This invention relates to a cleaning device for the shaving head of a dry shaving apparatus.
During a cleaning cycle, a cleaning device for electric-powered dry shaving apparatus can hold the dry shaving apparatus by means of an interlock device. The dry shaving apparatus cannot be removed until the interlock device is released and the electrical contact elements engaging the bottom end of the shaver housing are retracted from the housing. A fan driven by an electric motor can be used to dry the shaving head with an air stream being passed around the shaving head carried in the receptacle and drying the latter from both the outside and the inside.
Induction heaters can be used for heating the metal parts in the shaving head, e.g. the shaving foil and the undercutter. In this manner, the heated metal parts can heat the cleaning fluid during a cleaning cycle in addition to being able to dry the shaving head rapidly after the cleaning cycle. With a corresponding temperature increase of the metal parts in particular, it is also possible to produce sterile conditions without the evaporation of cleaning fluid.
In one aspect, a cleaning device includes a control element responsive to the temperature of the shaving head and controlling an interlock device in dependence upon temperature. By virtue of the fact that the interlock device does not release the shaving apparatus for its removal from the cleaning device until a temperature suitable for shaving prevails on the metal shaving foil, skin burns are avoided when a shaving operation follows immediately afterwards. The control element may act on the interlock device directly or, alternatively, the control element may act on the interlock device mechanically, electrically or even hydraulically.
In this context it will be understood that a dry shaving apparatus also includes also electric-powered shaving apparatus that enable a shave to be performed also under water or a lotion to be supplied during a shave for improved shaving performance or enhanced operator comfort. Preferably, the shaving apparatus is equipped with outer cutter and undercutter sliding relative to each other, whether in a toothed configuration of both cutters or in a configuration involving a foil cooperating with an undercutter, and is powered electrically.
In some embodiments, a temperature-sensitive control element is exposed to the heat from the heater. The temperature-sensitive element is designed and spaced at a distance from the heater such that the interlock device is maintained in a locked condition as long as the temperature on the shaving head and, hence, on the shaving foil, is too high for contact with the skin. It will be understood that it would also be possible for the temperature-sensitive element to be arranged in the vicinity of the shaving head and to sense the temperature directly on the shaving head. An induction heater has proven to be advantageous because it is located underneath the receptacle, its magnetic fields penetrating the receptacle and the cleaning fluid held in the receptacle, thus reaching the metal parts in the shaving head and heating them. In this manner, the heater winding is protected from contact with liquid, thus increasing its service life.
A metal spring made from a memory metal has proven advantageous as a component that expands and contracts to a sufficient degree to serve as the temperature-sensitive control element as well as affording ease and economy of manufacture. However, the use of a bimetal in lieu of the memory metal is also contemplated. The spring may be either a leaf spring, a spiral spring or an otherwise bent sheet-metal element which expands or bends a particularly appreciable amount due to the effect of temperature. When such a temperature-sensitive element is heated and, hence, expands correspondingly, its expansion force can be introduced mechanically to a locking element to enable the locking element to engage with a recess, undercut, projection or some other engagement part formed on the dry shaving apparatus to lock the shaving apparatus into the cleaning device.
In some embodiments, the locking element can be configured to return to its initial position automatically. For example, when the heater has been on for a certain period of time, the temperature-sensitive element expands due to heat radiation and/or heat conduction—the latter only if contact exists between the locking element and the heater—and/or due to the heat developing in metal parts as the result of induced eddy currents, urging the locking element into engagement with a recess, projection or undercut of the dry shaving apparatus. At the same time, displacement of the locking element compresses a spring whose spring force is smaller than the force developed by expansion of the temperature-sensitive element. On cooling down, the temperature-sensitive element contracts again, its force diminishing. This enables the spring to disengage the locking element from its engagement with the recess, projection, or undercut. As this occurs, the locking element releases the dry shaving apparatus for removal. In this manner, an automatic locking device is obtained which, without operator intervention, locks the shaving apparatus in the cleaning device when the temperature on the shaving head is too high, and releases it again when the temperature on the shaving head has dropped to a sufficiently low value, preferably below 40° C.
In another embodiment, a manually actuatable actuating element which, when hand-operated by an operator, causes the locking element to be moved to its locking position when the cleaning device is turned on, is connected upstream of the control element. At the locking element is engaged, the electric control device of the cleaning device is activated to commence a cleaning cycle. Because the actuating element cannot be returned to its initial position until the temperature-sensitive element releases the shaving apparatus, the returning of the actuating element takes place likewise without operator intervention. In this embodiment, a vertical motion of the actuating element is converted into a horizontal motion of the locking element, which is accomplished by suitably arranged guide rails and a ramp, the latter cooperating in gliding fashion with a pin formed on the actuating element. It will be understood that other motion-converting mechanism using other transmission angles between the actuating element and the locking element may be employed.
In some embodiments, a mechanical switching device between the housing and the actuating element uses a cardioid slide arrangement which operates the electric switch of the cleaning device on actuation and subsequent release of the actuating element. Renewed actuation and release of the actuating element returns the slide arrangement to its initial position. Such an On-Off mechanism is particularly simple in terms of function and affords economy of manufacture. The switching mechanism can also provide a clearance space for movement of the temperature-sensitive element to enable it to initially expand freely due to the effect of temperature.
In some embodiments, a time-dependent control element (e.g. electronic or mechanical timers), upon termination of a cleaning cycle, moves the locking element from its locking position back to its initial position as a function of time. Only after a specified time period has elapsed can the dry shaving apparatus be removed from its receptacle. The cooling-off period upon termination of a cleaning cycle is selected to last until the temperature on the shaving head drops below a value limiting the risk of burns when the shaving foil subsequently contacts an operator's skin.
When a mechanical timer is used, it can be turned on with the commencement of a cleaning cycle, because the duration of a cleaning cycle is exactly known. Therefore, this time period plus a cooling period can be entered in the timer as the specified time period. The dry shaving apparatus is then released only when the temperature on the shaving head is likely to be sufficiently low. In embodiments where an electronic timer is used, preferably an electrically actuatable control element which is locked or unlocked electronically by the timer control signal is also used.
In some embodiments, an electric temperature sensor is arranged in the vicinity of the heater. In such embodiments, which however incur slightly higher cost, the electric temperature sensor may directly sense the surface of the shaving head. For example, water-protected temperature sensors can be used that have their electrical signals supplied to a control circuit via lines, said control circuit in turn operating in response to the temperature to release or lock the locking element via electromechanical devices as, for example, an electric solenoid switch.
The details of two embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring now to
Underneath the receptacle, a coil 13 is wound around an iron core 12 and generates a magnetic field when electric current is passed through the coil. The magnetic field serves to heat the metal parts 8, 9, 10 as well as the entire shaving head 6 and the cleaning fluid (not shown) that is temporarily present in the receiving space 3 during a cleaning cycle. The iron core 12 and the coil 13 form the heater 56 of the cleaning device 1. Arranged on the left side of the receptacle 2 at the level of the left-hand free end of the U-shaped and upwardly open iron core 12 is a control element 14 which, in this embodiment, is a spiral spring made from memory metal. The control element 14 is formed by a temperature-sensitive element through which a stud 15 extends.
Referring to
Referring to
Arranged on the front surface 30 of the actuating element 18 of
Referring to
Referring to
An actuating element 18 as represented in
Referring to
After the dry shaving apparatus 7 is inserted into the receiving space 3 of the receptacle 2 with its shaving head 6 pointing down, the control button 29 is pressed down by hand in the direction X to activate the cleaning device 1. As this occurs, the actuating element 18 moves downwards in the vertical guide 28, whereby the locking pin 36 slides along the underside 58 of the rib 33 upwards and enters the upper section of the recess 31 where it is moved along the upper wall 53 to the left inside the groove 35.
At the same time, axial displacement of the actuating element 18 in the direction X causes displacement of the locking bar 39 by means of the pin-and-ramp guide 37, 38 to the right, so that the recess 40 engages behind the edge 41 of the shaving head 6 from above. On displacement of the actuating element 18, the sheet-metal blade 43 is elastically bent to the left by means of the bevel 42 until its free end contacts the sheet-metal blade 45, whereby electric current is supplied to the cleaning device enabling the cleaning cycle to be started. Displacement of the actuating element 18 simultaneously compresses the spring 26. The temperature-sensitive element 14 retains the contracted position as shown in
As soon as electric current is supplied to the heater 56, a magnetic field is produced on the coil 13 and the iron core 12, causing heating of the metal parts lying in the vicinity of the heater 56, which include the shaving foil 10 and the metal parts provided in the interior of the shaving head 6, the temperature-sensitive element 14 and the stud 15. The temperature-sensitive element 14 expands in the process until its upper free end abuts against the step 16. Continued expansion of the temperature-sensitive element 14 compresses it because a further longitudinal expansion is not possible due to the spring 26 having previously been compressed to its solid length. This position is now maintained for the duration of the On-state of the cleaning device 1.
If an attempt is made to remove the dry shaving apparatus 7 from the cleaning device 1 during or directly subsequent to a cleaning cycle, this is not possible because the locking element 39 holds the shaver captive in the receptacle 2 due to the still expanded temperature-sensitive element 14. Even if an attempt is made to move the actuating element 18 back to its initial position shown in
With the temperature-sensitive element 14 cooling off slowly, its force diminishes and the force of the spring 26 predominates, compressing the temperature-sensitive element 14 and urging the actuating element 18 upwards in opposition to the On-direction X. As this occurs, the locking pin 36 slides on the left side downwards past the rib 33 to resume the lower initial position illustrated in
The mode of operation of the embodiment of
Also in this embodiment, induction or heat radiation from another source of heat causes heating of the metal parts in the shaving head 6 as well as the locking element 39 and the stud 15 connected therewith and the abutment stop 51, provided they are also made from metal. When the heater 56 cools off after a cleaning cycle, the temperature-sensitive element 14 also cools and retracts into the position shown in
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, the control element 14 can be a time-dependent element rather than a temperature-dependent element. Accordingly, other embodiments are within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 032 518 | Jul 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2447183 | Irish et al. | Aug 1948 | A |
5614030 | Braun | Mar 1997 | A |
5649556 | Braun | Jul 1997 | A |
5711328 | Braun | Jan 1998 | A |
6263890 | Hoser | Jul 2001 | B1 |
6305391 | Hoser | Oct 2001 | B1 |
6626194 | Wong | Sep 2003 | B2 |
6698437 | Hoser et al. | Mar 2004 | B2 |
7002091 | Hoser et al. | Feb 2006 | B2 |
7143517 | Kappes et al. | Dec 2006 | B2 |
7225817 | Eichhorn et al. | Jun 2007 | B2 |
Number | Date | Country |
---|---|---|
102 09 326 | Jun 2003 | DE |
0 664 973 | Jul 1999 | EP |
WO03073885 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060021638 A1 | Feb 2006 | US |