The present invention relates generally to electrostatic air conditioning devices and more particularly to a mechanism for cleaning the wire electrodes in such devices.
Electrostatic air cleaners use electric energy to generate electrostatic forces which create air flow without the use of a fan or other moving parts. Electrostatic forces also enable the air cleaner to collect airborne contaminants such as dust, smoke, oil mist, pollen, pet dander and other small debris particles from the air circulated in dwellings, workplaces, and other structures. Generally, known electrostatic air cleaners utilize two arrays of electrodes excited by high-voltage. In a known design, the first electrode array comprises wire or rod-shaped electrodes (hereinafter “wire electrodes”), while the second electrode array comprises plate electrodes. A high-voltage generator creates an electrical charge between the first and second electrode arrays.
The particulate matter enters the region of the first electrode array and is charged before entering the region of the second electrode array, where it is removed from the air stream. Specifically, due to the high-voltage charge at the wire electrodes, free electrons are stripped off of atoms and molecules in the surrounding air. These electrons migrate to the positively charged wire electrodes, where they are collected. The removal of free electrons leaves the stripped atoms and molecules positively charged, which are repelled from the positively charged wire electrodes and attracted to the negatively charged plate electrodes. The addition of the electrons from the negatively charged plate electrodes also produces negative air ions that are propelled from the trailing edge of the plate electrodes. Thus, the ionic forces exerted on atoms and molecules create a silent movement of air through the air cleaner.
Because collected and adhered debris greatly reduces a wire electrode's efficiency and effectiveness, the debris must be periodically removed. In the past, the cleaning of the wire electrodes of the electrostatic air cleaners has been difficult because of the close spacing of the electrode arrays and the high voltages applied to the closely spaced, oppositely charged arrays. Care must be exercised to see that the electrode assemblies are cleaned effectively and are not electrically shorted together or to a ground. For this reason, some devices require periodic shut-down and disassembly so that the wire electrodes can be removed for washing. Other devices are rappers or shakers which strike or vibrate the wire electrode assemblies to loosen collected debris and cause it to fall from the electrode assemblies.
Another known method of cleaning the wire electrodes is to thread the wire electrode through a bead. The bead is dimensioned to remain in frictional contact with the wire electrode and remove debris as it travels the length of the electrode. To cause the bead to travel along the length of electrode, the air cleaner is rotated and gravity causes the bead to travel from an initial position along the electrode and frictionally remove contaminates from the outer surface of the electrode. The air cleaner is then returned to its original position and the bead returns to its initial position along the electrode. To maintain the efficiency of the air cleaner, the air cleaner may need to be rotated multiple times to further clean the electrode.
A disadvantage of this type of cleaning is that the air cleaner could be heavy and bulky, and it may be inconvenient for users to lift and rotate a heavy and bulky air cleaner. Furthermore, in the process of lifting and rotating the air cleaner, the user could drop the cleaner and cause damage to the device. Also, when a user lifts and rotates the air cleaner, the debris that is removed from the electrode is likely to contaminate the user.
It is therefore desirable to provide a cleaning mechanism for a wire electrode assembly that is convenient, easy to use and does not require the lifting or rotating of a heavy, bulky air cleaner apparatus.
A cleaning mechanism for a wire electrode of an air purifier device includes a base, a post having a first end attached to the base and a second end accessible from a location external the housing, a cleaning plate assembly attached to the base, wherein the cleaning plate assembly frictionally contacts the wire electrode when moved relative to the wire electrode. The cleaning plate assembly is movable within the housing when the second end of the post is moved from a resting configuration to a cleaning configuration.
The cleaning mechanism 10 of the present invention is preferably accessible from the outside of the air purifier apparatus 100. Specifically, the upper surface 112 of the housing 106 defines an aperture 114 therein through which extends the post 12 of a preferred embodiment of the cleaning mechanism 10. As discussed in greater detail below, to clean the wire electrodes of the air purifier apparatus 100, the cleaning mechanism 10 of the present invention is moved up and down in a plunging fashion. To actuate the cleaning mechanism 10, the user preferably grasps the control knob 14 and lifts the knob 14 away from the upper surface 112 of the housing 106, thereby withdrawing the post 12 from the housing 106, and then pushing the post 12 back into the housing 106 and returning the knob 14 to its original position on the upper surface 112 of the housing 106. For ease of reference, the movement of the cleaning mechanism 10 described herein is referred to as a plunging movement. Although control knob 14 is described as extending out of the upper surface 112 of the housing 106, it is envisioned that control knob 14 can be configured to extend from any surface of the housing 106. By way of example, the housing 106 can include a slot (not shown) on a side surface 108 thereof and the control knob 14 can extend through the slot on the side surface 108 of the housing 106.
As shown in
The cleaning plate assembly 20 preferably defines a plurality of receiving ports 26 therein, each dimensioned to receive a wire electrode.
The cleaning plate assembly of the present invention is preferably configured for use with all of the wire electrodes of the electrode array. In the embodiment shown in
In a preferred embodiment of the invention, as shown in
In a preferred embodiment of the invention, a thin flexible sheet 40, preferably of Mylar or Kapton type material, is positioned between the first plate 30 and the second plate 32 to enhance the cleaning capacity of the cleaning plate assembly 20. The sheet 40 preferably has high voltage breakdown, high dielectric constant, can withstand high temperature, and is flexible. A slit 42 is cut in the sheet for each wire electrode 116 such that each wire electrode fits into a slit 42 in the sheet. Friction between the inner slit edge surrounding each wire scrapes off any debris coating on the wire electrode. The sheet 40 also defines apertures 44 therein, positioned to allow the engagement members 34 to pass therethrough.
The first plate 30 defines one or more channels 46 therein and the second plate 32 defines one or more channels 48 therein. The first plate 30, second plate 32 and sheet 40 are sandwiched together such that a channel 46 of the first plate 30, a channel 48 of the second plate 32, and a slit 42 of the sheet 40 align with each other. In a preferred embodiment of the invention, the channels 46, 48 and slit 42 together form a receiving port 26 for a wire electrode. In another preferred embodiment of the invention, the sheet 40 can be eliminated, in which case, the channels 46, 48 collectively would form a receiving port for a wire electrode.
A preferred embodiment of the invention, as shown in
As shown in
To facilitate the movement of the cleaning plate assembly 26 inside the housing 106, the housing 106 defines a guide rib 60, as shown in
In a preferred embodiment of the invention, the guide rib 60 is a vertical protrusion extending from the inner surface of the housing 106. In addition to guiding the movement of the cleaning plate assembly 26, the guide rib 60 can be configured to provide structural support for the vents 110. Specifically, the guide rib 60 can be attached to the vents 110 such that it will provide additional support to maintain the structural integrity of the housing 106, and the vents 110 specifically, when forces are exerted on the housing 106.
The guide member 18 is shaped to receive the guide rib 60 therein. In the embodiment shown in
Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | |
---|---|---|---|
Parent | 10823040 | Apr 2004 | US |
Child | 10979825 | Nov 2004 | US |