The above and other objects and features of the present invention will become apparent from the following description of embodiments, given in conjunction with the accompanying drawings, in which:
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The hair removing apparatus 1 illustrated by a dotted line of
The cleaning device indicated by a solid line of
A fluid circulating mechanism A for supplying or recovering cleaning fluid 30 into or from the cleaning basin 4 includes a reservoir 5 for storing the cleaning fluid 30 therein; a supply path 6 connecting a suction port 6a opened at a bottom portion of the reservoir 5 with a discharge port 6b opened at an upper portion of the inside of the cleaning basin 4; and a return path 7 connecting a drain port 7a opened at a bottom portion of the cleaning basin 4 with a return port 7b opened at an upper portion of the reservoir 5; a pump unit 8 disposed on the return path 7; a filter cassette 9 disposed upstream of the pump unit 8 on the return path 7; a vent hole 10 opened at an upper portion of the reservoir 5 to be located above the return port 7b, the vent hole 10 communicating with the exterior air; and an electromagnetic valve 11 for opening or closing the vent port 10. Further, the supply path 6 has substantially a one side opened rectangular shape when viewed from side, which is fabricated by connecting upper ends of a pair of vertical paths 6c and 6d vertically connected to the suction port 6a and the discharge port 6b, respectively, with a horizontal path 6e.
The pump unit 8 and the electromagnetic valve 11 of the fluid circulating mechanism A are electrically connected to a controller 12 which is embedded in the cleaning device. The controller 12 performs a driving control of the pump unit 8 and the electromagnetic valve 11 at a proper timing, whereby a supply and a recovery operation of the cleaning fluid 30 is properly carried out between the reservoir 5 and the cleaning basin 4. Explanation of this timing will be provided later.
Further, a drying mechanism B for drying the hair clipping unit 2 placed in the cleaning basin 4 includes a fan 13 installed diagonally above the open top of the cleaning basin 4; and a heater 14 installed at a bottom portion of the cleaning basin 4. The fan 13 and the heater 14 are electrically connected to the controller 12. The controller 12 controls power supplies to the fan 13 and the heater 14, and thus the hair clipping unit 2, particularly its driving body 2a, is forcibly dried by heat and air flow thus generated.
Here, a cleaning device side transmission unit 15 made up of a connection terminal is disposed at a proper location of the cleaning device (e.g., at an outer surface of the connection stand), and the cleaning device side transmission unit 15 and the controller 12 embedded in the cleaning device are electrically connected with each other. Further, at an outer surface of the hair removing apparatus main body 3 which locates above the hair clipping unit 2 when the hair removing apparatus 1 is fixed in place, a hair removing apparatus side transmission unit 16 made up of a connection terminal is provided. The hair removing apparatus side transmission unit 16 and a control circuit 17 embedded in the hair removing apparatus main body 3 are electrically connected with each other. The control circuit 17 controls the entire operation of the hair removing apparatus 1, including a driving control of the driving body 2a of the hair clipping unit 2.
Now, a control mechanism for cleaning the hair removing apparatus 1 by using the cleaning device having the above-described configuration will be explained. First, a user fills the reservoir 5 of the cleaning device with the cleaning fluid 30 such that a fluid surface is located within a proper spatial range between the suction port 6a and the return port 7b. At this initial stage, the cleaning basin 4 is empty.
The user grips the hair removing apparatus 1 in a manner that the hair clipping unit 2 faces downward, and fixes the thus postured hair removing apparatus 1 at a certain position of the cleaning device by using, e.g., the connection stand or the like. At this time, the hair clipping unit 2 is supported and fixed at a position being in contact with the inner bottom surface of the cleaning basin 4. Further, when the hair clipping unit 2 is fixed to the cleaning device, the connection terminal forming the cleaning device side transmission unit 15 and the connection terminal forming the hair removing apparatus side transmission unit 16 are brought into contact with each other, whereby the two transmission units 15 and 16 are then electrically connected with each other.
If a start button (not shown) provided on the cleaning device is turned on after the cleaning fluid 30 is filled and the hair removing apparatus 1 is fixed, the controller 12 closes the electromagnetic valve 11 to seal up the vent port 10 and drives the pump unit 8. The pump unit 8 serves to generate a pressure for pumping the fluid from the cleaning basin 4 to the reservoir 5 through the return path 7. At an initial stage where the cleaning basin 4 is empty without containing therein the cleaning fluid 30, the air is sent into the upper space of the reservoir 5 from the empty cleaning basin 4 via the filter cassette 9 and the pump unit 8 on the return path 7. Since the reservoir 5 is in a hermetical state due to the electromagnetic valve 11 being closed, the internal pressure of the reservoir 5 increases with the inflow of the air, and if the fluid level reaches the inside of the horizontal path 6e of the supply path 6 due to the increase of the internal pressure, the cleaning fluid 30 stored in the reservoir 5 is pressure-ejected into the cleaning basin 4 through the supply path 6. At this time, the controller 12 stops the pump unit 8 to prevent the outflow of the cleaning fluid 30 through the drain port 7a which is open at the bottom portion of the cleaning basin 4. However, the supply of the cleaning fluid 30 into the cleaning basin 4 from the supply path 6 is continued while the internal pressure of the reservoir 5 is maintained high to support the above-described fluid level.
After the lapse of a specific time period after the pump unit 8 is stopped, the controller 12 opens the electromagnetic valve 11 to thereby open the vent port 10 and allows the air inside the reservoir 5 to interact with the exterior air. As a result, the internal pressure of the reservoir 5 decreases down to an atmospheric pressure level, so that the supply of the cleaning fluid 30 from the supply path 6 into the cleaning basin 4 is stopped. The storage amount of the cleaning fluid 30 in the cleaning basin 4 is set to be at a level such that an overflow of the cleaning fluid 30 in the cleaning basin 4 is prevented when the hair clipping unit 2 of the hair removing apparatus 1 is submerged in the cleaning fluid 30 in the cleaning basin 4. Further, though not shown, the cleaning basin 4 may be provided with an overflow port to allow the overflowed cleaning fluid 30 to flow downward into the filter cassette 9 if the fluid surface reaches the overflow port.
The hair clipping unit 2 is maintained submerged in the cleaning fluid 30 within the cleaning basin 4 for a set time period, during which hair residues or sebum stuck to the hair clipping unit 2 are removed by the action of the cleaning fluid 30. Further, at this time, a control signal can be transmitted from the controller 12 to the control circuit 17 inside the hair removing apparatus main body 3 via the cleaning device side transmission unit 15 and the hair removing apparatus side transmission unit 16 that are in contact with each other, to drive the driving body 2a of the hair clipping unit 2 submerged in the cleaning fluid 30. By this control, the cleaning effect of the hair clipping unit 2 can be further improved.
After the cleaning operation is completed, the controller 12 drives the pump unit 8 while keeping the electromagnetic valve 11 open, to thereby direct the soiled cleaning fluid 30 in the cleaning basin 4 back into the reservoir 5 through the return port 7b of the return path 7 via the drain port 7a, the filter cassette 9 and the pump unit 8. At this time, since the electromagnetic valve 11 is open and, thus, the vent port 10 is opened to the exterior air, the internal pressure of the reservoir 5 does not increase, therefore an ejection of the cleaning fluid 30 from the reservoir 5 into the cleaning basin 4 through the supply path 6 is avoided. The soiled cleaning fluid 30 is filtered while it passes through the filter cassette 9 and is returned into the reservoir 5 after the hair residues or sebum are removed therefrom. Thus, purified cleaning fluid 30 is stored back into the reservoir 5 to be used again later.
After the recovery of the cleaning fluid 30 is completed, the controller 12 starts the fan 13 and the heater 14, to thereby blow air to the hair clipping unit 2 disposed in the cleaning basin 4 from diagonally above and to supply heat from beneath. As a result, the cleaning fluid 30 stuck to the hair clipping unit 2 is dried.
In this embodiment, during the drying operation in which the fan 13 and the hater 14 are being driven, the controller 12 transmits control signals to the control circuit 17 inside the hair removing apparatus main body 3 via the cleaning device side transmission unit 15 and the hair removing apparatus side transmission unit 16, to thereby drive the driving body 2a of the hair clipping unit 2. That is, in case of an electric shaver, a movable blade forming a cutter block, which serves as the driving body 2a, is operated to reciprocate in sliding motions during the drying operation, or in case of an epilator, grasping members serving as the driving body 2a are operated to make rotary and opening/closing motions during the drying operation. As shown in
Under the above-described control by the controller 12, fluid drops attached to the hair clipping unit 2, particularly to the driving body 2a, are shaken and fallen off, so that the drying speed improves. In addition, even fluid drops still remaining on the driving body 2a that have not been shaken off are rapidly collected near the heater 14 beneath the hair clipping unit 2 by this operation and are dried off very quickly by heat or forced air due to their increase in surface area. That is, by the synergy effect of the operation of the driving body 2a of the hair clipping unit 2 and the drying operation by heating or air blow, the drying speed of the hair clipping unit 2 increases greatly. Moreover, since the fluid drops attached to the hair clipping unit 2 are shaken and fallen, sebum or other contaminants dissolved in the attached fluid drops are prevented from being left on the surface of the hair clipping unit 2 after it is dried.
Further, the configuration of the cleaning device side transmission unit 15 and the hair removing apparatus side transmission unit 16 for transmitting control signals is not limited to the above example where they are electrically connected by directly contacting each other by using connection terminals. For example, the cleaning device side transmission unit 15 and the hair removing apparatus side transmission unit 16 can be made of a primary coil and a secondary coil, respectively, and when the hair removing apparatus 1 is placed such that the two transmission units 15 and 16 are faced with each other, the two transmission units 15 and 16 can be magnetically connected, there by eliminating a need for contact.
Moreover, the hair clipping unit 2 can be intermittently driven as shown in
As shown in
From the above result, it is confirmed that with the intermittent driving of the hair clipping unit 2, the drying time can be effectively reduced as much as about 50%, while keeping the noise generation at a minimum. In order to minimize the reduction of the blade lifetime or to suppress the noise generation, a ratio between the operating time and the pause time is preferably set to be less than 1 (i.e., the operating time is shorter than the pause time) and, more preferably, no greater than ½.
In this example, the controller 12 embedded in the cleaning device intermittently drives the hair clipping unit 2 such that its operating time and pause time are alternated, while the fan 13 and the heater 14 of the drying mechanism B are being driven, and the pause time is controlled to increase with the lapse of time after the operation of the hair clipping unit 2 has started. In the example shown in
Since the amount of the cleaning fluid 30 remaining on the hair clipping unit 2 decreases with the lapse of time, the time period before a sufficient amount of fluid drops are collected at the lower part of the hair clipping unit 2 becomes longer. Thus, as in this example, by increasing the interval between an end of a current operating time and a start of a next operating time (i.e., a pause time therebetween) with the lapse of time, the hair clipping unit 2 can be prevented from being driven unnecessarily longer, thereby reducing its lifetime and noise generation.
Now, a cleaning device of a hair removing apparatus in accordance with a second embodiment of the present invention will be explained in connection with
The cleaning device of this embodiment is illustrated in
The dryness detecting unit C is made from a temperature sensor (thermistor) 25 installed at a rear bottom surface of a cleaning basin 4 near a driving body 2a of the hair clipping unit 2. The temperature sensor 25 serves to detect the temperature of the hair clipping unit 2, particularly its driving body 2a, indirectly based on the heat transferred from the cleaning basin 4 that is in contact with the driving body 2a. Provided in the lower part of
As shown in
If the operation of the driving body 2a stops, the detection temperature increases again. However, if it reaches a certain temperature value, a quantity of heat applied from the heater 14 is balanced with a quantity of evaporation heat of the fluid drops, thereby maintaining the detection temperature approximately constant. However, as the time passes, the detection temperature starts to increase rapidly because not enough fluid drops are present on the driving body 2a to balance out the heat being generated by the heater. The temperature then continues to increase until the detection temperature reaches a constant through a balance between a quantity of heat emitted from the driving body 2a to the ambient air and a quantity of heat applied from the heater 14.
A threshold value T1, for use in detecting the rapid temperature rise occurring when the driving body 2a is sufficiently dried, is set in the controller 12. That is to say, if the detection temperature from the temperature sensor 25 exceeds the threshold value T1, the controller 12 determines that the driving body 2a is completely dried, and outputs a control signal to stop the operation of the hair clipping unit 2 completely. However, even after the hair clipping unit 2 stops, the fan 13 and the heater 14 forming the drying mechanism B will still be operational for a certain period of time to dry hair clipping unit 2's other parts than the driving body 2a or the cleaning basin 4 sufficiently, and after the lapse of the certain time period, they will stop.
By using the above-described control mechanism, a negative influence on the lifetime of the hair clipping unit 2 and from the noise generated from the hair clipping unit 2 when it is driven can be minimized. Moreover, by using the temperature sensor 25 as the dryness detecting unit C, the dryness of the apparatus can be accurately detected based on a temperature variation, whereby it becomes possible to stop the hair removing apparatus 1 at a proper time without making a wrong detection.
While the invention has been shown and described with respect to the embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-199949 | Jul 2006 | JP | national |