Cleaning in membrane filtration systems

Information

  • Patent Grant
  • 8496828
  • Patent Number
    8,496,828
  • Date Filed
    Monday, December 19, 2005
    18 years ago
  • Date Issued
    Tuesday, July 30, 2013
    10 years ago
Abstract
A method of cleaning permeable, hollow membranes is disclosed. In one embodiment, the membranes are immersed in a liquid suspension. A pressure differential is applied across the walls of the membranes. During filtration, liquid suspension passes through the walls of the membranes to be drawn off as permeate, and at least some solids are retained on or in the membranes. The steps of cleaning include: applying a cleaning solution to one side of the membrane walls; applying a pressure differential across the membrane walls to cause flow of the cleaning solution through the walls from the one side of the membrane walls to the other side of the membrane walls; and, applying a reverse pressure differential across the membrane walls to cause flow of the cleaning solution through the wall from the other side of the membrane walls back to the one side of the membrane walls.
Description
PRIORITY

This application claims the benefit of priority to U.S. patent application Ser. No. 10/846,883, filed May 14, 2004, by inventor Rick Huffman, entitled, Non-Lethal Marking Bullet for Related Training Cartridges, and this application claims priority to U.S. provisional patent application no. 60/539,022, filed Jan. 22, 2004 by inventor Rick Huffman. This application is related to United States patent application entitled “Reduced Energy Training Cartridge for Self-Loading Firearms”, application Ser. No. 10/799,898, filed Mar. 12, 2004, also by inventor Rick Huffman, which is hereby incorporated by reference.


BACKGROUND

1. Field of the Invention


The invention relates to dedicated or modified non-lethal firearms equipment, and particularly to a non-immobilizing projectile that disperses marking material upon impact with a target.


2. Description of the Related Art


Various designs of non-lethal projectiles exist that are typically tailored to the specific application with which it is to be used. The terms “projectile” and “bullet” are generally used interchangeably herein, although as understood by those skilled in the art, a bullet may be housed within a cartridge in static condition before firing, and become a projectile when launched. A projectile is in a dynamic condition as referred to herein after firing when on its way through the air toward a target prior to impact. The projectile or bullet is in a static condition prior to firing such as when loaded into the chamber of a non-lethal modified or dedicated firearm, or when assembled prior to loading. Applications include paint ball, and in this context, it is desired to have a projectile that marks a human target on impact, but does not cause pain or immobilization. Generally, paint ball rounds are fired in a game setting. They effectively mark targets without causing even moderate pain or injury upon impact. They also have short ranges and inaccurate trajectories that pose highly reduced safety concerns compared with lethal ammunition.


In a paint ball application described at U.S. Pat. No. 5,965,839, which is hereby incorporated by reference, a delivery housing is described for providing trajectory stabilization and distance during delivery of the marking material-filled casing. This extra housing adds an undesirable layer of complexity and cost. It is desired to have a stable non-lethal projectile with adequate range that does not include such a delivery housing containing the marking material-filled casing when the projectile is in the dynamic condition.


The '839 patent and multiple other references describe projectiles including delivery housings that contain one or more casings that are filled with marking material. The casings are often exploded upon impact by a sharpened edge within the delivery housing. In addition to the '839 patent, another example of a projectile uses a sharpened edge or “striker” and is described at U.S. Pat. No. 6,250,226. The striker perforates a container of incapacitating agent upon impact of the projectile with a target. Multiple orifices are provided around a casing that delivers the container to the target along its trajectory for omni-directionally dispersing the incapacitating agent. Other projectiles that include striker components for breaking open a container of fluid under pressure are described at U.S. Pat. No. 6,209,461. These designs using sharpened edges typically have the marking material casing resting nearby raising an clear risk of premature puncture and release of marking material. It is desired to have a multi-function casing that both contains the marking material and provides a stable and aerodynamic delivery mechanism that also forward-disperses the marking material upon impact.


Like these games, some training applications and target practice generally require only that the projectiles mark a target upon impact. Whether or not they would be immobilizing or lethal in nature if they struck a human target may be unimportant, irrelevant, or even undesirable as raising unnecessary safety concerns. However, some non-immobilizing projectile designs have trajectories that may be drastically different than typically higher speed lethal projectiles, and this unsatisfactory. A training aid should allow the training to mimic real conditions as closely as possible while sufficiently subsiding the safety concern to participants' lives inherent in live-fire conditions. It is desired to have a non-lethal projectile that may maintain a stable trajectory similar to that of a non-training immobilizing and perhaps lethal projectile for training and target practice applications.


A very different approach in design for a non-lethal ammunition round is described at U.S. Pat. No. 5,652,407. The design includes multiple parallel and entirely cylindrical projectiles. The projectiles launch simultaneously and tumble through the air toward impact striking the target at various orientations. Marking materials may be impregnated within, coated on or carried by the projectiles. The spread of the strike locations and marked regions is random and broad, e.g., similar to the result of multiple impacts by shotgun shrapnel. Moreover, the trajectories may vary and are likely inaccurate and of short range. It is desired to have a more stable and long range trajectory, and a more concentrated impact and marking material dispersion zone upon impact.


A further application for non-lethal projectiles is riot control. It is typically desired that these projectiles either harm, but not kill, a target person upon impact, or release some form of immobilizing agent, such that either way, the person will be deterred from the further pursuit of rioting. Generally, the marking of targets on impact is not high priority for these applications.


In a baton round for riot control, U.S. Pat. No. 6,371,028 describes a projectile including a casing filled with multiple balls, e.g., steel ball bearings, that redistribute upon impact to soften their effect. The purpose is to deter further rioting without causing serious harm to the targeted person. There is no marking material or other agent within the projectile that disperses upon impact with the target.


U.S. Pat. No. 3,982,489 describes a ring airfoil projectile that is designed to be aerodynamic and to have a high spin rate in a dynamic condition. The ring airfoil design is provided to increase stability, flatten the trajectory and increase the range. Other ring airfoil projectiles are described at U.S. Pat. Nos. 4,270,293 and 4,262,597. The projectiles are ring-shaped, i.e., with hollowed centers. There is no marking material described as being associated with any of these projectiles.


Another non-marking projectile is described at U.S. Pat. No. 5,221,809. The projectile includes a woven bag that fills through a valve with some of the same pressurized propellant that ejects the projectile from a launching device. The bag inflates upon leaving the launcher, which slows the projectile and softens the impact. Another controlled-deformation projectile is described at U.S. Pat. No. 6,302,028 that spreads out at such a diameter that penetration is limited and energy is rapidly spread out by instantaneous enlargement.


Other examples of cartridges including non-lethal projectiles without marking materials, e.g., for training, animal control, or riot control purposes, are described at U.S. Pat. Nos. 6,415,718, 6,564,719, and 6,295,933. Also, U.S. Pat. No. 3,952,662 describes a projectile that may be fired from a conventional shotgun. The projectile may be loaded into a conventional shotgun casing. The projectile has “arms” that extend in dynamic condition to prevent the projectile from penetrating the target. The projectile is described as being filled with buckshot and weights.


At U.S. Pat. No. 5,791,327, a projectile is described as including a base member and point shaped component to form a chamber for holding a disabling agent such as pepper powder or other disabling gas or liquid. A hollow tip and cylindrical body form an inner cavity which is closed after the agent or other substance is inserted. The walls include fracture lines that are designed to break laterally and longitudinally upon impact for causing lateral distribution of the agent. Such fracture lines are formed within casings of projectiles also described at U.S. Pats. No. 6,393,992, 6,543,365 and 6,546,874.


Several conventional projectile designs for use with non-lethal firearms and cartridges provide liquid or gaseous expulsion upon impact or are themselves liquid or gaseous and propelled directly from the firearm device. For example, U.S. Pat. No. 5,983,548 describes a non-lethal firearm device for directly ejecting liquids or gases under pressure, but not solid projectiles. The device is described as being designed to propel a debilitating chemical substance such as pepper spray or mace. Another example of liquid or gaseous propulsion firearms is described at U.S. Pat. No. 6,658,779.


Various projectile designs exist that provide marking and immobilization upon impact. For example, U.S. Pat. Nos. 6,230,630 and 6,615,739 describe projectiles that include both marking and immobilizing agents. The projectiles include cylindrical and hemispherical components that are separated by a circular insert to isolate their interior volumes. An embodiment is described wherein, after joining these three components, the marking material is dispensed through a fill port to the interior volume of the hemispherical portion that is subsequently sealed. In another embodiment, marking material is contained within glass ampules that are placed within the interior compartment of the cylindrical component.


Among other examples of conventional technology are a projectile including a transmitter that is used in combination with a reader target as described at U.S. Pat. No. 6,604,946. Another projectile delivers an electrical shock upon impact with a target as described at U.S. Pat. No. 5,962,806. A non-lethal, one- or two-piece projectile is described at U.S. Pat. No. 6,374,741 for being fired from a grenade launcher. A variable lethality projectile is described at U.S. Pat. No. 6,553,913, and a further projectile, although not of non-lethal design, is described at U.S. Pat. No. 6,672,218. All of the patents described above are hereby incorporated by reference into this application for all purposes.


SUMMARY OF THE INVENTION

According to a first aspect of the invention, a projectile of non-lethal composition is provided including one or more components forming an outer casing that is substantially sealed prior to impact with a target both when the projectile is in a static condition and when the projectile is in a dynamic condition providing a concentrated impact zone with the target. A non-toxic marking material is encapsulated within the outer casing prior to impact. The outer casing is configured to deform and unseal upon impact such that the marking material disperses forward via hydraulic action providing a concentrated marking material zone around the impact zone. The casing serves both as an aerodynamic delivery housing and to contain the marking material when the projectile is in the dynamic condition.


The marking material may comprise a paste. When loaded into a cartridge, the projectile may maintain a substantially right cylindrical shape for more than half of its exposed length. The projectile may be configured such that upon impact, deformation produces an unsealing of the casing, and compaction of the casing into the marking material produces the hydraulic action and the forward dispersion. A majority of the outer casing may have a right cylindrical shape. The casing may have an at least in part substantially cylindrical shape.


According to another aspect, a projectile of non-lethal composition may include a cup component and a cap component. The cup component includes a heel portion and a hollowed well portion defining a well cavity. A non-toxic marking material is disposed within the well cavity. The cap component includes an exposed tip portion and a seat portion. The seat portion couples within the well cavity of the cup component and substantially seals the marking material therein prior to impact with a target both when the projectile is in a static condition and when the projectile is in a dynamic condition providing a concentrated impact zone with the target. The marking material marks the impact zone through dispersing the material forward via hydraulic action upon impact providing a concentrated marking material zone around the impact zone.


The one or more components of the first aspect, and/or a projectile in accordance with aspects that follow, may include the cup and cap components, and the projectile according to any of these may further include one or more of the following features. The cap or cup component, or both, may be configured to deform upon impact unsealing the marking material, and the hydraulic action may be produced due to compaction of the cap component into the marking material. The cup component may comprise a heel portion and a hollowed well portion defining a well cavity within which the marking material is disposed prior to impact. The cap component may comprise an exposed tip portion and a seat portion. The seat portion may couple within the well cavity substantially sealing the marking material therein. The heel and well portions of the cup component may have substantially right cylindrical shapes. The heel portion of the cup component may defines an inset cavity opposite the well cavity for coupling with a cartridge protrusion having a flash hole defined therein for communicating pressurized gas from the cartridge to propel the projectile. An outer peripheral interface between the tip and seat portions of the cap component may substantially match an outer periphery of the cup component providing the substantial sealing of the marking material within the well cavity prior to impact. Upon impact, deformation of the cap or cup components, or both, may unseal the marking material at the matching peripheries, and compaction of the cap component into the marking material produces said hydraulic action and forward dispersion. The marking material may be inserted into the well cavity prior to sealing the cup and cap components to form the projectile.


One or more fissures or serrations (hereinafter referred to as “fissures”) may be defined between the cap and cup components when the projectile is sealed that facilitate the breaking of the projectile upon impact to release the marking material. The one or more fissures may be filled with the marking material. The one or more fissures may be defined between the seat portion of the cap component and an interior wall of the hollowed portion of the cup, such that the marking material fills a volumetric cavity and the one or more fissures between the cup and cap components when seated within the well cavity prior to impact. An interior surface of the casing that contains the marking material may include the one or more fissures.


In accordance with a further aspect, a projectile of non-lethal composition includes two or more components forming an outer casing that is statically and dynamically stable and substantially sealed prior to impact with a target both when the projectile is in a static condition and when the projectile is in a dynamic condition. A non-toxic marking material is encapsulated within the outer casing prior to impact and configured such that, upon impact, the outer casing deforms and unseals, and the marking material disperses forward via hydraulic action upon impact. The projectile may include any of the other features provided above or below herein.


According to another aspect, a projectile of non-lethal composition includes one or more components forming an in-part substantially cylindrical outer casing prior to impact with a target both when the projectile is in a static condition and when the projectile is in a dynamic condition providing a concentrated impact zone with the target. The casing may be configured such that when loaded into a cartridge, the projectile maintains a substantially right cylindrical shape for more than half of its exposed length. The casing serves as an aerodynamic delivery housing. The casing may define an inset cavity for coupling with a cartridge protrusion having a flash hole defined therein for communicating pressurized gas from the cartridge to propel the projectile. A majority of the outer casing may have a right cylindrical shape. Other features provided above and below herein may also be included.


A method of manufacturing a projectile of non-lethal composition is also provided. The method includes providing two or more components that fit together to form a projectile. The components are configured such that upon coupling, a well cavity is defined therein, as well as one or more fissures leading from the well cavity toward a sealing interface between at least two of the components. A marking material ois provided within the well cavity prior to coupling the components. The coupling of the components includes pressurizing the marking material to cause it to flow into the fissures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A schematically illustrates a side view through a cavity well outer wall of a multiple component projectile of non-lethal composition in accordance with a preferred embodiment.



FIG. 1B schematically illustrates a preferred actual size of the projectile of FIG. 1A.



FIG. 2A schematically illustrates a cup component of the projectile of FIGS. 1A-1B.



FIG. 2B schematically illustrates an heel end view of the cup component of FIG. 2A.



FIG. 2C schematically illustrates a marking material component of the projectile of FIGS. 1A-1B.



FIG. 2D schematically illustrates a cap component of the projectile of FIGS. 1A-1B.



FIG. 2E schematically illustrates a tip end view of the projectile of FIGS. 1A-1B.



FIG. 3A schematically illustrates the projectile of FIGS. 1A-1B in dynamic condition prior to impact in a view through a cavity well outer wall.



FIG. 3B schematically illustrates the projectile of FIG. 3A with outer casing unsealing and marking material dispersing forward upon impact of the projectile with a target.



FIG. 3C schematically illustrates an estimated actual size of a point-of-impact confirmation mark made on the target of FIG. 3B by marking material.



FIG. 4 schematically illustrates a cross-sectional side view of a piston sleeve of a cartridge within which the projectile of FIGS. 1A-3C is inserted revealing the inner structure in accordance with a preferred embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1A schematically illustrates a cross-sectional side view of a multiple component projectile of non-lethal composition in accordance with a preferred embodiment. FIG. 1B schematically illustrates a preferred actual size of the projectile of FIG. 1A. The projectile or bullet illustrated at FIGS. 1A and 1B can be produced to accommodate various cartridges (developed or pending development), including both mechanically operating cartridges, e.g., for 9 mm, .223, .308, etc., and non-mechanically operating cartridges, e.g., .38/.375 cal. revolver, 12 gauge shot shell, etc. In general, the bullet of the invention may be used with any of a wide variety of cartridges and cartridge conditions that work with related applications.


The projectile is formed from three main components: a cap component 2, a cup component 4, and a marking material component 6. The marking material 6 is shown cross-hatched in the drawings facilitating a clearer understanding of locations of the marking material under static, dynamic and impact conditions. The cap component 2 can have any of various shapes known in the art, and generally includes a seat component 14 and a tip component 16. The seat component inserts into a well cavity 12 defined within the cup component 4, while the tip component 16 remains exposed when the projectile is fully assembled. In a preferred embodiment, all or substantially all “air-voids” are omitted when the bullet's cup 4, cap 2, and marking material 6 are assembled, as illustrated at FIGS. 1A and 1B. This features provides a pre-balanced bullet, in the static condition, and improves the dynamic condition, when launched and in-flight, for ballistic stability.


Preferably the shape of the tip 16 is rounded as shown, which is generally more so than a conventional cone-shaped projectile. That is, the projectile of FIG. 1A, when loaded into a cartridge, maintains a substantially right cylindrical shape for more than half of its exposed length. The unexposed length preferably substantially matches the shape of the cavity of the cartridge component (e.g., piston sleeve, see FIG. 4) within which the projectile is to be inserted prior to discharge, and as shown is preferably substantially right cylindrical. The projectile or sleeve interior may include one or more fins. The shape of the tip 16 that is shown in FIG. 1A is preferred over a more cone-shaped or pointed design, because it is desired to have a projectile that is less likely to penetrate a target. This is because it is intended that animate objects such as persons may be targets, and in addition, the marking feature of the projectile will be less effective if the projectile penetrates the target that is intended for marking. The cone-shaped or more pointed design may, however, be alternatively used with various aspects of the invention. Preferred and alternative shapes may be further illustrated at the co-pending patent application by the same inventor, Rick Huffman, entitled, “Reduced Energy Training Cartridge for Self-Loading Firearms”, filed Mar. 12, 2004, and which is hereby incorporated by reference, and further alternative shapes may be understood by those skilled in the art or as shown in references cited herein.



FIG. 1A also illustrates multiple fissures (or serrations) 8. The fissures 8 are preferably six in number and generally outside the seat component 14 material of the cap 2. These fissures are preferably internal allowing the outer wall of cup component 4 to remain smooth as to provide greater contact to barrel rifling as desired to create dynamic (bullet spin) stability. These fissures are preferably grooves that are formed in the inner surface of the cup component 4 that facilitate the breaking or splitting of the projectile upon impact with a target for releasing the marking material to mark the target. The fissures 8 may also include grooves formed in the outer periphery of the seat component 14 (see FIG. 2D) of the cap component 2. The fissures 8 may be formed in further alternative ways, as may be understood by those skilled in the art and/or as may be described in references cited herein, that may facilitate the splitting or breaking of the projectile upon impact. FIG. 1 indicates that the marking material 6 fills the fissures 8 due to the lack of cup component material within the fissures 8 and due to the preferred fluidic or quasi-fluidic nature of the marking material. The marking material 6 is preferably a somewhat thick water soluble paste and may be liquid soap or glycerin with tempora added for color. Pressure exerted on the marking material 6 by the seat 14 when the cap 2 is coupled to the cup 4 causes the marking material to flow into and fill or partially fill the fissures 8.


The cup component 4 couples sealably with the cap component 2. The pasty nature of the marking material 6 preferably facilitates the sealing of the cap 2 with the cup 4. The seal may also form suitably as a result of the close fitting diameters of the seat 14 and walls 9 of the well cavity 12, and/or the static frictional force between them when coupled due to the material characteristics and/or shapes. Under the proper conditions, the marking material may be more liquid and less pasty, and yet the sealing of the cap 2 and cup 4 may still be sufficient.


The cup component 4 includes walls 9 that lead all the way to the rim interface 10 of the cap component 2. The cup component 4 includes a well cavity 12 that is filled with the marking material 6. The cup component 4 also includes an inset cavity 18 opposite the well cavity 12 for coupling with a cartridge protrusion having a flash hole defined therein for communicating pressurized gas from the cartridge to propel the projectile (see the cartridge application, incorporated by reference above). The rim interface 10 provides an outer peripheral interface between the tip 16 and seat 14 of the cap component 2 that substantially matches an outer periphery of the walls 9 of the cup component 4 facilitating substantial sealing of the marking material 6 within the well cavity 12 prior to impact. The cap 2 and cup 4 preferably comprise polyethylene or a similar pliable plastic, rubber or other such material.


An alternative bullet or projectile, e.g., for use with inanimate target applications, may exclude the marker material. The projectile may be as described with the well cavity 12 simply remaining void throughout the coupling, launch and impact conditions, or filled with another material such as an immobilizing agent or a paste not having marking capacity. Alternatively, there may simply be no well cavity 12, and the bullet may be a solid single or multiple piece unit. Of course, the usefulness of the fissures 8 for facilitating the breaking of the bullet for releasing the marking material would not exist and so it is not desired to have them. However, if existing supplies of cup and cap components 2, 4 exist, although it may not be desired to mark a target in a particular application, bullets may be formed with cup and cap components 2, 4 as described herein with marking material left out.



FIG. 2A schematically illustrates a cup component 4 of the projectile or bullet of FIGS. 1A-1B. In addition to further illustrating the well cavity 12, the inset cavity 18, the rim interface 10 and the walls 9 of the cup component 4, the fissures 8 are illustrated in this view without being filled with the marking material. FIG. 2A illustrates that it is preferred that the fissures 8 comprise grooves that cut into the walls 9 of the cup component 4



FIG. 2B schematically illustrates a heel end view of the cup component of the projectile of FIG. 2A. The boundary of the inset cavity 18 is illustrated. At the outer periphery in the heel end view of FIG. 2B, six fissures 8 are shown as is the cup component wall 9. At the very end of the wall 9 is the rim interface 10 of the cup 4 that meets a corresponding rim interface 10 of the cap 2. Fewer or more fissures 8 than six may be provided.



FIG. 2C schematically illustrates a marking material component 6 of the projectile of FIGS. 1A-1B. The marking material 6 is shown before it is pressurized by setting the cap component thereon and flowing to fill the fissures 8 of FIG. 2D.



FIG. 2D schematically illustrates a cap component 2 of the projectile of FIGS. 1A-1B including the seat portion 14, which directly contacts and pressurizes the marking material 6 upon coupling. The tip portion 16 and the rim interface 10 are also shown. The rim interface 10 of the cap component 2 seals with the corresponding rim interface 10 of the cup component 4 upon coupling.



FIG. 2E schematically illustrates a tip end view of the cap component 2 of the projectile of FIG. 2D. In this view, the fissures 8 and cup component wall 9 are illustrated. The inset cavity boundary 18 is not shown in this tip end view so that the extent of the seat component 14 of the cap 2 can be illustrated. The marking material 6 also preferably occupies the space directly below the seat 14, in addition to filling the fissures 8 shown in FIGS. 2A-2B.



FIG. 3A schematically illustrates the projectile of FIGS. 1A-1B in dynamic condition prior to impact in the cross-sectional side view of FIG. 1A. The arrows illustrate that the projectile is moving from left to right in the plane of FIG. 3A, and is rotating. FIG. 3B schematically illustrates the projectile of FIG. 3A at impact. The impact force drives the seat portion 14 of the cap 2 deeper into the well cavity 12. In the example of FIG. 3B, the seat portion 14 contacts the solid portion of the cup component 4 at the bottom of the well cavity 12. The outer wall 9 is shown unsealing from the cap 2 at the rim interface 10, and the marking material is shown dispersing forward to the target 20. FIG. 3C schematically illustrates an estimated preferred actual size of a point-of-impact confirmation mark made on the target 20 of FIG. 3B by marking material 6 of the projectile of FIG. 1B.



FIG. 4 schematically illustrates a cross-sectional side view of a piston sleeve of a cartridge within which the projectile of FIGS. 1A-3C may be inserted revealing the inner structure in accordance with a preferred embodiment. The piston sleeve is a component of a preferred two-piece cartridge from which the projectile of FIGS. 1A-3C is launched. The aforementioned cartridge application describes the preferred cartridge in detail. The following is a short summary of features.


A two piece, two-stage, rechargeable, reusable, reduced-energy mechanically operating cartridge is provided for propelling a bullet of non-lethal composition from a dedicated or modified (rendered non-lethal status) firearm. The cartridge unit is comprised of a primary case, a piston sleeve, a propellant unit, and a bullet choice of a solid light weight material for inanimate-target applications or a “marking” version for non-lethal live-target applications such as is preferred herein and as has been described in detail above. The piston sleeve includes a substantially non-deformable jacket defining a bullet housing cavity at a first longitudinal end for coupling the bullet of non-lethal composition therein. The other end couples with the primary case. The primary case also includes a substantially non-deformable jacket for being axially coupled with the piston sleeve. The primary case also defines a cavity for receiving and retaining the propellant unit, a self contained unit consisting of a pyrotechnic material, or for containing pressurized gas or other propellant material. Upon activation, or cartridge discharging, the piston sleeve and primary case “mechanically extend or telescope” (dynamic condition) out from a compressed position (static condition), and thrust the base of the primary case away from the piston sleeve. The piston sleeve and primary case, having not substantially deformed preceding the mechanical operation are manually detached, spent propellant unit removed then replaced with a fresh one (cartridge recharged), the bullet is replaced, and the cartridge is ready for reuse.


According to another aspect, a two-piece, two-stage, rechargeable, reusable, mechanically operating cartridge for propelling a bullet of non-lethal composition from a dedicated or modified (rendered non-lethal status) firearm is provided including a primary case, a piston sleeve, a propellant unit, and a bullet as described herein. The piston sleeve includes a jacket defining a bullet housing cavity, or “mouth” at a first longitudinal end for coupling the bullet therein. The second end of the sleeve, or “throat” couples with the primary case and includes one or more partially annular ridge portions, or “cogs”. The primary case also includes a jacket for being axially coupled with the second end of the piston sleeve, and including one or more complementary cogs and/or channels to the cogs of the piston sleeve. The primary case also defines a cavity for coupling with a propellant unit of pyrotechnic compound or for containing pressurized gas or other propellant material. Upon axial coupling and at least partial compression, the primary case and piston sleeve become relatively rotationally movable (cogs traveling in channels) to angularly overlap their respective ridge portions. The angular overlap is present when the piston sleeve and primary case are set into a compressed position. Upon cartridge discharging, when the primary case and piston sleeve are thrust apart in the dynamic condition, the piston sleeve and primary case generally remain coupled within the chamber of the firearm's barrel, although in one aspect, the cogs may be shearable such as to allow separation to reduce energy.


The cogs of the piston sleeve preferably include two or three or more spaced apart cogs or cog portions. The piston sleeve may further include groove portions, or “channels” between the cogs for mating with the complementary cogs of the primary case. These channels may slidably couple with the complementary cogs, corresponding to cog travel within channels.


According to a further aspect, the firearm includes an annular step between the chamber and the barrel. Upon cartridge discharging shoulders of the piston sleeve remain in firm contact with the annular step within the barrel's chamber, while the primary case and sleeve are thrust away from the compressed, static position to a telescoped position. The shoulder of the piston sleeve contact the annular step of the firearm's chamber preventing the sleeve from advancing further within the barrel, such that the piston sleeve and primary case remain coupled within the chamber of the firearm.


An advantageous cartridge preferably includes the above-recited aspects in combination with other aspects. Ultimately upon cartridge discharging, the bullet is propelled down the barrel of the non-lethal status firearm due to propellant pressure releasing through a “regulator” hole that preferably has a selected size or open/close devise for regulating the velocity of the projectile. Moreover, the piston sleeve preferably defines a second cavity at an opposite longitudinal end, i.e., from the end that couples with the primary case, for fitting the bullet therein. The bullet may be configured such that more than half of the length of the bullet which is exposed outside the mouth of the piston sleeve when loaded includes a substantially right cylindrical shape. The mouth of the piston sleeve and the bullet may couple in part due to pressure fittings protruding inwardly from the sleeve, or outwardly from the projectile, or both. The propellant unit cavity and propellant unit may couple in part due to pressure fitting protruding inwardly from the primary case, or outwardly from propellant unit, or both.


A method of preparing a two-piece, two stage, rechargeable, reusable, mechanically operating cartridge including a piston sleeve, a primary case, a propellant unit, and bullet is also provided. A bullet of non-lethal composition is loaded into the mouth defined within the piston sleeve. A propellant unit is loaded into a cavity defined within the primary case or a propellant mechanism is coupled with the cavity. The piston sleeve is axially coupled with the primary case including an initial relative axial displacement of the sleeve and base to bring them together. Cog portions, or partial annular protrusions, of the piston sleeve are coupled with annular channels of the primary base during the initial axial displacement. The piston sleeve and primary case are relatively rotationally displaced after the initial axial displacement such as to prevent direct axial separation. Partially annular channels extend to angularly overlap cogs portions of each of the base and sleeve such that cog portions of the piston sleeve and primary case are angularly overlapped after the relative rotational displacement.


In accordance with another aspect, a method is provided for preparing a two-piece, two stage, rechargeable, reusable, mechanically operating cartridge including a piston sleeve, primary case, propellant unit, and bullet. The bullet of non-lethal composition is loaded into the mouth defined within the piston sleeve. A propellant unit is loaded into a cavity defined within the primary case or another propellant mechanism is coupled with the cavity. The primary base and the piston sleeve are coupled together to form a reduced energy mechanically operating cartridge. The primary base and piston sleeve may be decoupled after cartridge discharging and ejection from the chamber of the firearm. The bullet loading and propellant unit charging or other propellant mechanism coupling, respectively, may be repeated with another bullet configuration and another propellant unit or other propellant mechanism. The coupling may be repeated for reuse of the piston sleeve and primary case in a same cartridge together or in different cartridges.


The methods preferably include reloading another bullet into the mouth defined within the piston sleeve for reuse, and/or recharging with another propellant unit into the cavity defined within the primary case or coupling with further propellant mechanism for reuse. The method preferably includes repeating the bullet loading of the piston sleeve then recharging the primary cartridge with a propellant unit or coupling with another propellant mechanism, and repeating the coupling and rotating steps for reuse of the primary case and piston sleeve in a same mechanically operating cartridge together or in different cartridges. The piston sleeve and primary case of the two-piece cartridge of the reuse step may be reused, respectively, with a different reusable primary base and/or a different reusable piston sleeve.


The methods described preferably further include chambering the mechanically operating cartridge into the dedicated or modified firearm (rendered non-lethal status). The cartridge prior to mechanical activation is considered to be in stage one (static condition). Upon activation, or cartridge discharge, the primary case and piston sleeve preferably “mechanically extend or telescope” considered the second stage (dynamic condition). Ultimately in the second stage, the bullet is propelled down the barrel of the dedicated or modified (non-lethal status) firearm due to propellant pressure releasing through a flash hole regulator that mandates a selected size for regulating the velocity of the projectile. The primary case and the piston sleeve may be configured to be relatively rotationally movable to angularly overlap respective ridge portions. The angular overlap may be present when the piston sleeve and primary case are set into a compressed position (static condition), such that upon cartridge discharging, when the piston sleeve and primary case mechanically extend, the piston sleeve and primary case remain coupled within the chamber of the firearm. As a safety concern piston sleeve cogs are designed to “shear off” if propellant unit or propellant form is manipulated creating “overcharging” of propellant, as such cogs will shear off causing cartridge to separate entirely expelling excessive propellant thus preventing unsafe projectile velocity The firearm may include an annular step between the chamber and the barrel, such that upon firing when shoulder of the piston sleeve are firmly contacting the annular step, the primary case and piston sleeve are telescoped out from a compressed, static position to a telescoped position. The piston sleeve remains in contact with the annular step of the firearm preventing the sleeve from advancing further within the chamber of the barrel. The method may include coupling an annular O-ring protrusion, in addition to the coupling of the cogs and channels, within the throat of the piston sleeve coupled with the primary case stabilize the coupling of the charged mechanically operating cartridge when the two-piece cartridge is in a static position.


While an exemplary drawing and specific embodiments of the present invention have been described and illustrated, it is to be understood that that the scope of the present invention is not to be limited to the particular embodiments discussed. Thus, the embodiments shall be regarded as illustrative rather than restrictive, and it should be understood that variations may be made in those embodiments by workers skilled in the arts without departing from the scope of the present invention which is set forth in the claims that follow and includes structural and functional equivalents thereof.


For example, in addition to that which is described as background, the entire descriptions contained in the references cited in the background, the brief description of the drawings, the abstract and the invention summary, U.S. Pat. Nos. 4,899,660, 5,016,536, 5,121,692, 5,219,316, 5,359,937, 5,492,063, 5,974,942, 5,520,019, 5,740,626, 5,983,773, 5,974,942, 6,276,252, 6,357,331, 6,442,882, 6,625,916, 5,791,327, 6,393,992, 6,374,741, 5,962,806, 6,672,218, 6,553,913, 6,564,719, 6,250,226, 5,983,548, 5,221,809, 4,270,293, 6,615,739, 6,230,630, 6,543,365, 6,546,874, 5,965,839, 6,302,028, 6,295,933, 6,209,461, 5,962,806, 3,952,662, 6,658,779, 6,604,946, 6,553,913, 6,415,718, 5,652,407, 5,221,809, 4,270,293, 4,262,597, 3,982,489 and 5,983,773, are hereby incorporated by reference into the detailed description of the preferred embodiments, as disclosing alternative embodiments of elements or features of the preferred embodiments not otherwise set forth in detail. A single one or a combination of two or more of these references may be consulted to obtain a variation of the preferred embodiments described in the detailed description.


In addition, in methods that may be performed according to the claims and/or preferred embodiments herein and that may have been described above and/or recited below, the operations have been described and set forth in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations unless expressly set forth in the claims or understood by those skilled in the art as being necessary.

Claims
  • 1. A method of cleaning a permeable, hollow membrane, the permeable, hollow membrane comprising a wall, a filtrate side, and an outer side, the method comprising: removing liquid from the filtrate side of the membrane;removing liquid from the outer side of the membrane;applying a chemical cleaning solution to the outer side of the membrane;creating a pressure differential across the membrane wall to flow the chemical cleaning solution through the membrane wall from the outer side of the membrane into the filtrate side to at least partially fill the filtrate side with the chemical cleaning solution;isolating the outer side of the membrane;applying a pressurized gas to the filtrate side to flow the chemical cleaning solution back to the outer side through the membrane wall;accumulating an increased pressure developed on the outer side of the membrane as a result of the flow of the chemical cleaning solution; andventing the pressurized gas applied from the filtrate side of the membrane to atmosphere to flow the chemical cleaning solution through the membrane wall from the outer side to the filtrate side under the effect of the accumulated pressure on the outer side of the membrane.
  • 2. The method according to claim 1, wherein applying the pressurized gas to the filtrate side comprises substantially draining the filtrate side of the chemical cleaning solution.
  • 3. The method of claim 1, wherein accumulating the increased pressure comprises accumulating the increased pressure in a gas space provided on the outer side of the membrane.
  • 4. The method of claim 1, wherein accumulating the increased pressure comprises accumulating the increased pressure in a bladder arrangement.
  • 5. The method of claim 1, wherein creating the pressure differential comprises applying gas pressure to the outer side of the membrane.
  • 6. The method of claim 1, wherein creating the pressure differential comprises applying a vacuum to the filtrate side.
  • 7. The method of claim 1, wherein the chemical cleaning solution comprises an oxidizing solution.
  • 8. The method of claim 7, wherein the chemical cleaning solution comprises chlorine.
  • 9. A method of cleaning a permeable, hollow membrane, the permeable, hollow membrane comprising a wall, a one side, and an other side, the method comprising: applying a chemical cleaning solution comprising at least one of an acid, a caustic solution, and an oxidizing solution to the one side of the membrane;creating a pressure differential across the membrane wall to flow the chemical cleaning solution though the membrane wall from the one side of the membrane to the other side of the membrane;creating a reverse pressure differential across the membrane wall to flow the chemical cleaning solution through the membrane wall from the other side of the membrane back to the one side of the membrane;accumulating an increased pressure developed on the one side of the membrane as a result of the flow of the chemical cleaning solution through the membrane wall from the other side of the membrane back to the one side of the membrane; andventing the other side of the membrane to atmosphere from the other side of the membrane to flow the chemical cleaning solution through the membrane wall from the one side of the membrane back to the other side of the membrane under the effect of the accumulated pressure on the one side of the membrane.
  • 10. The method of claim 9, wherein creating the pressure differential comprises applying gas pressure to the one side of the membrane.
  • 11. The method of claim 9, wherein creating the pressure differential comprises applying a vacuum to the other side of the membrane.
  • 12. The method of claim 9, wherein creating the reverse pressure differential comprises applying gas pressure to the other side of the membrane.
  • 13. The method of claim 9, wherein creating the reverse pressure differential comprises applying a vacuum to the one side of the membrane.
  • 14. The method of claim 9, wherein the chemical cleaning solution comprises citric acid.
  • 15. The method of claim 9, wherein the chemical cleaning solution comprises chlorine.
  • 16. A method of cleaning a permeable, hollow membrane, the permeable, hollow membrane comprising a wall, a filtrate side, and an outer side, the method comprising: removing liquid from the filtrate side of the membrane;removing liquid from the outer side of the membrane;applying a chemical cleaning solution comprising at least one of an acid, a caustic solution, and an oxidizing solution to the outer side of the membrane;creating a pressure differential across the membrane wall to flow the chemical cleaning solution though the wall from the outer side of the membrane into the filtrate side of the membrane to at least partially fill the filtrate side with the chemical cleaning solution;creating a reverse pressure differential across the membrane wall to flow the chemical cleaning solution through the wall from the filtrate side of the membrane back to the outer side of the membrane;accumulating an increased pressure developed on the outer side of the membrane as a result of the flow of the chemical cleaning solution through the membrane wall from the filtrate side of the membrane back to the outer side of the membrane; andventing the filtrate side of the membrane to atmosphere from the filtrate side of the membrane to flow the chemical cleaning solution through the membrane wall from the outer side back to the filtrate side under the effect of the accumulated pressure on the outer side of the membrane.
  • 17. The method of claim 16, wherein creating the reverse pressure differential comprises applying a pressurized gas to the filtrate side of the membrane.
  • 18. The method of claim 16, wherein the steps of the cleaning method are repeated in cycles such that the chemical cleaning solution is alternately moved from a first side of the membrane to a second side of the membrane through the membrane wall.
  • 19. The method of claim 16, wherein the chemical cleaning solution comprises citric acid.
  • 20. The method of claim 16, wherein the chemical cleaning solution comprises chlorine.
Priority Claims (1)
Number Date Country Kind
2004907391 Dec 2004 AU national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2005/001919 12/19/2005 WO 00 6/21/2007
Publishing Document Publishing Date Country Kind
WO2006/066319 6/29/2006 WO A
US Referenced Citations (634)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
511995 Buckley Jan 1894 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3068655 Murray et al. Dec 1962 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3191674 Richardson Jun 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472168 Inoue et al. Oct 1969 A
3472765 Budd et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Carraro Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Shorr Jan 1971 A
3563860 Henderyckx Feb 1971 A
3591010 Pall et al. Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin Apr 1972 A
3679052 Asper Jul 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hill et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3982095 Robinson Sep 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Amaddio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4157899 Wheaton Jun 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4190419 Bauer Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4272379 Pollock Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4323453 Zampini Apr 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4367140 Wilson Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4371427 Holler et al. Feb 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4467001 Coplan et al. Aug 1984 A
4476015 Schmitt et al. Oct 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4539940 Young Sep 1985 A
4540490 Shibata et al. Sep 1985 A
4545862 Gore et al. Oct 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623460 Kuzumoto et al. Nov 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4769140 van Dijk et al. Sep 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4800019 Bikson et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4889620 Schmit et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4908114 Ayers Mar 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4963304 Im et al. Oct 1990 A
4966699 Sasaki et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Kluver et al. Nov 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5002666 Matsumoto et al. Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Muller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075044 Augem Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza, Jr. et al. Jan 1992 A
5080770 Culkin Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5102550 Pizzino et al. Apr 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5156738 Maxson Oct 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5180407 DeMarco Jan 1993 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5203405 Gentry et al. Apr 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5269919 von Medlin Dec 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5425415 Master et al. Jun 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5482625 Shimizu et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghavan et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5626755 Keyser et al. May 1997 A
5629084 Moya May 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5690830 Ohtani et al. Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
5814234 Bower et al. Sep 1998 A
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5846425 Whiteman Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895521 Otsuka et al. Apr 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran et al. Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan et al. Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran et al. Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6071404 Tsui Jun 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6245239 Cote et al. Jun 2001 B1
6254773 Biltoft Jul 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6290756 Macheras et al. Sep 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6324898 Cote et al. Dec 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6331248 Taniguchi et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6375848 Cote et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Groschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6471869 Yanou et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524481 Zha et al. Feb 2003 B2
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6555005 Zha et al. Apr 2003 B1
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6620319 Behmann et al. Sep 2003 B2
6623643 Chisholm et al. Sep 2003 B2
6627082 Del Vecchio et al. Sep 2003 B2
6632358 Suga et al. Oct 2003 B1
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706185 Goel et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723242 Ohkata et al. Apr 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6755970 Knappe et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6761826 Bender Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790347 Jeong et al. Sep 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863816 Austin et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Cote Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884350 Muller Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899812 Cote et al. May 2005 B2
6936085 DeMarco Aug 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7122121 Ji Oct 2006 B1
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7160464 Lee et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7279215 Hester et al. Oct 2007 B2
7300022 Muller Nov 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7361274 Lazaredes Apr 2008 B2
7378024 Bartels et al. May 2008 B2
7387723 Jordan Jun 2008 B2
7404896 Muller Jul 2008 B2
7410584 Devine Aug 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7507274 Tonkovich et al. Mar 2009 B2
7510655 Barnes Mar 2009 B2
7531042 Murkute et al. May 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7648634 Probst Jan 2010 B2
7662212 Mullette et al. Feb 2010 B2
7708887 Johnson et al. May 2010 B2
7713413 Barnes May 2010 B2
7718057 Jordan et al. May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan et al. May 2010 B2
7761826 Thanvantri et al. Jul 2010 B1
7819956 Muller Oct 2010 B2
7850851 Zha et al. Dec 2010 B2
7862719 McMahon et al. Jan 2011 B2
7931463 Cox et al. Apr 2011 B2
7938966 Johnson May 2011 B2
20010047962 Zha et al. Dec 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020070157 Yamada Jun 2002 A1
20020117444 Mikkelson et al. Aug 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20020195390 Zha et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030052055 Akamatsu et al. Mar 2003 A1
20030056919 Beck Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030075495 Dannstrom et al. Apr 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030196955 Hughes Oct 2003 A1
20030226797 Phelps Dec 2003 A1
20030234221 Johnson et al. Dec 2003 A1
20040007523 Gabon et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040045893 Watanabe et al. Mar 2004 A1
20040050791 Herczeg Mar 2004 A1
20040055974 Del Vecchio et al. Mar 2004 A1
20040084369 Zha et al. May 2004 A1
20040108268 Liu et al. Jun 2004 A1
20040112831 Rabie et al. Jun 2004 A1
20040139992 Murkute et al. Jul 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040149655 Petrucco et al. Aug 2004 A1
20040154671 Martins et al. Aug 2004 A1
20040168978 Gray Sep 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040188341 Zha et al. Sep 2004 A1
20040211726 Baig et al. Oct 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040222158 Husain et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040238442 Johnson et al. Dec 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050006308 Cote et al. Jan 2005 A1
20050023219 Kirker et al. Feb 2005 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050053878 Bruun et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050077227 Kirker et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050121389 Janson et al. Jun 2005 A1
20050126963 Phagoo et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050184008 Schacht et al. Aug 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20050258098 Vincent et al. Nov 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060021929 Mannheim et al. Feb 2006 A1
20060065596 Kent et al. Mar 2006 A1
20060081533 Khudenko Apr 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060201879 Den Boestert et al. Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007205 Johnson et al. Jan 2007 A1
20070007214 Zha et al. Jan 2007 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070045183 Murphy Mar 2007 A1
20070051679 Adams et al. Mar 2007 A1
20070056904 Hogt et al. Mar 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070075021 Johnson Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070131614 Knappe et al. Jun 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070181496 Zuback Aug 2007 A1
20070227973 Zha et al. Oct 2007 A1
20080053923 Beck et al. Mar 2008 A1
20080093297 Gock et al. Apr 2008 A1
20080156745 Zha et al. Jul 2008 A1
20080179249 Beck et al. Jul 2008 A1
20080190846 Cox et al. Aug 2008 A1
20080203017 Zha et al. Aug 2008 A1
20080257822 Johnson Oct 2008 A1
20080277340 Hong et al. Nov 2008 A1
20090001018 Zha et al. Jan 2009 A1
20090194477 Hashimoto Aug 2009 A1
20090223895 Zha et al. Sep 2009 A1
20090255873 Biltoft et al. Oct 2009 A1
20100000941 Muller Jan 2010 A1
20100012585 Zha et al. Jan 2010 A1
20100025320 Johnson Feb 2010 A1
20100051545 Johnson et al. Mar 2010 A1
20100170847 Zha et al. Jul 2010 A1
20100200503 Zha et al. Aug 2010 A1
20100300968 Liu et al. Dec 2010 A1
20100326906 Barnes Dec 2010 A1
20110023913 Fulling Feb 2011 A1
20110049047 Cumin et al. Mar 2011 A1
20110056522 Zauner et al. Mar 2011 A1
20110100907 Zha et al. May 2011 A1
20110127209 Rogers et al. Jun 2011 A1
20110132826 Muller et al. Jun 2011 A1
20110139715 Zha et al. Jun 2011 A1
20110192783 Cox et al. Aug 2011 A1
20110198283 Zha et al. Aug 2011 A1
20120091602 Cumin et al. Apr 2012 A1
Foreign Referenced Citations (414)
Number Date Country
3440084 Apr 1985 AU
5584786 Sep 1986 AU
7706687 Feb 1988 AU
762091 Jun 2003 AU
2004289373 May 2005 AU
2460207 Mar 2003 CA
2531764 Mar 2005 CA
86104888 Feb 1988 CN
1050770 Jan 1995 CN
2204898 Aug 1995 CN
2236049 Sep 1996 CN
1159769 Sep 1997 CN
1244814 Feb 2000 CN
1249698 Apr 2000 CN
1265636 Sep 2000 CN
1319032 Oct 2001 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
4326603 Feb 1995 DE
19503060 Aug 1996 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
10045227 Feb 2002 DE
10209170 Aug 2003 DE
202004012693 Oct 2004 DE
012557 Feb 1983 EP
126714 Nov 1984 EP
050447 Oct 1985 EP
194735 Sep 1986 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
344633 Dec 1989 EP
090383 May 1990 EP
407900 Jan 1991 EP
463627 Jan 1992 EP
0464321 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
280052 Jul 1994 EP
395133 Feb 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
848194 Jun 1998 EP
855214 Jul 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
0937494 Aug 1999 EP
1034835 Sep 2000 EP
1052012 Nov 2000 EP
1156015 Nov 2001 EP
1300186 Apr 2003 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1445240 Aug 2004 EP
1466658 Oct 2004 EP
1659171 May 2006 EP
1420874 Jan 2011 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
996195 Jun 1965 GB
2253572 Sep 1992 GB
52-078677 Jul 1977 JP
53-5077 Jan 1978 JP
53108882 Sep 1978 JP
54162684 Dec 1979 JP
55099703 Jul 1980 JP
55129107 Oct 1980 JP
55129155 Oct 1980 JP
56021604 Feb 1981 JP
56118701 Sep 1981 JP
56121685 Sep 1981 JP
57190697 Nov 1982 JP
58088007 May 1983 JP
60019002 Jan 1985 JP
60-206412 Oct 1985 JP
60260628 Dec 1985 JP
61097005 May 1986 JP
61097006 May 1986 JP
61107905 May 1986 JP
61167406 Jul 1986 JP
61167407 Jul 1986 JP
61171504 Aug 1986 JP
61192309 Aug 1986 JP
61222510 Oct 1986 JP
61242607 Oct 1986 JP
61249505 Nov 1986 JP
61257203 Nov 1986 JP
61263605 Nov 1986 JP
61291007 Dec 1986 JP
61293504 Dec 1986 JP
62004408 Jan 1987 JP
62068828 Mar 1987 JP
62114609 May 1987 JP
62140607 Jun 1987 JP
62144708 Jun 1987 JP
62163708 Jul 1987 JP
62179540 Aug 1987 JP
62237908 Oct 1987 JP
62250908 Oct 1987 JP
62187606 Nov 1987 JP
62262710 Nov 1987 JP
63-93307 Apr 1988 JP
63097634 Apr 1988 JP
63099246 Apr 1988 JP
63143905 Jun 1988 JP
63-1602 Jul 1988 JP
63171607 Jul 1988 JP
63180254 Jul 1988 JP
S63-38884 Oct 1988 JP
64-075542 Mar 1989 JP
1-501046 Apr 1989 JP
1111494 Apr 1989 JP
01151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-017925 Jan 1990 JP
02017924 Jan 1990 JP
02026625 Jan 1990 JP
02031200 Feb 1990 JP
02040296 Feb 1990 JP
02107318 Apr 1990 JP
02126922 May 1990 JP
02144132 Jun 1990 JP
02164423 Jun 1990 JP
02174918 Jul 1990 JP
02241523 Sep 1990 JP
02277528 Nov 1990 JP
02284035 Nov 1990 JP
03018373 Jan 1991 JP
03028797 Feb 1991 JP
03-086529 Apr 1991 JP
03110445 May 1991 JP
04108518 Apr 1992 JP
04110023 Apr 1992 JP
4-190889 Jul 1992 JP
04187224 Jul 1992 JP
4-256425 Sep 1992 JP
04250898 Sep 1992 JP
04256424 Sep 1992 JP
04265128 Sep 1992 JP
04293527 Oct 1992 JP
04310223 Nov 1992 JP
04317793 Nov 1992 JP
04334530 Nov 1992 JP
04348252 Dec 1992 JP
05023557 Feb 1993 JP
05096136 Apr 1993 JP
05137977 Jun 1993 JP
05157654 Jun 1993 JP
05161831 Jun 1993 JP
05184884 Jul 1993 JP
05279447 Oct 1993 JP
05285348 Nov 1993 JP
05305221 Nov 1993 JP
06-027215 Feb 1994 JP
06071120 Mar 1994 JP
06114240 Apr 1994 JP
06170364 Jun 1994 JP
06190250 Jul 1994 JP
06218237 Aug 1994 JP
06238273 Aug 1994 JP
06-292820 Oct 1994 JP
06277469 Oct 1994 JP
06285496 Oct 1994 JP
06343837 Dec 1994 JP
07000770 Jan 1995 JP
07024272 Jan 1995 JP
07047247 Feb 1995 JP
07068139 Mar 1995 JP
07136470 May 1995 JP
07136471 May 1995 JP
07155564 Jun 1995 JP
07155758 Jun 1995 JP
7-39921 Jul 1995 JP
07178323 Jul 1995 JP
07185268 Jul 1995 JP
07185270 Jul 1995 JP
07185271 Jul 1995 JP
07185272 Jul 1995 JP
07204635 Aug 1995 JP
07236819 Sep 1995 JP
07-256253 Oct 1995 JP
07251043 Oct 1995 JP
07275665 Oct 1995 JP
07289860 Nov 1995 JP
07303895 Nov 1995 JP
07313973 Dec 1995 JP
08010585 Jan 1996 JP
8039089 Feb 1996 JP
08-197053 Aug 1996 JP
08323161 Dec 1996 JP
08332357 Dec 1996 JP
09000890 Jan 1997 JP
09038470 Feb 1997 JP
09-075689 Mar 1997 JP
09072993 Mar 1997 JP
09099227 Apr 1997 JP
09103655 Apr 1997 JP
9103661 Apr 1997 JP
9117647 May 1997 JP
9138298 May 1997 JP
09141063 Jun 1997 JP
09155345 Jun 1997 JP
09187628 Jul 1997 JP
09192458 Jul 1997 JP
09220569 Aug 1997 JP
09271641 Oct 1997 JP
09-313902 Dec 1997 JP
09324067 Dec 1997 JP
10-015365 Jan 1998 JP
10024222 Jan 1998 JP
10033955 Feb 1998 JP
10048466 Feb 1998 JP
10076144 Mar 1998 JP
10076264 Mar 1998 JP
10085562 Apr 1998 JP
10085565 Apr 1998 JP
10085566 Apr 1998 JP
10156149 Jun 1998 JP
10180048 Jul 1998 JP
10225685 Aug 1998 JP
10235168 Sep 1998 JP
10249171 Sep 1998 JP
10286441 Oct 1998 JP
10328538 Dec 1998 JP
11005023 Jan 1999 JP
11028467 Feb 1999 JP
11031025 Feb 1999 JP
11033365 Feb 1999 JP
11033367 Feb 1999 JP
11 076769 Mar 1999 JP
11076770 Mar 1999 JP
11156166 Jun 1999 JP
11156360 Jun 1999 JP
11165200 Jun 1999 JP
11-179171 Jul 1999 JP
11300177 Nov 1999 JP
11302438 Nov 1999 JP
11309351 Nov 1999 JP
11319501 Nov 1999 JP
11319507 Nov 1999 JP
11333265 Dec 1999 JP
2000000439 Jan 2000 JP
200051670 Feb 2000 JP
2000051669 Feb 2000 JP
2000061466 Feb 2000 JP
200079390 Mar 2000 JP
2000070684 Mar 2000 JP
2000-093758 Apr 2000 JP
2000-157845 Jun 2000 JP
2000157850 Jun 2000 JP
2000185220 Jul 2000 JP
2000189958 Jul 2000 JP
2000233020 Aug 2000 JP
2000237548 Sep 2000 JP
2000300968 Oct 2000 JP
2000317276 Nov 2000 JP
2000-334276 Dec 2000 JP
2000342932 Dec 2000 JP
2001009246 Jan 2001 JP
2001070967 Mar 2001 JP
2001079366 Mar 2001 JP
2001079367 Mar 2001 JP
2001104760 Apr 2001 JP
2001120963 May 2001 JP
2001-510396 Jul 2001 JP
2001179059 Jul 2001 JP
2001179060 Jul 2001 JP
2001190937 Jul 2001 JP
2001190938 Jul 2001 JP
2001205055 Jul 2001 JP
2001-269546 Oct 2001 JP
2002011472 Jan 2002 JP
2002177746 Jun 2002 JP
3302992 Jul 2002 JP
2002-527229 Aug 2002 JP
2002525197 Aug 2002 JP
2002263407 Sep 2002 JP
2002-336663 Nov 2002 JP
2003024751 Jan 2003 JP
2003047830 Feb 2003 JP
2003053157 Feb 2003 JP
2003053160 Feb 2003 JP
200371254 Mar 2003 JP
2003062436 Mar 2003 JP
2003135935 May 2003 JP
2003190976 Jul 2003 JP
2003-265597 Sep 2003 JP
2003-275548 Sep 2003 JP
2003266072 Sep 2003 JP
2003275759 Sep 2003 JP
2003340250 Dec 2003 JP
2004-008981 Jan 2004 JP
2004073950 Mar 2004 JP
2004-230287 Aug 2004 JP
2004216263 Aug 2004 JP
2004230280 Aug 2004 JP
2004322100 Nov 2004 JP
2004-536710 Dec 2004 JP
2004337730 Dec 2004 JP
2005-502467 Jan 2005 JP
2005-087887 Apr 2005 JP
2005144291 Jun 2005 JP
2005154551 Jun 2005 JP
2005279447 Oct 2005 JP
2006-116495 May 2006 JP
2007-547083 Aug 2010 JP
4833353 Dec 2011 JP
20-0232145 Jul 2001 KR
1020020067227 Aug 2002 KR
20-0295350 Nov 2002 KR
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
2005-063478 Jun 2005 KR
1006390 Dec 1998 NL
1020491 Oct 2003 NL
1021197 Oct 2003 NL
510394 May 2003 NZ
537874 Feb 2007 NZ
347343 Dec 1998 TW
8501449 Apr 1985 WO
8605116 Sep 1986 WO
8605705 Oct 1986 WO
8800494 Jan 1988 WO
8801529 Mar 1988 WO
8801895 Mar 1988 WO
8806200 Aug 1988 WO
8900880 Feb 1989 WO
9000434 Jan 1990 WO
9104783 Apr 1991 WO
9116124 Oct 1991 WO
9302779 Feb 1993 WO
9315827 Aug 1993 WO
9323152 Nov 1993 WO
9411094 May 1994 WO
9511736 May 1995 WO
9534424 Dec 1995 WO
9603202 Feb 1996 WO
9607470 Mar 1996 WO
9628236 Sep 1996 WO
9629142 Sep 1996 WO
9641676 Dec 1996 WO
9706880 Feb 1997 WO
9822204 May 1998 WO
9825694 Jun 1998 WO
9828066 Jul 1998 WO
9853902 Dec 1998 WO
9901207 Jan 1999 WO
99-55448 Nov 1999 WO
9959707 Nov 1999 WO
0018498 Apr 2000 WO
0030742 Jun 2000 WO
0100307 Jan 2001 WO
0105715 Jan 2001 WO
0108790 Feb 2001 WO
0119414 Mar 2001 WO
0132299 May 2001 WO
0136075 May 2001 WO
0143856 Jun 2001 WO
0145829 Jun 2001 WO
0226363 Apr 2002 WO
0230550 Apr 2002 WO
0240140 May 2002 WO
0247800 Jun 2002 WO
03000389 Jan 2003 WO
03013706 Feb 2003 WO
03024575 Mar 2003 WO
03053552 Jul 2003 WO
03057632 Jul 2003 WO
03059495 Jul 2003 WO
03068374 Aug 2003 WO
03095078 Nov 2003 WO
2004018084 Mar 2004 WO
2004024304 Mar 2004 WO
2004033078 Apr 2004 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2004078327 Sep 2004 WO
2004101120 Nov 2004 WO
2005005028 Jan 2005 WO
2005021140 Mar 2005 WO
2005028085 Mar 2005 WO
WO 2005028086 Mar 2005 WO
2005037414 Apr 2005 WO
2005046849 May 2005 WO
2005077499 Aug 2005 WO
2005082498 Sep 2005 WO
2005107929 Nov 2005 WO
2006026814 Mar 2006 WO
2006029456 Mar 2006 WO
2006029465 Mar 2006 WO
2006047814 May 2006 WO
2006066350 Jun 2006 WO
2007053528 May 2007 WO
2007065956 Jun 2007 WO
2007135087 Nov 2007 WO
2008034570 Mar 2008 WO
2008071516 Jun 2008 WO
2008141080 Nov 2008 WO
2008153818 Dec 2008 WO
2009030405 Mar 2009 WO
Non-Patent Literature Citations (37)
Entry
Supplementary European Search Report dated Apr. 7, 2009 for Application No. EP 05 81 8584.
WPI Week 199922, Thomas Scientific, London, GB; AN 1999-258520, XP002521538.
“Chemical Cleaning Definition”, Lenntech BV, Lenntech Water treatment & purification Holding B.V., Chemical Cleaning.
Webster's Ninth New Collegiate Dictionary, Merriam-Webster Inc., Publishers, Springfield, Massachusetts, USA, Copyright 1986, p. 1298.
Almulla et al., Desalination, 153 (2002), pp. 237-243.
Anonymous, “Nonwoven Constructions of Dyneon“THV and Dyneon ”The Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Cote et al., Wat. Sci. Tech. 38(4-5)(1998), pp. 437-442.
Cote, et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis” Desalination 139(2001) 229-236.
Craig, Jones, “Applications of Hydrogen Peroxide and Derivatives,” The Royal Society of Chemistry, Cambridge, UK 1999 Chapters 2 and 5.
Crawford et al., “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications” (2003).
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003).
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003).
Delgrange-Vincent, N. et al., Desalination 131 (2000) 353-362.
Dow Chemicals Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568.
Husain, H. et al., “The ZENON experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999.
Japanese Office Action dated Aug. 17, 2010 for Application No. 2007-547083.
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment,” AWWA Annual Conference, Jun. 20-24, 1999, Chicago, Illinois, entire publication.
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Kang et al. “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system” Water Research, Elsevier, Amsterdam, NL, vol. 37, No. 5, Mar. 2003.
Lloyd, D.R. et al. “Microporous Membrane Formation Via Thermally Induced Phase Separation/Solid-Liquid Phase Separation” Journal of Membrane Science (Sep. 15, 1990), pp. 239-261, vol. 52, No. 3, Elsevier Scientific Publishing Company, Amsterdam, NL.
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication.
Mark et al., “Peroxides and Peroxy Compounds, Inorganic” Kirk—Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, to Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18.
MicroCTM—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS.
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000.
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via thermally induced phase Separation”, Journal of Membrane Science, (Dec. 1, 2002), pp. 175-180, vol. 210 No. 1, Scientific Publishing Company, Amsterdam, NL.
Rosenberger et al., Desalination, 151 (2002), pp. 195-200.
U.S. Appl. No. 60/278,007, filed Mar. 23, 2001.
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494.
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/.
White et al., The Chemical Engineering Journal, 52 (1993), pp. 73-77.
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007.
Yamamoto et al., Water Science Technology, vol. 2, pp. 43-54; 1989.
Yoon: “Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production” Water Research, Elsevier, Amsterdam, NL, vol. 37, No. 8, Apr. 2003.
Zenon, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication.
Cui et al., “Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration,” J. Membrane Sci. (1997) vol. 128, pp. 83-91.
European Search Report dated Oct. 20, 2011 for Application No. 11180826.7.
Coulson et al., “Coulson and Richardson's Chemical Engineering,” 1999, vol. 1, pp. 358-364.
Related Publications (2)
Number Date Country
20080203016 A1 Aug 2008 US
20110114557 A2 May 2011 US