end portion of the lever portion


25




b


, with a first supporting projection


31


slidable along the first guide groove


41


and the corner groove


43


, and a second supporting projection


32


slidable along the second guide groove


42


. The cleaner lever


25


in a condition that the first supporting projection


31


and the second supporting projection


32


are inserted into the first and second guide grooves


41


and


42


, is movable vertically along the guide grooves


41


and


42


while maintaining its orientation vertically. The lowermost position of the cleaner lever


25


corresponds to the retracted position, and its uppermost position is the wiping position, at which the nozzle surface


3


can be wiped.




Here, as shown in

FIGS. 1 and 4

, in the condition where the first supporting projection


31


of the cleaner lever


25


is inserted in the corner groove


43


, the elastic wiping blade


26


is projected upward from the head cap


12


of the housing


11


, and the first blade portion


26




c


is positioned upper side of the nozzle surface


3


of the ink-jet head


2


. When the first supporting projection


31


goes into the corner groove


43


, the upper end portion of the cleaner lever


25


moves horizontally. The projecting portion


25




d


located on extension of the arm portion


25




c


and extending from the lever portion


25




b


is laterally engaged with an engaging groove


44


provided at the upper portion of the corner groove


42


.




As shown in

FIG. 3

, a distance d1 between the first guide groove


41


and the second guide groove


42


in the horizontal direction is set to be narrower than the distance d2 between the first supporting projection


31


and the second supporting projection


32


of the cleaner lever


25


in the direction perpendicular to the arm portion


25




d


extends. By this, the elastic wiping blade


26


of the cleaner lever


25


is supported in the condition that the first blade portion


26




c


is tilted by a small angle α (e.g. 5°) with respect to the horizontal direction.




On the other hand, a blade receptacle portion


45


where the elastic wiping blade


26


is retracted, is formed at the side position of the first guide groove


41


in the housing


11


and the lower position of the head cap


12


. The blade receptacle portion


45


is formed into substantially box shape and the upper surface side thereof is formed with an opening portion for permitting the elastic wiping blade


26


to pass through.




The elastic sub-blade


51


(second wiping member) is supported by a blade supporting portion


46


(supporting member) so as to close the opening portion of the receptacle portion


45


(in other words, in a condition blocking the moving path of the elastic wiping blade


26


). The elastic sub-blade


51


is formed into substantially rectangular configuration of rubber material. The length of the second blade portion


51




a


formed on the end edge in the longitudinal direction is set to be greater than the length of the first blade portion


26




c


of the elastic wiping blade


26


.




The blade supporting portion


46


has the second supporting member


47


and the first supporting member


48


. These supporting members


47


and


48


are arranged in parallel with a distance slightly greater than the thickness of the elastic sub-blade


51


. Between the supporting members


47


and


48


, a slit is defined for the elastic sub-blade


51


to insert. The elastic sub-blade


51


is attached to the blade supporting portion


46


by engaging it with a claw portion


49


provided on the inner side of the slit.




As shown in

FIG. 6A

, the elastic sub-blade


51


is projected for a length L1 (for example, about 5 mm) from the tip end of the second supporting member


47


on its upper surface, whereas it is projected for a length L2 (for example, about 7 mm) from the first supporting member


48


on its lower side.




(Lock Lever)




On the upper portion of the housing


11


, a lock lever


61


is arranged at a position adjacent to the cleaner lever


25


. The lock lever


61


is a bar shaped body and is formed at its tip end portion with an engaging portion


61




a


engageable with the carriage


82


mounting the ink-jet head


2


.




The housing


11


is also provided with a third guide groove (not shown) for guiding the lock lever


61


in the vertical direction. The lock lever


61


is guided by the third guide groove to move up and down in a condition that an engaging projection


61




b


formed at the intermediate portion thereof slides along the third guide groove.




(Cam Mechanism and Tooth Portion for Driving Clutch Lever and Lock Lever)




At first, discussion will be given for a first cam mechanism for converting rotating motion of the clutch lever


17


into reciprocating motion of the cleaner lever


25


. On the outer peripheral portion of the lever portion


17




c


of the clutch lever


17


, a first cam groove


17




d


as a component of the first cam mechanism for moving the cleaner lever


25


vertically, is formed. The first cam groove


17




d


is constituted by a first arc shaped cam groove


17




e


formed to have a predetermined center angle at the same radius about a support shaft portion


17




a


of the clutch portion


17




b


and a triangular cam groove


17




f


formed to extent in a substantially triangular region on the side of the support shaft portion


17




a


from the first arc shaped cam groove


17




e


. The triangular cam


17




f


is provided with a first cam surface


17




f




1


for moving the cleaner lever


25


having the elastic wiping blade


26


up to the wiping position, and a second cam surface


17




f




2


for moving the cleaner lever


25


away from the nozzle surface


3


. The first cam surface


17




f




1


and the second cam surface


17




f




2


form a predetermined angle. On the other hand, at the intermediate portion of the lever portion


25




b


of the cleaner lever


25


, a first cam follower


33


is formed which is insertable into and slidable along the first cam groove


17




d.






Next, discussion will be given for the second cam mechanism for converting the rotational motion of the clutch lever


17


into the up and down motion of the lock lever


61


. On the outer peripheral portion of the clutch portion


17




b


of the clutch lever


17


, a second cam groove


17




g


is formed. The second cam groove


17




g


is constituted by a second arc shaped cam groove


17




g




1


, an actuation cam groove


17




g




2


and an engaging groove


17




g




3


.




The second arc shaped cam groove


17




g




1


is arranged to have a predetermined center angle at the same radius about the support shaft portion


17




a


of the clutch portion


17




b


. On the other hand, the actuation cam groove


17




g




2


is formed with a range of the predetermined center angle to have gradually increasing radius from one end in the second arc shaped cam groove


17




g




1


. The amount of increase in radius of the actuation cam groove


17




d




2


corresponds to a stroke length L1 of the engaging portion


61




a


of the lock lever


61


(see

FIG. 8

, to be discussed later). Furthermore, the engaging groove


17




g




3


is formed to extent from the end portion of the actuation cam groove


17




g




2


along a direction substantially perpendicular to the radial direction of the cam groove


17




g




2


. On the other hand, on the lower portion of the lock lever


61


, a second cam follower


61




c


is formed which is inserted in the second cam groove


17




g


and is slidable therealong.




Here, a relationship in position of the clutch lever


17


, the cleaner lever


25


and the lock lever


61


will be discussed with reference to

FIGS. 7

to


12


.




In these drawings,

FIG. 7

is an illustration showing positional relationship among the first cam mechanism, the second cam mechanism and the tooth portion of the clutch lever of the cleaning device of FIG.


1


.

FIGS. 8

,


9


,


10


,


11


and


12


are illustrations showing positional relationship of the cleaner lever


25


and the lock lever


61


, wherein

FIG. 8

shows the position where the cleaner lever


25


is placed in the retracted position,

FIG. 9

shows the cleaner lever


25


and the lock lever


61


is placed in their retracted positions,

FIG. 10

shows the position where only the lock lever


61


is placed in the retracted position,

FIG. 11

shows a condition where the cleaner lever


25


placed in the wiping position is being retracted, and

FIG. 12

shows the position where the lock lever


61


initiates movement from the retracted position to the lock position.




In these drawings, provided that the center angle of the engaging groove


17




g




3


of the second cam groove


17




f


is α01, the center angle of the actuation cam groove


17




g




2


is α02, the sum of the center angles α01 α02 is a rotational angle α1 and the center angle of the first cam groove


17




d


is taken as β1.




In the shown embodiment, the center angle β1 of the first cam groove


17




d


is set to be greater than the rotational angle α1 of the second cam groove


17




g


. The first cam groove


17




d


is set in such a manner that when the second cam follower


61




c


of the lock lever


61


is located at an intersection between the actuation cam groove


17




g




2


and the arc shaped cam groove


17




g




1


of the second cam groove


17




g


, the first cam follower


33


of the cleaner lever


25


comes in contact with the first cam surface


17




f




1


of the triangular cam


17




f


(see FIG.


9


).




Further, provided that a rotational angle of the first cam surface


17




f




1


of the first cam groove


17




d


required for moving the first wiping member


26


of the cleaner lever


25


for a stroke length L2 is β2, the center angle α2 of the second arc shaped cam groove


17




g




1


of the second cam groove


17




g


is set greater than the rotation angle β2.




In addition, the tooth portion


17




m


formed on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


is arranged to have a predetermined angular interval Θo from the first cam surface


17




f




1


of the triangular cam groove


17




f


(see FIG.


7


). The predetermined angle is variable depending upon a relative arrangement with respect to the cleaner lever


25


or the lock lever


61


, but is preferably within a range of 0° to 90°, such as 70°.




Also, the angular range Θ1 where the teeth portion


17




m


is formed is also related to the moving distance of the cleaner lever


25


or the lock lever


61


and various parameters of tooth profile, and is set at about 54°, for example.




(Operation of Cleaning Device)




Next, operation in the shown embodiment of the cleaning device


10


of the ink-jet printer


1


will be discussed.




Non-Printing Condition (Lock Condition)




At first, a non-printing (resting) condition, as shown in

FIG. 8

, the clutch lever


17


stays at a position where it is in contact with the second engaging portion


22


on the lower side of the housing


11


. At this condition, the cleaner lever


25


is in the retracted position lowered from the wiping position by the stroke length L2. The first cam follower


33


of the cleaner lever


25


is located at the upper end of the first arc shaped cam groove


17




e


formed on the outer peripheral portion of the lever portion


17




c


of the clutch lever


17


.




In the non-printing condition, the lock lever


61


is located at the lock position elevated by the stroke length L1 from the retracted position, so that it engages with a lock groove (not shown) provided on the carriage


82


mounting the ink-jet head


2


to lock the ink-jet head


2


(in the shown example, the carriage


82


mounting the ink-jet head


2


is locked). At this time, the second cam follower


61




c


of the lock lever


61


is located within the engaging groove


17




g




3


in the second cam groove


17




g


formed on the outer peripheral portion of the clutch portion


17




b


of the clutch lever


17


.




In this non-printing condition, the tooth portion


17




m


formed on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


is not in engagement with the small diameter gear


72




b


of the steped gear


72


. Accordingly, a driving force from the driving motor


71


is transmitted by a friction force between the clutch portion


17




b


and the pump gear


16


, the friction force being created by a biasing force of a compression coil spring


81


on the pump gear


16


.




However, in this condition, since the clutch lever


17


is in contact with the second engaging portion


22


on the lower side of the housing, even when a driving force is applied to the clutch lever


17


to rotate toward the portion


22


, slip is caused between the clutch lever


17


and the rotating pump gear


16


. Accordingly, only the pump unit


14


is driven by the pump gear


16


, to thereby enable suction operation of ink, bubble and so forth from the ink nozzles arranged on the nozzle surface


3


of the ink-jet head


2


.




Next, in the non-printing condition (locking condition), when the clutch lever


17


is pivoted upward by the driving motor


71


, the locking condition by the locking lever


61


is released. More specifically, as shown in

FIG. 9

, the clutch lever


17


is rotated by the rotational angle α1 in a direction shown by arrow C from the position where the clutch lever


17


is in contact with the second engaging portion


22


.




By rotation of the clutch lever


17


, the lock lever


61


at the lock position is lowered by the stroke length L1 to reach the retracted position. Namely, the second cam follower


61




c


of the lock lever


61


is pushed downward by the actuation cam groove


17




g




2


of the second cam groove


17




g


formed thereon associating with rotation of the clutch portion


17




b


of the clutch lever


17


. Then, the cam follower


61




c


reaches a boundary between the actuation cam groove


17




g




2


and the second arc shaped cam groove


17




g




1


.




In contrast to this, the cleaner lever is held at the retracted position which is below the wiping position by the stroke length L2. Namely, the first cam follower


33


of the cleaner lever


25


slides along the first arc shaped cam groove


17




e


formed on the outer peripheral portion of the lever portion


17




c


of the clutch lever


17


. Thus, even when the clutch lever


17


is rotated, the first cam follower


33


will not move. After rotation of the clutch lever


17


over the rotational angle α1, the first cam follower


33


of the cleaner lever


25


reaches the boundary between the arc shaped cam groove


17




e


and the first cam surface


17




f




1


of the triangular cam groove


17




f.






On the other hand, when the clutch lever


17


is rotated over the rotational angle α1, the tooth portion


17




m


formed on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


transits to a meshing condition with the small gear


72




b


of the stepped gear


72


.




Thus, in the condition where lock is released, it is allowed for the ink-jet head


2


mounted on the carriage


82


to move reciprocally in the directions of arrow A and B (see

FIG. 1

) to perform printing on the fed printing paper.




Nozzle Surface Wiping Condition




When the nozzle surface


3


of the ink-jet head


2


is wiped by means of the elastic wiping blade


26


, the clutch lever


17


is rotated over a rotational angle (α1+β2) in the direction shown by arrow C from the position contacting with the second engaging portion


22


of the housing


11


, as shown in FIG.


10


. After rotation, the clutch lever


17


comes into contact with the first engaging portion


21


at the upper side of the houisng.




Upon rotation of the clutch lever


17


, a rotational torque of the driving motor


71


is transmitted to the clutch lever


17


by a frictional force between the pump gear


16


and the clutch lever


17


, and at the same time is directly transmitted via meshing between the tooth portion


17




m


formed on the outer peripheral surface of the clutch lever


17


and the small diameter gear


72




b


. Therefore, even when external force is applied, the clutch lever


17


can be certainly driven to rotate.




Also, upon rotation of the clutch lever


17


, the first cam follower


33


of the cleaner lever


25


is pushed upward as shown by arrow E by the first cam surface


17




f




1


of the first cam groove


17




d


formed on the outer periphery portion of the lever portion


17




c


of the clutch lever


17


by the stroke length L2.




The tooth portion


17




m


formed on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


becomes disengaged from the smaller gear


72




b


at a timing before the clutch lever


17


has been rotated by (α1+β2). Thereafter, the clutch lever


17


is transmitted rotational torque by the frictional force between it and the pump gear


16


, so that it lifts up the cleaner lever


25


by the rotational torque.




Thus, the cleaner lever


25


reaches the wiping position where the nozzle surface


3


can be wiped. In this condition, the first supporting projection


31


and the second supporting projection


32


of the cleaner lever


25


are located in the corner groove


43


arranged in the horizontal direction from the upper end of the first guide groove


41


and the upper end of the second guide groove


42


, respectively. The projecting portion


25




d


projecting from the lever portion


26




b


of the cleaner lever


25


laterally is engaged into the engaging groove


44


provided at the upper portion of the corner groove portion


43


. As a result, the cleaner lever can be maintained stably at the wiping position.




After lifting the cleaner lever


25


at the wiping position, the ink-jet head


2


is reciprocated in the directions of arrows A and B shown in

FIG. 1

with respect to the elastic wiping blade


26


mounted on the upper end of the cleaner lever


25


. As a result, the ink, paper dust and so forth may be wiped off the nozzle surface


3


by the elastic wiping blade


26


.




When the cleaner lever


25


is elevated, the second cam follower


61




c


of the lock lever


61


slides along the second arc shaped cam groove


17




g




1


of the second cam groove


17




g


formed on the outer peripheral portion of the clutch portion


17




b


of the clutch lever


17


. Accordingly, irrespective of the rotation of the clutch lever


17


, the lock lever


61


is not moved and stays at the retracted position.




Retracting Operation of Cleaner Lever




Next, when printing operation is performed after finishing cleaning of the nozzle surface


3


, the cleaning lever


25


has to be retracted in the direction of arrow F from the wiping position.

FIG. 11

shows a condition immediately after lowering of the cleaner lever


25


.




In this case, the first cam follower


33


of the cleaner lever


25


is pushed by the second cam surface


17




f




2


of the triangular cam groove


17




f


formed on the outer peripheral portion of the lever portion


17




c


of the clutch lever


17


.




The first cam surface


127




f




1


and the second cam surface


17




f




2


of the triangular cam groove


17




f


are arranged with a predetermined angle γ0. Accordingly, after the clutch lever


17


is rotated by the rotational angle γ1 in the direction shown by arrow D from the position where it is in contact with the engaging portion


21


of the housing


11


, the first cam follower


33


of the cleaner lever


25


contacts with the cam surface


17




f




2


of the clutch lever


17


. Subsequently, the cleaner lever


25


is pushed by cam surface


17




f




2


to move.




This angle γ0 is related to arrangement of the cleaner lever


25


and the clutch lever


17


, and is preferably set to be greater than or equal to 0° (wherein 0 is a condition where the cam surface


17




f




1


and the cam surface


17




f




2


are parallel), and 55°, for example.




When the clutch lever


17


is rotated by γ0, the tooth portion


17




m


formed on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


becomes meshed with the small diameter gear


72




b


of the stepped gear


72


. After meshing condition is established, the driving force of the driving motor


71


is transmitted to the clutch lever


17


not only via the frictional force between the clutch portion


17




b


of the clutch lever


17


and the pump gear


16


, but also via the meshing between the tooth portion


17




m


and the gear


72




b


. This assures steady power transmission from the driving motor


71


to the clutch lever


17


. It should be noted that the lock lever


61


stays at the retracted position. As is aforementioned, the clutch lever


17


is retracted to the position shown in

FIG. 9

, again.




Operation upon Lock Impossible Condition




Since position control of the ink-jet head


2


for printing has a significant influence to printing quality, high precision control method is employed for the position control of the head. However, when unexpectedly large external force or the like is applied, there is a possibility that the ink-jet head


2


cannot be controlled to stop at a position to be locked by the lock lever


61


.




In this case, even if the lock lever


61


is elevated up for locking the ink-jet head


2


, the tip end of the lock lever


61


may contact at a portion different from the lock groove (not shown) of the ink-jet head


2


, preventing the lock lever


61


from moving upward any further.




In the shown embodiment, when the lock lever


61


is elevated, the second cam follower


61




c


of the lock lever


61


slides along the actuation cam groove


17




g




2


in the second cam groove


17




g


formed on the outer peripheral portion of the clutch portion


17




b


of the clutch lever


17


. Accordingly, when the lock lever


61


does not engage with the lock groove on the side of the ink-jet head


2


but contacts with any other portion, the can follower


61




c


is located at the intermediate position of the actuation cam groove


17




g




2


.




At this condition, as shown in

FIG. 12

, the tooth portion


17




m


provided on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


does not mesh with the smaller diameter gear


72




b


of the stepped gear


72


. The driving force is transmitted only by the friction force between the clutch portion


17




b


of the clutch lever


17


and the pump gear


16


, the friction force being generated by biasing force of the compression coil spring


81


on the pump gear


16


. Accordingly, when the lock lever


61


contacts with the surface of the ink-jet head


2


before the lock lever


61


reaches the lock position, slip is generated between the pump gear


16


and the clutch lever


17


so as not to lift the lock lever


61


upward, whereby the ink-jet head


2


is prevented from being damaged by the lock lever


61


.




As aforementioned, in the cleaning device


10


of the shown embodiment, the first cam surface


17




f




1


and the second cam surface


17




f




2


of the triangular cam groove


17




f


formed on the outer peripheral surface of the lever portion


17




c


of the clutch lever


17


are arranged to form a predetermined angle with each other so as to provide a large angle between the second cam surface


17




f




2


and the corner groove portion


43


. As a result, only by rotational motion of the clutch lever


17


, the cleaner lever


25


can be smoothly moved along the first guide groove


41


extending vertically and the corner groove portion


43


extending horizontally from the upper end of the first guide groove


41


.




On the other hand, the power transmission path to the clutch lever


17


in the shown embodiment of the cleaning device


10


has two systems. One forms a transmission path by the friction force between the pump gear


16


and the clutch lever


17


, and the other a transmission path by meshing between the tooth portion


17




m


formed on the outer peripheral surface of the clutch portion


17




b


of the clutch lever


17


and the small diameter gear


72




b


of the stepped gear


72


.




The power transmission path by meshing is limited to a predetermined rotational angular range of the clutch lever


17


. In other words, the driving transmission path by meshing is established only when the cleaner lever


23


moves along a limited intermediate portion of the vertical moving path thereof.




Accordingly, for example, even when the ink-jet head


2


cannot be stopped at the predetermined position for engaging with the lock lever and the lock lever


61


contacts with the ink-jet head


2


undesirably, only slip is generated between the frictional surfaces between the clutch portion


17




b


of the clutch lever


17


and the pump gear


16


. Thus, even if unnecessarily large amount of driving control signal is output to the driving motor


71


, damage to the respective parts can be avoided. Further, recovery control from such locking disabled conditions can be simplified.




On the other hand, within the meshing condition between the tooth portion


17




m


and the small diameter gear


72




b


of the stepped gear


72


, the driving force is transmitted via the gear meshing as well as by means of the frictional force, so that the power from the driving motor


71


can steadily be transmitted. For example, when the cleaner lever


25


is temporarily stopped at an intermediate position when retracting, the cleaner lever


25


can be stopped precisely in comparison with the case where the clutch lever


17


is moved by a driving force transmitted only by means of the friction force. In addition, sufficient driving force to move the clutch lever


17


can easily be obtained.




In particular, in the shown embodiment, while the elastic wiping blade


26


moves in a condition contacting with the elastic sub-blade


51


, the driving force from the driving motor


71


is transferred to the cleaner lever


25


via the meshing transmission path. This enables to move the cleaner lever


25


steadily even if the cleaner lever


25


is applied with a large load due to the frictional contact between the both blades


25


and


51


. (The detailed wiping operation of the elastic sub-blade


51


will be discussed hereinafter.)




Furthermore, in the shown embodiment of the cleaning device


10


, when the lock lever


61


is moved by the second cam groove


17




g


, the clutch lever


17


disables movement of the cleaner lever


25


by the first arc shaped cam groove


17




e


of the first cam groove


17




d


, and when the cleaner lever


25


is moved by the first cam groove


17




d


, the lock lever


61


is prevented from moving by the second arc shaped cam groove


17




g




1


of the second cam groove


17




g


. Accordingly, by rotation of the clutch lever


17


, only one of the cleaner lever


25


and the lock lever


61


can be moved. Therefore, the stroke length L2 of the cleaner lever and the stroke length L1 of the lock lever


61


can be reduced to a necessary minimum length.




Accordingly, it is required for the housing


11


to obtain necessary space only for the stroke length L2 of the cleaner lever


25


and the stroke length L1 of the lock lever


61


, which contributes to down-sizing of the cleaning device


10


per se.




Furthermore, since which of the cleaner lever


25


and the lock lever


61


is moved, depends on the rotational direction of the clutch lever


17


, the control for controlling revolution of the driving motor


71


can be simplified.




Particularly, in the shown embodiment, when the lock lever


61


is located at boundary portion P between the region to move the lock lever


61


(actuation cam groove


17




g




2


) and the region not to move (second arc shaped cam groove


17




g




1


), the cleaner lever


25


is located at a boundary portion between a region where the cleaner lever


25


is not moved (first arc shaped cam groove


17




e


) and a region where the cleaner lever


25


is moved (cam surface


17




f




1


). Accordingly, when the clutch lever


17


is rotated, either one of the lock lever


61


or the cleaner lever


25


is inevitably moved. Therefore, pivoting amount of the clutch lever


17


can be reduced to the necessary minimum amount. As a result, the driving control mechanism of the lock lever and the clutch lever can be further simplified.




In addition, in the shown embodiment, with maintaining immovable condition of the lock lever


61


, the elastic wiping blade


26


of the cleaner lever


25


can be retracted in the vicinity of the lower side of the elastic sub-blade


51


. Therefore, a period to place the elastic wiping blade


26


of the cleaner lever


25


close to the nozzle surface


3


of the ink-jet head


2


, can be shortened.




(Wiping Operation by Elastic Sub-Blade)




Next, operation of the elastic sub-blade


51


is discussed when the elastic wiping blade


26


mounted on the cleaner lever


25


is moved vertically.




As mentioned before, in the condition where the elastic wiping blade


26


is arranged within the blade receptacle portion


45


of the housing


11


, the upper opening of the blade receptacle portion


45


is covered by the elastic sub-blade


51


. Accordingly, even when the foreign matter, such as paper dust or the like drops from the nozzle surface


3


of the ink-let head


2


reciprocating above the elastic sub-blade, such foreign matter is captured by the elastic sub-blade


51


so as not to deposit on the elastic wiping blade


26


.




When the elastic wiping blade


26


mounted on the upper end of the cleaner lever


25


is moved upward, the first blade portion


26




c


contacts with the elastic sub-blade


51


in an inclined state as shown in FIG.


6


A. Thus, at first, one end of the first blade portion


26




c


(left side in

FIG. 3

) comes in contact with the lower surface of the elastic sub-blade


51


. Subsequently, line contact portion between the first blade portion


26




c


and the elastic sub-blade


51


is gradually expanded to the other side end portion of the first blade portion


26




c.






On the other hand, the elastic sub-blade


51


is pushed up at the left side portion by the elastic wiping blade


26


. Thereafter, the elastic sub-blade


51


is flexed to bow over the first blade portion


26




c


of the elastic wiping blade


26


. By this, as shown in

FIG. 6B

, the elastic wiping blade


26


is rubbed out the foreign matter carried thereon by the lower surface of the elastic sub-blade


51


. At the same time, the elastic sub-blade


51


is deflected upwardly at its portion of L1 extended from the second support member


47


of the blade supporting portion


46


.




According to movement of the cleaner lever


25


, the elastic sub-blade


51


maintains substantially, in the deflected state with a radius of R1 and rubs off the foreign matter on the rubber member


26




a


of the elastic wiping blade


26


and the metal blade


27


. By this, not only the foreign matter deposited on the first blade portion


26




c


of the elastic wiping blade


26


but also those deposited on the rubber member


26




a


of the elastic wiping blade


26


and those deposited on the metal blade


27


can be scraped off.




With respect to the elastic wiping blade


26


, foreign matter on which is wiped by the elastic sub-blade


51


, the ink-jet head


2


is reciprocally moved as shown by arrows A and B (see FIG.


1


). By this, the elastic wiping blade


26


removes the ink with increased viscosity, paper dust and so forth deposited on the nozzle surface


3


. Namely, upon moving the ink-jet head


2


from the cleaning position shown in

FIG. 1

to the printing region in the direction of arrow B, the nozzle surface


3


is wiped by the rubber member


26




a


, and upon moving the ink-jet head


2


from the printing region to the cleaning position in the direction of arrow A, the nozzle surface


3


is rubbed by the felt member


26




b.






When the cleaner lever


25


is lowered after completion of cleaning of the nozzle surface


3


of the ink-jet head


2


, the third blade portion


27




a


of the metal blade


27


contacts with the elastic sub-blade


51


in tilted condition. As a result, the foreign manner deposited on the upper surface of the elastic sub-blade


51


or the second blade portion


51




a


is scraped and drops into the blade receptacle portion


45


.




On the other hand, as shown in

FIG. 6C

, according to lowering of the cleaner lever


25


, the elastic sub-blade


51


deflects downwardly at the portion of the length L2 projecting from the first support member


48


of the frame supporting body


48


. Throughout the period contacting with the elastic wiping blade


26


, the deflected condition with a curve radius R2 which is greater than the curve radius R1 is substantially maintained.




In this case, a load which the elastic wiping blade


26


receives from the elastic sub-blade


51


of the curve radius R2 is smaller than that received from the elastic sub-blade


51


of the curve radius R1. Therefore, the frictional force applied on the elastic wiping blade


26


upon lowering of the cleaner blade


25


becomes smaller than the frictional force on the elastic wiping blade


26


upon ascending the cleaning lever


25


. Likewise, the load which the elastic sub-blade


51


receives from the elastic wiping blade


26


is smaller at the downward movement. Therefore, the frictional force applied on the elastic sub-blade


51


upon lowering of the cleaner lever is smaller than that on the elastic sub-blade


51


upon elevating the cleaner lever


25


.




As mentioned above, by covering the upper side of the elastic wiping blade


26


with the elastic sub-blade


51


, it is possible to prevent deposition of the paper dust or the like on the elastic wiping blade


26


. As a result, upon cleaning of the ink-jet head


2


, deposition on the elastic wiping blade


26


can be prevented from being transferred to the nozzle surface


3


.




On the other hand, the elastic sub-blade


51


wipes off the deposition on the elastic wiping blade


26


with a large frictional force, and the elastic wiping blade


26


is moved away from the wiping operation with a small frictional force. Therefore, wearing of the elastic wiping blade


26


and the elastic sub-blade


51


can be reduced in comparison with the case where the elastic sub-blade


51


is simply fixed. Thus, the cleaning device


10


can be used for a long period without exchanging the elastic wiping blade


26


or the like.




Particularly, in the shown embodiment, such effect can be obtained with a simple constitution in that the sizes of the members (


47


,


48


) at the upper surface side and the lower surface side of the elastic sub-blade


51


are varied. It should be noted that by forming the support members


47


and


48


as a single member, such effect can be achieved without increasing the number of parts.




Here, one feature of the present invention to differentiate the bending moment generated on the elastic sub-blade


51


between its ascending and descending movement. By differentiating the bending moment M generated on the elastic sub-blade


51


, the frictional force generated on the elastic wiping blade


26


and that on the elastic sub-blade


51


can be differentiated.




The bending moment M of the elastic sub-blade


51


can be expressed by the following equation. In the shown embodiment, the curve radius R is differentiated between the cases where the cleaner lever


25


is elevated and where the cleaner lever


25


is lowered. Instead, it is also possible to vary the section (including the sectional shape due to difference of arrangement of the elastic sub-blade


51


) between deflecting upward and deflecting downward to differentiate geometrical moment of inertia I or longitudinal elastic coefficient.








M


=−(


E×I


)/


R








wherein M: bending moment




E: longitudinal elastic coefficient




I: geometrical moment of inertia




R: curve radius.




Also, in the shown embodiment, since the deposition on the elastic sub-blade


51


is scraped off by the third blade


27




a


of the metal blade


27


, the deposition on the elastic sub-blade


51


will never be transferred to the elastic wiping blade


26


. Therefore, the original function of the elastic wiping blade


26


can be maintained for a long period.




On the other hand, in the shown embodiment, since the first blade portion


26




c


of the elastic wiping blade


26


is contacted with the elastic sub-blade


51


in a tilted state, contacting period between the first blade portion


26




c


and the elastic sub-blade


51


can be prolonged as compared with the case where the first blade portion


26




c


is contacted with the elastic sub-blade


51


in parallel. Furthermore, the elastic sub-blade


51


is deflected on the first blade portion


26




c


to generate large frictional force in the first blade portion, to thereby uniformly remove the deposition on the first blade portion


26




c


of the elastic wiping blade


26


.




This is true even between the third blade portion


27




a


of the metal blade


27


and the elastic sub-blade


51


. While function is reversed, the operation is the same as the foregoing. Therefore, among the upper surface of the elastic sub-blade


51


, such region contacting with the third blade portion


27




a


can be uniformly wiped out.




As aforementioned, the cleaning device according to the present invention can certainly wipe the deposition on the ink nozzle surface of the ink-jet head. Also, the structure of the device can be compact. Accordingly, the ink-jet printer provided with the cleaning device of the present invention can avoid clogging of the ink nozzle by foreign matter depositing on the nozzle surface, whereby high quality printing can be realized. Also, since the cleaning device requires smaller space, compact ink-jet printer can be realized.




Although the present invention has been illustrated and described with respect to exemplary embodiment thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omission and additions may be made therein and thereto, without departing from the spirit and scope of the present invention. Therefore, the present invention should not be understood as limited to the specific embodiment set out above but to include all possible embodiments which can be embodied within a scope encompassed and equivalent thereof with respect to the feature set out in the appended claims.



Claims
  • 1. A cleaning device for cleaning a nozzle surface of an ink-Jet head, comprising:a first wiping member for wiping said nozzle surface; a cleaner lever for supporting said first wiping member; a lever driving mechanism moving said first wiping member between a retracted position located away from said nozzle surface and a wiping position for wiping said nozzle surface; a flat plate form second wiping member formed of an elastic body arranged within a moving path of said first wiping member so as to contact with said first wiping member; a first supporting member supporting said second wiping member on the side of the retracted position of said first wiping member; and a second supporting member supporting, said second wiping member on the side of said wiping position of said first wiping member; wherein a length of a portion of said second wiping member projecting from said first supporting member is greater than a length of a portion of said second wiping member projecting from said second supporting member.
  • 2. A cleaning device as set forth in claim 1, whereinsaid first wiping member is designed to move between said retracted position and said wiping position located above said retracted position, by moving a cleaner lever, and said second wiping member is arranged above said retracted position and below said wiping position.
  • 3. A cleaning device as set forth in claim 1, wherein said cleaner lever has a third wiping member which is able to contact with said second wiping member while said cleaner lever is moving.
  • 4. A cleaning device as set forth in claim 1, wherein said lever driving mechanism includes:a rotary driving source; a gear train to be driven by said rotary driving source; a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with said gear; a first cam mechanism for converting rotation of said clutch lever into movement of said cleaner lever; and a tooth portion formed on said clutch lever which engages with said gear train when said clutch lever is in a predetermined rotational angular range.
  • 5. A cleaning device as set forth in claim 4, wherein said tooth portion engages with said gear train when said first wiping member is being moved in a condition contacting with said second wiping member.
  • 6. A cleaning device as set forth in claim 4, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, a first cam surface contacting with said first cam follower while said cleaner lever moves to said wiping position, and a second cam surface contacting with said first cam follower while said cleaner lever moves to said retracted position, and wherein said first and second cam surfaces are arranged at a predetermined angle with respect to each other.
  • 7. A cleaning device as set forth in claim 4, further comprising a lock lever for locking said ink-jet head at a predetermined position, whereinsaid lever driving mechanism includes a second cam mechanism for converting a rotational force of said rotary driving source into a driving force for moving said lock lever between a locking position for fixing said ink-jet head and an unlocking position away from said ink-let head.
  • 8. A cleaning device as set forth in claim 7, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, said first cam follower following a first cam region for reciprocally moving said cleaner lever between said wiping position and said retracted position according to rotation of said clutch lever, and a second cam region for holding said cleaner lever at said retracted position even when said clutch lever is rotated, andsaid second cam mechanism includes a second cam follower formed in said luck lever, said second cam follower following a third cam region for reciprocally moving said lock lever between said locking position and said unlocking position according to rotation of said clutch lever, and a fourth cam region for holding said lock lever at said unlocking position even when said clutch lever is rotated.
  • 9. A cleaning device as set forth in claim 8, wherein while said first cam follower is operated in said first cam region, said second cam follower is in said fourth cam region, and when said first cam follower is moved into said second cam region, said second cam follower is shifted into operation in said third cam region.
  • 10. A cleaning device as set forth in claim 8, wherein said second cam region is defined by an arc shaped cam groove centered at a rotational center of said clutch lever, andsaid fourth cam region is defined by an arc shaped groove centered at rotational center of said clutch lever.
  • 11. A cleaning device as set forth in claim 7, further comprising an ink pump device for sucking ink from ink nozzles of said ink-jet head; whereinsaid rotary driving source is a motor for driving said ink pump device.
  • 12. A cleaning device for cleaning a nozzle surface of an ink-jet head, comprising:a first wiping member for wiping said nozzle surface; a cleaner lever for supporting said first wiping member; a lever driving mechanism moving said first wiping member between a retracted position located away from said nozzle surface and a wiping position for wiping said nozzle surface; and a flat plate form second wiping member formed of an elastic body arranged within a moving path of said first wiping member so as to contact with said first wiping member; wherein said lever driving mechanism includes: a rotary driving source; a gear train to be driven by said rotary driving source: a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with said gear; a first cam mechanism for converting rotation of said clutch lever into movement of said cleaner lever; and a tooth portion formed on said clutch lever which engages with said gear train when said clutch lever is in a predetermined rotational angular range.
  • 13. A cleaning device as set forth in claim 12, wherein said tooth portion engages with said gear train when said first wiping member is being moved in a condition contacting with said second wiping member.
  • 14. A cleaning device as set forth in claim 12, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, a first cam surface contacting with said first cam follower while said cleaner lever moves to said wiping position, and a second cam surface contacting with said first cam follower while said cleaner lever moves to said retracted position, and wherein said first and second cam surfaces are arranged at a predetermined angle with respect to each other.
  • 15. A cleaning device as set forth in claim 12, further comprising a look lever for locking said ink-jet head at a predetermined position, whereinsaid lever driving mechanism includes a second cam mechanism for converting a rotational force of said rotary driving source into a driving force for moving said lock lever between a locking position for fixing said ink-jet head and an unlocking position away from said ink-jet head.
  • 16. A cleaning device as set forth in claim 15, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, said first cam follower following a first cam region for reciprocally moving said cleaner lever between said wiping position and said retracted position according to rotation of said clutch lever, and a second cam region for holding said cleaner lever at said retracted position even when said clutch lever is rotated, andsaid second cam mechanism includes a second cam follower formed in said lock lever, said second cam follower following a third cam region for reciprocally moving said lock lever between said locking position and said unlocking position according to rotation of said clutch lever, and a fourth cam region for holding said lock lever at said unlocking position even when said clutch lever is rotated.
  • 17. A cleaning device as set forth in claim 16, wherein while said first cam follower is operated in said first cam region, said second cam follower is in said fourth cam region, and when said first cam follower is moved into said second cam region, said second cam follower is shifted into operation in said third cam region.
  • 18. A cleaning device as set forth in claim 16, wherein said second cam region is defined by an arc shaped cam groove centered at a rotational center of said clutch lever, andsaid fourth cam region is defined by an arc shaped groove centered at rotational center of said clutch lever.
  • 19. A cleaning device as set forth in claim 15, further comprising an ink pump device for sucking ink from ink nozzles of said ink-jet head; whereinsaid rotary driving source is a motor for driving said ink pump device.
  • 20. A cleaning device for cleaning a nozzle surface of an ink-jet head, comprising:a first wiping member for wiping said nozzle surface; a cleaner lever for supporting said first wiping member; and a lever driving mechanism moving said first wiping member between a retracted position located away from said nozzle surface and a wiping position for wiping said nozzle surface; wherein said lever driving mechanism includes: a rotary driving source; a gear train to be driven by said rotary driving source; a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with said gear; cam mechanism converting rotation of said clutch lever into movement of said cleaner lever; and a tooth portion formed on said clutch lever which engages with said gear train when said clutch lever is in a predetermined rotational angular range.
  • 21. A cleaning device as set forth in claim 20, wherein said cam mechanism includes a first cam follower formed in said cleaner lever, a first cam surface contacting with said first cam follower while said cleaner lever moves to said wiping position, and a second cam surface contacting with said first cam follower while said cleaner lever moves to said retracted position, and wherein said first and second cam surfaces are arranged at a predetermined angle with respect to each other.
  • 22. A cleaning device as set forth in claim 20, wherein said cam mechanism includes a cam follower formed in said cleaner lever, said cam follower following a first cam region for reciprocally moving said cleaner lever between said wiping position and said retracted position according to rotation of said clutch lever, and a second cam region for holding said cleaner lever at said retracted position even when said clutch lever is rotated.
  • 23. A cleaning device as set forth in claim 22, wherein said second cam region is defined by an arc shaped cam groove centered at a rotational center of said clutch lever.
  • 24. A cleaning device for cleaning a nozzle surface of an ink-jet head, comprising:a lock lever for locking said ink-jet head at a predetermined position; and, a lever driving mechanism for moving said lock lever between a locking position for fixing said Ink-jet head and an unlocking position away from said ink-jet head, wherein said lever driving mechanism includes:a rotary driving source; a gear train to be driven by said rotary driving source; a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with said gear; cam mechanism for converting rotation of said clutch lever into movement of said lock lever; and a tooth portion formed on said clutch lever which engages with said gear train when said clutch lever is in a predetermined rotational angular range.
  • 25. A cleaning device as set forth in claim 24, whereinsaid cam mechanism includes a cam follower formed in said lock lever, said cam follower following a third cam region for reciprocally moving said lock lever between said locking position and said unlocking position according to rotation of said clutch lever and a fourth cam region for holding said lock lever at said unlocking position even when said clutch lever is rotated.
  • 26. A cleaning device as set forth in claim 25, whereinsaid fourth cam region is defined by an arc shaped groove centered at rotational center of said clutch lever.
  • 27. A cleaning device for cleaning a nozzle surface of an ink-jet head, comprising:a first wiping member for wiping said nozzle surface; a cleaner lever for supporting said first wiping member; a lock lever for locking said ink-jet head at a predetermined position; and a lever driving mechanism which moves said first wiping member between a retracted position located away from said nozzle surface and a wiping position for wiping said nozzle surface, and moves said lock lever between a locking position for fixing said ink-jet head and an unlocking position away from said ink-jet head, wherein said lever driving mechanism includes: a rotary driving source; a gear train to be driven by said rotary driving source; a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with said gear; a first cam mechanism for converting rotation of said clutch lever into movement of said cleaner lever; and a second cam mechanism for converting rotation of said clutch lever into movement of said lock lever.
  • 28. A cleaning device as set forth in claim 27, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, said first cam follower following a first cam region for reciprocally moving said cleaner lever between said wiping position and said retracted position according to rotation of said clutch lever, and a second cam region for holding said cleaner lever at said retracted position even when said clutch lever is rotated, andsaid second cam mechanism includes a second cam follower formed in said lock lever, said second cam follower following a third cam region for reciprocally moving said lock lever between said locking position and said unlocking position according to rotation of said clutch lever and a fourth cam region for holding said lock lever at said unlocking position even when said clutch lever is rotated.
  • 29. A cleaning device as set forth in claim 28, wherein while said first cam follower is operated in said first cam region, said second cam follower is in said fourth cam region, and when said first cam follower moved into said second cam region, said second cam follower is shifted into operation in said third cam region.
  • 30. A cleaning device for cleaning a nozzle surface of an ink-jet head, comprising:a first wiping member for wiping said nozzle surface; a cleaner lever for supporting said first wiping member; a lever driving mechanism moving said first wiping member between a retracted position located away from said nozzle surface and a wiping position for wiping said nozzle surface; and a flat plate form second wiping member formed of an elastic body arranged within a moving path of said first wiping member so as to contact with said first wiping member: wherein a tip end surface of said first wiping member first comes in substantially perpendicular contact with a side surface of said second wiping member and then moves across said side surface, wherein said lever driving mechanism includes: a rotary driving source; a gear train to be driven by said rotary driving source; a friction type clutch lever which is frictionally engaged with one of gears constituting said gear train by means of a predetermined biasing force and is arranged coaxially with said gear; a first cam mechanism for converting rotation of said clutch lever into movement of said cleaner lever; and a tooth portion formed on said clutch lever which engages with said gear train when said clutch lever is in a predetermined rotational angular range.
  • 31. A cleaning device as set forth in claim 30, wherein said tooth portion engages with said gear train when said first wiping member is being moved in a condition contacting with said second wiping member.
  • 32. A cleaning device as set forth in claim 30, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, a first cam surface contacting with said first cam follower while said cleaner lever moves to said wiping position, and a second cam surface contacting with said first cam follower while said cleaner lever moves to said retracted position, and wherein said first and second cam surfaces are arranged at a predetermined angle with respect to each other.
  • 33. A cleaning device as set forth in claim 30, further comprising a lock lever for locking said ink-jet head at a predetermined position, whereinsaid lever driving mechanism includes a second cam mechanism for converting a rotational force of said rotary driving source into a driving force for moving said lock lever between a locking position for fixing said ink-jet head and an unlocking position away from said ink-jet head.
  • 34. A cleaning device as set forth in claim 33, wherein said first cam mechanism includes a first cam follower formed in said cleaner lever, said first cam follower following a first cam region for reciprocally moving said cleaner lever between said wiping position and said retracted position according to rotation of said clutch lever, and a second cam region for holding said cleaner lever at said retracted position even when said clutch lever is rotated, andsaid second cam mechanism includes a second cam follower formed in said lock lever, said second cam follower following a third cam region for reciprocally moving said lock lever between said locking position and said unlocking position according to rotation of said clutch lever, and a fourth cam region for holding said lock lever at said unlocking position even when sad clutch lever is rotated.
  • 35. A cleaning device as set forth in claim 34, wherein while said first cam follower is operated in said first cam region, said second cam follower is in said fourth cam region, and when said first cam follower is moved into said second cam region, said second cam follower is shifted into operation in said third cam region.
  • 36. A cleaning device as set forth in claim 34, wherein said second cam region is defined by an arc shaped cam groove centered at a rotational center of said clutch lever, andsaid fourth cam region is defined by an arc shaped groove centered at rotational center of said clutch lever.
  • 37. A cleaning device as set faith in claim 33, further comprising an ink pump device for sucking ink from ink nozzles of said ink-jet head; whereinsaid rotary driving source is a motor for driving said ink pump device.
  • 38. An ink-jet printer comprising:an ink-jet head; a cleaning device which is arranged offsetting from a printing region of said ink-jet head and is defined in any one of claims 1, 12 to 29 and 2 to 37; and a carriage carrying said ink-jet head for reciprocally moving along a moving path through said printing region and a position opposing to said cleaning device.
Priority Claims (4)
Number Date Country Kind
2000-104956 Apr 2000 JP
2000-118136 Apr 2000 JP
2000-118137 Apr 2000 JP
2000-167562 Jun 2000 JP
US Referenced Citations (10)
Number Name Date Kind
5065158 Nojima et al. Nov 1991 A
5182582 Okamura Jan 1993 A
5608432 Yamaguchi Mar 1997 A
5663751 Holbrook Sep 1997 A
5717445 Kida et al. Feb 1998 A
5798775 Takahashi et al. Aug 1998 A
5896143 Matsui et al. Apr 1999 A
5898444 Kobayashi et al. Apr 1999 A
5903287 Ishikawa et al. May 1999 A
6189999 Pham et al. Feb 2001 B1
Foreign Referenced Citations (7)
Number Date Country
0-916501 May 1999 EP
62-25056 Feb 1987 JP
62-251145 Oct 1987 JP
2-286349 Nov 1990 JP
3-240554 Oct 1991 JP
04-328521 May 1994 JP
09-143597 May 1994 JP