The present invention relates to a vacuum cleaner. In particular the present invention relates to a vacuum cleaner with a moveable nozzle.
Vacuum cleaners are used to collect dirt and debris from surfaces. Handheld vacuum cleaners can be held by the user to clean surfaces above the floor. When cleaning high surfaces, the user may have difficultly using a handheld vacuum cleaner without standing on steps or a chair.
It is known to provide a handheld vacuum cleaner with a moveable nozzle. Two such vacuum cleaners are shown in both EP 1 752 076 and EP 2 223 644. These vacuum cleaners have nozzles that are pivotable between different positions. This makes reaching high surfaces or accessing low surfaces easier.
A problem with the handheld vacuum cleaners is that the pivotable nozzle is bulky and cannot always fit into small spaces. The user may be required to attach accessories for specific cleaning applications. However, the user may have to store the cleaning accessories separately and this is inconvenient for the user or the user may forget about them entirely.
Another vacuum cleaner is shown in U.S. Pat. No. 5,787,546 which has a flexible hose. However, the vacuum cleaner has an integral carpet brush which makes the vacuum cleaner with the carpet brush difficult to use on surfaces other than floors and upholstery.
Embodiments of the present invention aim to address the aforementioned problems.
According to an aspect of the present invention there is a vacuum cleaner comprising: a housing; a motor fan assembly mounted in the housing; a pivotable inlet nozzle in fluid communication with the motor fan assembly; a dirt container coupled to the pivotable inlet nozzle and the housing; wherein the pivotable inlet nozzle is pivotable between a first operable position whereby the pivotable inlet nozzle is in fluid communication with a flexible hose mounted on the housing and a second operable position whereby the pivotable inlet nozzle projects from the housing and is remote from the flexible hose.
This means that the vacuum cleaner has a flexible hose that is readily available for use by the user. Conveniently the user does not have to find a stored accessory to use a flexible hose. At the same time the arrangement allows the user to have the versatility of a handheld vacuum cleaner with a pivotable nozzle.
Preferably the dirt container is pivotable with respect to the housing and pivots together with the pivotable inlet nozzle. This means that the whole of the dirt container moves with the pivotable nozzle. In this way there is a bearing between the housing and the dirt container which limits the likelihood of it becoming clogged or damaged from dirt or debris.
Preferably the pivotable inlet nozzle abuts the housing when the pivotable inlet nozzle is in the first operable position. This provides a compact low volume solution for storing the pivotable nozzle when it is not in use.
Preferably the housing comprises a seal engageable with both the flexible hose and the pivotable inlet nozzle when the pivotable inlet nozzle is in the first operable position. This ensures that the pivotable nozzle is in fluid communication with the flexible hose without loss in negative pressure.
Preferably the housing comprises a recess for receiving the entire flexible hose. This means that the flexible hose has a compact storage position and means that the flexible hose does not get in the user's way when the flexible hose is not in use.
Preferably a first end of the flexible hose is fixed to the housing and a second end of the flexible hose is detachable from the housing. This means that the flexible hose cannot be completely detached from the vacuum cleaner and lost.
Preferably at least a portion of the flexible hose is detachably mounted to the housing and wrappable around the housing for stowing on the housing. This means that a substantial length of flexible hose can be stored on the vacuum cleaner. By wrapping the hose along both sides of the handle, double the length of hose can be stored.
Preferably the flexible hose comprises a second inlet nozzle. Preferably the second inlet nozzle comprises a coupling mechanism for coupling one or more accessories to the second inlet nozzle. This means that the second inlet nozzle can be used with a variety of tools. Preferably the pivotable nozzle comprises a coupling mechanism for coupling one or more accessories to the second inlet nozzle.
Preferably the coupling mechanism is configured to couple to the housing. This means that the second inlet nozzle is securely fastened to the housing when the flexible hose is not in use.
Preferably the housing comprises a blind hole for receiving the second inlet nozzle. Preferably the housing comprises a handle and the flexible hose is mounted in or on the handle. Preferably the pivotable inlet nozzle is mounted in or on the handle when the pivotable inlet nozzle is in the first operable position. Preferably the handle projects away from the dirt container and comprises a closed loop.
Preferably the pivotable inlet nozzle comprises an indexing mechanism for providing a plurality of second operable positions.
Preferably the vacuum cleaner is a handheld vacuum cleaner.
Various other aspects and further embodiments are also described in the following detailed description and in the attached claims with reference to the accompanying drawings, in which:
The handle 102 projects from a housing 104. The handle 102 comprises a “U-shape” where both free ends of the “U” are coupled to the housing 104. The handle 102 forms a closed loop and defines a hole 106. The closed loop arrangement of the handle 102 allows the user to wrap their hands and fingers comfortably around the handle in any orientation. Furthermore, the user can pass their hand through the hole 106 and rest the handle 102 on their arm like the strap of a bag. This means that the user can free up both hands when carrying the handheld vacuum cleaner 100.
The housing 104 houses a motor fan assembly 200 (shown in
A dirt container 108 is coupled to the housing 104. The dirt container 108 is detachable from the housing 104. In some embodiments the dirt container 108 is mounted to the housing 104 with a bayonet type fitting. The dirt container 108 can be released from the housing 104 with a ¼ turn. In other embodiments any suitable securing means can be used to secure the dirt container 108 to the housing 104. For example, clips or a friction fit can be used to detachably secure the dirt container 108 to the housing 104.
A dirt separation means 110 is mounted in the dirt container 108. The dirt separator 110 is arranged to separate dirt and debris entrained in the airflow. The dirt separator 110 comprises a plurality of dirt separation elements.
The motor 202 is mounted inside the dirt separator 110. This makes the vacuum cleaner 100 more compact. In some embodiments (not shown) the motor fan assembly 200 is not nested inside the dirt separator 110 and the motor fan assembly is mounted elsewhere in the housing 104. In this embodiment the motor fan assembly 200 is still in fluid communication with the dirt container 108 and the dirt separator 110 and connected via a conduit (not shown). The air flow path extends from the dirt separator 110 via the motor fan assembly 200 to a clean air exhaust outlet (not shown).
Turning back to
The structure of the vacuum cleaner 100 will be described in further detail in reference to
The nozzle 300 is pivotable and moveable between a plurality of operable positions. An operable position of the nozzle is a position whereby the vacuum cleaner can operate and create an air flow path from the dirty air inlet 302 to the dirt container 108. The pivotable nozzle 300 pivots about a pivot axis A-A. The pivot axis A-A is coaxial with the longitudinal axis of the dirt container 108. In some embodiments the pivot axis A-A of the pivotable nozzle 300 is offset from the longitudinal axis of the dirt container 108. The pivotable nozzle 300 is pivotable between a plurality of operable positions.
Optionally in some embodiments the dirt container 108 is fixed with respect to the pivotable nozzle 300. This means that the dirt container 108 and the pivotable nozzle 300 move in unison when the piovtable nozzle 300 moves. The dirt container 108 rotates about a rotational axis. In some embodiments the dirt container 108 rotates about the longitudinal axis of the dirt container 108. In this way the dirt container 108 rotates about the same axis A-A as the axis about which the pivotable nozzle 300 pivots. Alternatively the pivotable nozzle 300 is pivotable with respect to both the dirt container 108 and the housing 104. In this way the dirt container 108 does not move when the pivotable nozzle 300 is moved. In the embodiment where the pivotable nozzle 300 is pivotally mounted on the dirt container 108, there is a bearing between the pivotable nozzle 300 and the dirt container 108.
As mentioned above,
The dirty air inlet 302 of the pivotable nozzle 300 engages with a seal 306 when the pivotable nozzle 300 is in the first operable position. The seal 306 is a rubber O-ring which forms a friction fit with the outer surface of the pivotable nozzle 300. The seal 306 is mounted in or on a cuff portion 308. The cuff portion 308 is integral with the handle 102 and provides a rigid mounting surface for the seal 306. In other embodiments, the seal 306 can be any suitable means for engaging the outer surface of the pivotable nozzle 300 and creating an air-tight seal there against.
A flexible hose 310 is detachably mounted in the handle 102. The handle 102 comprises a second recess 312 for receiving the flexible hose 310. The second recess 312 can be best see from
Turning back to
The flexible hose 310 is fixed at a first end 314 to the cuff portion 308. A second end 316 of the flexible hose 310 is removable from the second recess 312 of the handle 102. The second end 316 of the flexible hose 310 comprises a second inlet nozzle 318 for receiving dirty air. The second inlet nozzle 318 is received in a blind hole 322 when the flexible hose 310 stowed away. In some embodiments there is a simpler arrangement whereby the second end of the flexible hose 310 does not terminate in an inlet nozzle and only the second end 316 of the flexible hose 310. The flexible hose 310 may also be completely detachable from the handle 102. In the embodiment where the flexible hose 310 is completely detachable, the flexible hose is mountable on the pivotable nozzle 300.
In the embodiments that have the second inlet nozzle 318, the second inlet nozzle 318 is configured to couple to one or more accessories. The accessories are any suitable cleaning tool such as brushes, crevice tools or an extension tube and floor head arrangement. The second inlet nozzle 318 optionally comprises a first coupling mechanism 320 which can best be seen from
The first coupling mechanism 320 comprises a dual use. The first coupling mechanism 320 also engages an outer surface 324 of the blind hole 322 when the second inlet nozzle 318 is received in the blind hole 322. The outer surface 324 comprises a shallow recess in which the catch end 330 engages. This means that the second inlet nozzle 318 is securely fastened to the housing 104 when the flexible hose is wrapped around the handle 102.
In an alternative embodiment, the second inlet nozzle 318 does not have a coupling mechanism. Instead the accessories are fastened to the second inlet nozzle 318 with a friction fit.
The flexible hose 310 is in fluid communication with the cuff portion 308. This means that when the pivotable nozzle 300 is in the first operable position and the pivotable nozzle 300 is engaged with the seal 306 and the cuff portion 308, the pivotable nozzle 300 is in fluid communication with the flexible hose 310. This means that the air flow path is extended through the pivotable nozzle 300 along the flexible hose 310 and to the second inlet nozzle 318 when the pivotable nozzle is in the first operable position.
In other words the flexible hose 310 provides an extension hose for the pivotable nozzle 300. The flexible hose 310 is integral to the vacuum cleaner 100 and this means that the user does not have to store the flexible hose 310 separately. The on-board flexible hose 310 means that the vacuum cleaner has more versatility. In some embodiments the diameter of the second inlet nozzle 318 is smaller than the diameter of the pivotable nozzle 300. This means that the second inlet nozzle 318 can be inserted into smaller and harder to reach places than the pivotable nozzle 300.
During operation the motor fan assembly 200 creates a negative pressure for sucking debris and dirt at the second inlet nozzle 318. In the first operable positon, the pivotable nozzle 300 is in fluid communication with the second inlet nozzle 318. Accordingly there is an air flow path from the second inlet nozzle 318 to the dirt container 108 via the pivotable nozzle 300. The seal 306 ensures that the there is no air leaks at the junction between the dirty air inlet 302 and the cuff portion 308.
In some embodiments the vacuum cleaner 100 may optionally comprise feet 604. The feet 604 allow the vacuum cleaner 100 to be stored vertically wherein the dirt container 108 is adjacent to a horizontal surface and the handle projects upward away from the horizontal surface.
A brief reference will now be made back to
Turning back to
This is also shown in
The extent of the rotation of the pivotable nozzle 300 is best seen from
Position A shows the pivotable nozzle 300 in the first operable position. In this first operation position the pivotable nozzle 300 is in fluid communication with the second inlet nozzle 318.
Positions B, C, D and E all show the pivotable nozzle 300 in a plurality of second operable positions whereby the pivotable nozzle 300 has under gone a different amount of rotational movement with respect to the housing 104 and the handle 102. In positions B, C, D and E the pivotable nozzle 300 is not in fluid communication with the second inlet nozzle 318.
Position B shows the pivotable nozzle 300 having rotated about 30 to 40 degrees with respect to the housing 104. Position C shows the pivotable nozzle 300 having rotated about 90 degrees with respect to the housing 104. Position D shows the pivotable nozzle 300 having rotated about 150 to 165 degrees with respect to the housing 104. Position D is the normal position for orientating the pivotable nozzle forwards. Position E shows that the pivotable nozzle 300 having rotated about 270 degrees with respect to the housing 104. Position E is the maximum extent that the pivotable nozzle 300 can be rotated away from the handle 102. The maximum extent of the rotation is determined by the position of the stop member 332 abutting against the top surface 334. The pivotable nozzle may be arranged to rotated to any number of second operable positions. In some embodiments the pivotable nozzle 300 and the dirt container 108 are configured to slidably rotate to any position between the extreme positions (e.g. positions A and E). The dirt container 108 is arranged to provide a frictional force between the dirt container 108 and the housing 104 such that the relative rotational orientation of the pivotable nozzle 300 to the housing is maintained.
In another embodiment there is optionally a rotational locking mechanism 400. The rotational locking mechanism 400 comprises a biased locking member mounted on the dirt container 108. The biased locking member is urged into the dirt container 108 towards the housing 104. The biased locking member is actuated with a locking mechanism release button which moves the biased locking member from a locked position to an unlocked position when pressed. The housing 102 comprises an indexing member with a plurality of indexing recesses for receiving the biased locking member. When the locking member is received in one of the indexing recesses, the dirt container 108 is fixed with respect to the housing and is prevented from rotating with respect to the housing 108. The indexing member is an indexing ring and the indexing recesses are distributed around the ring. Each indexing recess corresponds to an indexed position of the dirt container 108 with respect to the housing 104. For example, each of positions A, B, C, D, E would each correspond to an indexed recess on the indexing ring. To release the dirt container 108 and the pivotable nozzle 300, the locking mechanism release button is depressed and the dirt container 108 is rotated with respect to the housing 104. The biased locking member will move into the next indexing recess with an audible click.
In operation the motor fan assembly 200 creates a negative pressure and dirt and debris are sucked in at the dirty air inlet 302. In the second operable position, the air flow path is from the dirty air inlet 302 to the dirt container 108. Air does not flow through the flexible hose 310 when the pivotable nozzle 300 is in the second operable position.
An alternative embodiment of the vacuum cleaner is shown in
In can be seen that the handle extends substantially in the plane which contains the axes B-B and C-C. Accordingly, the rotational and longitudinal axis of the dirt container 804 lies in the same plane in which the handle extends.
In contrast the embodiments discussed in reference to
In one embodiment the pivotable nozzle 902 and the dirt container 904 rotates about axis C-C with respect to the housing 104. The dirt container 904 rotates with the same functionality as previously described with reference to the embodiment shown in
However, in another embodiment the pivotable nozzle 902 and the end cap 906 pivot with respect to the dirt container 904 and the housing 104. In this way the dirt container 904 is fixed with respect to the housing 104 when the pivotable nozzle 902 pivots with respect to the housing 104.
In another embodiment two or more embodiments are combined. Features of one embodiment can be combined with features of other embodiments.
Embodiments of the present invention have been discussed with particular reference to the examples illustrated. However, it will be appreciated that variations and modifications may be made to the examples described within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
16198817 | Nov 2016 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 15/805,604 filed Nov. 7, 2017, which claims priority to European Patent Application No. 16198817.5 filed Nov. 15, 2016. The entire contents of those applications are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15805604 | Nov 2017 | US |
Child | 16139918 | US |