The present invention relates to a cleaning member used in an image forming apparatus including an optical print head, and an image forming apparatus including an optical print head.
There are image forming apparatuses, such as a printer and a copier, that use an optical print head including a plurality of light emitting elements that expose a photosensitive drum. There are optical print heads that use, as an example of the light emitting elements, light emitting diodes (LEDs), organic electroluminescences (organic ELs), or the like. A plurality of light emitting elements are aligned along a rotational axis direction of the photosensitive drum in a single line or in two staggered lines, for example. Furthermore, the optical print head includes a lens array that collects the light emitted from the light emitting elements to the photosensitive drum. The lens array is disposed between the light emitting elements and the photosensitive drum so as to oppose the photosensitive drum. The light emitted from the light emitting elements is collected to a surface of the photosensitive drum through the lens array. An electrostatic latent image is formed on the photosensitive drum in the above manner.
Since the lens array included in the optical print head is located near the photosensitive drum, toner and foreign substances such as paper dust tend to adhere to a light emission surface of the lens array. When the light emission surface of the lens array becomes unclean with foreign substances, a decrease in image quality such as image unevenness may occur. Accordingly, a device that cleans the light emission surface of the lens array has been proposed. An example of a cleaning device is disclosed in Japanese Patent Laid-Open No. 2019-3113.
A protruded portion is formed in a housing (a holding body) of an optical print head disclosed in Japanese Patent Laid-Open No. 2019-3113, and an engagement portion formed in the cleaning member is engaged with the protruded portion. By engaging the engagement portion formed in the cleaning member and the protruded portion formed in the holding body with each other, a state in which a rubbing portion (a cleaning portion) formed in the cleaning member and the light emission surface of the lens array are in contact with each other is maintained. The cleaning portion can reliably clean the light emission surface of the lens by having the operator insert and remove the cleaning member into and from a main body of the image forming apparatus while the engagement portion formed in the cleaning member and the protruded portion formed in the holding body are engaged with each other.
However, when the holding body of the optical print head is formed of metal, compared with when the holding body is formed of resin, it is not easy to process the shape of the holding body into a shape allowing the engagement portion formed in the cleaning member to engage therewith. Accordingly, when the holding body of the optical print head is formed of metal, a configuration in which a state in which the cleaning portion and the light emission surface of the lens array are in contact with each other is maintained by engaging the cleaning member and the holding body with each other cannot be said to be the optimum configuration for the device cleaning the light emission surface.
A cleaning member according to an aspect of the present invention that is used in an image forming apparatus and configured to be inserted into the image forming apparatus from outside the image forming apparatus, the image forming apparatus including a holding body comprising a metal magnetic body holding a substrate on which a plurality of light emitting elements configured to emit light to expose a photosensitive drum are aligned in a rotational axis direction of the photosensitive drum and holding lenses configured to collect the light emitted from the light emitting elements to the photosensitive drum, the cleaning member including a rod formed of resin, a cleaning portion attached to the rod to clean a light emission surface of each lens, the cleaning portion configured to move together with the rod in a state in which the cleaning member is inserted in the image forming apparatus, and to oppose the light emission surface in an optical axis direction of the lens, and a magnet provided on the rod, the magnet emitting a magnetic field to generate a magnetic force to draw the holding body thereto so that in a state in which the cleaning portion opposes the light emission surface, the cleaning portion maintains contact with the light emission surface.
Furthermore, an image forming apparatus according to another aspect of the present invention includes a photosensitive drum configured to rotate, a holding body comprising a metal magnetic body holding a substrate on which a plurality of light emitting elements configured to emit light to expose the photosensitive drum are aligned in a rotational axis direction of the photosensitive drum and holding lenses configured to collect the light emitted from the light emitting elements to the photosensitive drum, and an insertion portion configured to receive a cleaning member according to claim 1, in a state in which the cleaning member is inserted into the insertion portion from outside the image forming apparatus. In the image forming apparatus, in an insertion direction of the rod which is inserted into the insertion portion, the insertion portion is provided upstream of the light emission surface.
In the image forming apparatus, a state in which that the cleaning member has been inserted in the insertion portion, the light emission surface is maintained in contact with the cleaning portion by the magnetic force.
Further features of the present invention will become apparent from the following description of embodiments with reference to the attached drawings.
Hereinafter, configurations embodying the present invention will be described with reference to the drawings. Note that the dimensions, the materials, the shapes, and the relative positions of the components described hereinafter are not intended to limit the present invention solely thereto unless explicitly stated.
Image Forming Apparatus
A schematic configuration of an image forming apparatus 1 will be described first.
The image forming apparatus 1 illustrated in
The image forming apparatus 1 illustrated in
The image forming apparatus 1 includes an intermediate transfer belt 107 to which the toner images formed on the photosensitive drums 103 are transferred, and primary transfer rollers 108 (Y, M, C, and K) that sequentially transfer the toner images formed on the photosensitive drums 103 to the intermediate transfer belt. Furthermore, the image forming apparatus 1 includes a secondary transfer roller 109 that serves as a transfer member that transfers the toner images on the intermediate transfer belt 107 onto a sheet of recording paper P conveyed from a feeding unit 101, and a fixing unit 100 that fixes the secondarily transferred images to the recording paper P.
Image Forming Process
The exposure unit 520Y exposes a surface of the photosensitive drum 103Y that has been charged with the charger 104Y. With the above, an electrostatic latent image is formed on the photosensitive drum 103Y. Subsequently, the developing device 106Y develops the electrostatic latent image formed on the photosensitive drum 103Y with yellow toner. The yellow toner image developed on the surface of the photosensitive drum 103Y is transferred onto the intermediate transfer belt 107 with the primary transfer roller 108Y. The magenta, cyan, and black toner images are transferred to the intermediate transfer belt 107 through a similar image forming process.
Each of the toner images transferred on the intermediate transfer belt 107 is conveyed to a secondary transfer portion T2 with the intermediate transfer belt 107. A transfer bias that transfers the toner images to the recording paper P is applied to the secondary transfer roller 109 disposed in the secondary transfer portion T2. The transfer bias of the secondary transfer roller 109 transfers the toner images, which has been conveyed to the secondary transfer portion T2, onto a recording paper P, which has been conveyed from the feeding unit 101. The recording paper P on which the toner images have been transferred is conveyed to the fixing unit 100. The fixing unit 100 fixes the toner images to the recording paper P with heat and pressure. The recording paper P to which fixing has been performed with the fixing unit 100 is discharged to a sheet discharge portion 111.
Drum Unit and Developing Unit
Drum units 518Y, 518M, 518C, and 518K (hereinafter, also collectively referred to as merely “drum units 518”) that include the photosensitive drums 103 are attached to the image forming apparatus 1. The drum units 518 are cartridges that are replaced by an operator such as a user or maintenance personnel. The drum units 518 rotatably support the photosensitive drums 103. Specifically, the photosensitive drums 103 are rotatably supported by frames of the drum units 518. Note that the drum units 518 do not have to be configured to include the chargers 104 and cleaning devices.
Furthermore, developing units 641Y, 641M, 641C, and 641K (hereinafter, also collectively referred to as merely “developing units 641”) that are members different from the drum unit 518 are attached to the image forming apparatus 1 of the present embodiment. The developing unit 641 of the present embodiment is a cartridge that is an integrated member of the developing device 106 illustrated in
As illustrated in
Openings are formed in the front plate 642 so that the drum units 518 and the developing units 641 can be inserted and removed from the near side of the image forming apparatus 1. The drum units 518 and the developing units 641 are mounted to predetermined positions (mount positions) in the main body of the image forming apparatus 1 through the openings. Furthermore, the image forming apparatus 1 includes covers 558Y, 558M, 558C, and 558K (hereinafter, also collectively referred to as merely “covers 558”) that cover the near sides of both the drum units 518 and the developing units 641 mounted in the mount position. One end of the cover 558 is fixed to the main body of the image forming apparatus 1 with a hinge. The hinge allows the cover 558 to pivot relative to the main body of the image forming apparatus 1. The operator completes the replacing work by opening the cover 558 and taking out the drum unit 518 or the developing unit 641 in the main body, and by inserting a new drum unit 518 or a new developing unit 641 and closing the cover 558.
Note that in the following description, as illustrated in
Exposure Unit
A description of the exposure unit 520 including the optical print head 105 will be given next. The optical print head 105 has a longitudinal shape that extends in the rotational axis direction of the photosensitive drum 103. Furthermore, the optical print head 105 includes a holding body 505, a lens array 506, and a substrate (not shown). The lens array 506 and the substrate (not shown) are supported by the holding body 505. The holding body 505 is a metal member formed by bending a galvanized steel plate or a cold rolled steel plate on which plating has been performed, for example. Furthermore, the holding body 505 is a magnetic body that becomes magnetized when placed in a magnetic field. Note that as an example of an exposure method employed in the image forming apparatus that uses an electrophotographic method, there is a laser beam scan exposure method that exposes a photosensitive drum through an f-θ lens by having an irradiation beam of a semiconductor laser perform scanning with a rotating polygon mirror. The optical print head 105 described in the present embodiment is used in an LED exposure method that exposes the photosensitive drum 103 using a light emitting element, such as LEDs and the like arranged in the rotational axis direction of the photosensitive drum 103, and is not used in the laser beam scan exposure method described above.
The exposure unit 520 described in the present embodiment is provided vertically below the rotational axis of the photosensitive drum 103. LEDs serving as a light emitting element are provided in the substrate (not shown) included in the holding body 505. The light emitting element exposes the photosensitive drum 103 from below. Note that the exposure unit 520 may be provided vertically above the rotational axis of the photosensitive drum 103 and the photosensitive drum 103 may be exposed from above (see
Referring to
As illustrated in
The first link mechanism 530 includes a link member 535 and a link member 536. The second link mechanism 540 includes a link member 537 and a link member 538. With the opening/closing operation of the cover 558 provided on the near side of the image forming apparatus 1, a slide member 525 described later slides and moves in the front-rear direction. Interlocking with the slide motion of the slide member 525, the link members 535 to 538 pivot and the optical print head 105 moves vertically.
In the present embodiment, the optical print head 105 is provided vertically below the photosensitive drum 103. In other words, in the image forming apparatus 1 according to the present embodiment, the optical print heads 105 expose the photosensitive drums 103 from below in the vertical direction.
Furthermore, as illustrated in
The support member 526 includes the slide member 525 that is movable in the longitudinal direction of the support member 526. With the movement of the slide member 525 relative to the support member 526, the link members 535 to 538 are pivoted and the optical print head 105 is moved relative to the support member 526.
Furthermore, an insertion portion 550 into which a cleaning member 600 described later is inserted is fixed to the support member 526. Since the support member 526 is fixed to the apparatus main body of the image forming apparatus 1, the insertion portion 550 is also fixed to the apparatus main body of the image forming apparatus 1.
Referring to
LED chips 639 are mounted on the substrate 502. As illustrated in
The LED chips 639 mounted on the substrate 502 will be described later in further detail. As illustrated in FIGS. 4B1 and 4B2, a plurality of LED chips 639-1 to 639-29 (29 chips) in which a plurality of LEDs 503 are disposed are arranged on one side of the substrate 502. In each of the LED chips 639-1 to 639-29, 516 LEDs (light emitting elements) are arranged in one line in the longitudinal direction of the LED chips 639-1 to 639-29. A center-to-center dimension k2 of the adjacent LEDs in the longitudinal direction of the LED chips 639 corresponds to the resolution of the image forming apparatus 1. Since the resolution of the image forming apparatus 1 of the present embodiment is 1200 dpi, the LEDs of the LED chips 639-1 to 639-29 are arranged in one line so that the center-to-center dimensions of adjacent LEDs in the longitudinal direction of the LED chips 639 are 21.16 μm. Accordingly, an exposure area of the optical print head 105 of the present embodiment is about 316 mm. A photoconductive layer of the photosensitive drum 103 is formed with a width of 316 mm or more. Since a length of a long side of a sheet of A4-sized recording paper and a length of a short side of a sheet of A3-size recording paper are 297 mm, the optical print head 105 of the present embodiment has the exposure area that allows an image to be formed on A4-size recording paper and A3-size recording paper.
The LED chips 639-1 to 639-29 are disposed alternately in two rows and in the rotational axis direction of the photosensitive drum 103. In other words, as illustrated in FIG. 4B1, the odd-numbered LED chips 639-1, 639-3, . . . 639-29 when counted from the left side are mounted in a single row in the longitudinal direction of the substrate 502, and the even-numbered LED chips 639-2, 639-4, . . . 639-28 are mounted in a single row in the longitudinal direction of the substrate 502. By disposing the LED chips 639 in the above manner, as illustrated in FIG. 4B2, a center-to-center dimension k1 between one end of an LED chip 639 and the other end of an LED chip 639 that are separate LED chips 639 disposed adjacent to each other in the longitudinal direction of the LED chips 639 can be made the same as the center-to-center dimension k2 between adjacent LEDs in a single LED chip 639.
Note that in the present embodiment, while the light emitting elements are semiconductor LEDs that are light emitting diodes, the light emitting elements may be organic light emitting diodes (OLEDs), for example. The OLEDs are also called organic electroluminescences (organic EL) and are current-driven light emitting elements. The OLEDs are disposed on a thin film transistor (TFT) substrate and along a line extending in a main scanning direction (in a rotational axis direction of the photosensitive drum 103), for example, and are electrically coupled in parallel with power supply wiring that is also provided in the main scanning direction.
A description of the lens array 506 will be given next. FIG. 4C1 is a schematic view of the lens array 506 viewed from the photosensitive drum 103 side. Furthermore, FIG. 4C2 is a schematic perspective view of the lens array 506. As illustrated in FIG. 4C1, the plurality of lenses are aligned in two lines and in a direction in which the plurality of LEDs 503 are arranged. The lenses are disposed alternately so that each lens of one line is in contact with two lenses of the other line that are adjacent to each other in the direction in which the lenses are arranged. Each lens is a columnar rod lens formed of glass, and includes an incoming surface into which the light emitted from the LED 503 enters and an outgoing surface through which the light incident on the incoming surface exits. Note that the material of the lens is not limited to glass and may be another material such as plastic. The shape of the lens is not limited to a columnar shape and may be a polygonal prism such as, for example, a hexagonal cylinder.
A broken line Z illustrated in FIG. 4C2 depicts an optical axis of the lens. The optical print head 105 is moved by a moving mechanism 640 substantially in the direction of the optical axis of the lens depicted by the broken line Z. The optical axis of the lens herein denotes a line that connects the center of the light emission surface of the lens and the focal point of the lens. The lens array 506 has a role of collecting the light emitted through the LEDs 503 to the surface of the photosensitive drum 103.
However, the holding body 505 is not limited to being configured of a bent metal plate and can be configured by so-called die-cast, for example. Die-cast is a product produced by cooling and solidifying molten metal injected into a mold (a cavity) or a manufacturing method of the product. When die-cast is adopted as the manufacturing method, complex shapes can be dealt with depending on the mold that is the basis of the shape. On the other hand, since fabricating the mold is costly, there is a disadvantage in that there is no cost advantage when there is no need to manufacture a large amount of the same product. In the present embodiment, the holding body 505 may be manufactured by bending a metal plate or may be manufactured by adopting die-cast.
The lens array 506 forms the light flux that has exited the LEDs 503 into an unmagnified erect image on the photosensitive drum 103. In so doing, a distance between the LED 503 and the light incoming surface 506b of the lens array 506 and a distance between the light emission surface 506a of the lens array 506 and the surface of the photosensitive drum 103 are substantially the same.
Moving Mechanism
Referring next to
As illustrated in
Since a first end side of the link member 536 is pivotably coupled to the support member 526 (not shown), the link member 536 interlocking with the pivoting of the link member 535 is also pivoted relative to the support member 526. Since a first end side of the link member 538 is pivotably coupled to the support member 526 (not shown), the link member 538 interlocking with the pivoting of the link member 537 is also pivoted relative to the support member 526. When the slide member 525 moves from the near side towards the far side, the link member 536 and the link member 538 both pivot clockwise relative to the support member 526. Note that a second end side of the link member 535 is pivotably coupled to the holding body 505, and a second end side of the link member 537 is pivotably coupled to the holding body 505. Accordingly, by having the link member 535 and the link member 537 interlocked with the slide motion of the slide member 525 from the near side towards the far side pivot counterclockwise, the second end side of the link member 535 and the second end side of the link member 537 each move in a direction away from the photosensitive drum 103. The optical print head 105 moves from the exposing position towards the retracted position in the above manner.
A manner in which the optical print head 105 interlocked with the slide motion of the slide member 525 moves from the state illustrated in
The slide member 525 interlocked with the pivoting of the cover 558 from the open state to the closed state moves from the far side towards the near side. When the slide member is slid and moved from the far side towards the near side, the link member 535 and the link member 537 are pivoted clockwise in
When the holding body 505 of the optical print head 105 interlocking with the slide motion of the slide member 525 moves from the retracted position towards the exposing position, the abutting pin 514 provided on a first end side of the holding body 505 in the longitudinal direction of the holding body 505, and the abutting pin 515 provided on a second end side of the holding body 505 abuts against the drum unit 518. The position of the holding body 505 with respect to the drum unit 518, in other words, the position of the optical print head 105, is set in the above manner.
When the position of the holding body 505 with respect to the drum unit 518 is set in the above manner, the distance between the photosensitive drum 103 and the light emission surface of the lens array 506 is set as well and the moving of the optical print head 105 to the exposing position is completed.
Referring to
As illustrated in
The slide member 525 is a metal plate member. As illustrated in
Furthermore, an auxiliary member 539 is attached to a first end side of the slide member (the near side of the slide member 525) in the longitudinal direction of the slide member 525. An accommodation space 562 is formed in the auxiliary member 539. A protrusion provided on the cover 558 is accommodated in the accommodation space 562. When the cover 558 pivots, the protrusion moving together with the pivoting cover 558 abuts against a sidewall of the accommodation space 562 on the near side or a sidewall thereof on the far side. By having the protrusion push the sidewall of the accommodation space 562 on the near side, the slide member 525 is moved to the near side. On the other hand, by having the protrusion push the sidewall of the accommodation space 562 on the far side, the slide member 525 is moved to the far side. As described above, the slide member 525 interlocked with the pivoting of the cover 558 also moves in the front-rear direction.
The link mechanism 530 includes the link member 535 and the link member 536. The link member 535 and the link member 536 are each a longitudinal plate. In the present embodiment, the link member 535 and the link member 536 are resin molded. A protrusion 655 is formed on a first end side (the upper side in
The first end side (the upper side in
Note that when L1 is a distance between a pivot axis of the link member 535 in the slide member 525 and an axis of the connection between the link member 535 and the link member 536, L2 is a distance between a pivot axis of the link member 536 in the support member 526 and the axis of the connection between the link member 535 and the link member 536, and L3 is a distance between the pivot axis of the link member 535 in the holding body 505 and the axis of the connection between the link member 535 and the link member 536, L1 to L3 are the same. Generally, such a link mechanism is also referred to as a Scott Russell mechanism. By having the distances L1 to L3 be the same, the direction in which the protrusion 655 interlocked with the slide motion of the slide member 525 moves becomes a perpendicular direction. Specifically, the protrusion 655 moves on a broken line A in
Furthermore, the configuration moving the optical print head 105 to the exposing position and to the retracted position is not limited to a configuration using the first link mechanism 530 and the second link mechanism 540 and may be a configuration using a moving mechanism 940 illustrated in
As illustrated in
Cleaning Mechanism
In the image forming apparatus 1, each optical print head 105 is provided between the corresponding charger 104 and the corresponding developing device 106. Accordingly, there are cases in which the light emission surfaces of the lens arrays 506 become unclean due to the toner that has fallen off from the photosensitive drums 103 and the developing devices 106. Among the plurality of lenses included in each lens array 506, when a lens through which the light used in forming the image becomes unclean, the light emitted from the light emitting element becomes partially blocked. The above is one of the causes of a degradation in the image quality of the output image. Accordingly, it is desirable that the light emission surface of the lens array 506 included in the optical print head 105 is cleaned regularly.
The cleaning member 600 is attached to an inner side of a front cover provided on the near side of the image forming apparatus 1, for example. When there is a need to clean the light emission surface of the lens array 506, the operator, such as the user or the service man, removes the cleaning member 600 from the inner side of the front cover of the image forming apparatus 1. Subsequently, cleaning of the light emission surface of the lens array 506 is performed using the cleaning member 600. Note that the cleaning member 600 does not necessarily have to be attached to a portion of the image forming apparatus 1 and the service man may bring the cleaning member 600 each time cleaning is needed.
Note the front cover described herein is provided on the near side of the image forming apparatus 1 and is a door that is opened when the drum units 518 are replaced and when cleaning of the lens array 506 is performed using the cleaning member 600. When the drum unit 518 is replaced, the front cover is first opened and, furthermore, the cover 518 is opened. The cover 518 may be configured so as to be opened and closed while being interlocked with the opening and closing of the front cover.
In the present embodiment, the cleaning member 600 is installed on the inner side of the front cover. When the operator, such as the user or the service man, cleans the lens array 506, the cleaning member 600 is removed from the inner side of the front cover. Naturally, not limited to a configuration in which the cleaning member 600 is provided on the front cover, the cleaning member 600 may be installed in another portion of the image forming apparatus 1. Furthermore, the cleaning member 600 itself may not be installed in the image forming apparatus 1 and the service man may bring the cleaning member 600 when cleaning the lens array 506.
As illustrated in
The yoke 605a and the yoke 605b each penetrate through an upper side of the rod 601 at the front end side of the rod 601. In other words, the yoke 605a is exposed from the rod 601 to both the upper side and the lower side. The yoke 605b is also exposed from the rod 601 to both the upper side and the lower side.
Note that the yoke 605a (605b) is also referred to as a heel piece, and has a feature of facilitating the magnetic flux from the magnet to pass therethrough. Generally, an index called magnetic permeability that serves as an index indicating the ease at which a magnetic flux passes through matter is known. When comparing the magnetic permeability of a magnetic material widely used as the yoke and the magnetic permeability of the atmosphere, the value of the magnetic permeability of the yoke is a few thousand when the magnetic permeability of the atmosphere is assumed as one. In view of the above, pure iron, low carbon steel, or ferrosilicon, for example, is used as the material of the yoke.
In
In the present embodiment, the yoke 605a and the yoke 605b are provided in the rod 601 so as to, as an example, protrude, with respect to the magnet 602, on the side on which the holding body 505 is disposed. Specifically, in a state in which the cleaning member 600 is inserted in the insertion portion 550, the rod 601 is positioned between the magnet 602 and the holding body 505 in the optical axis direction of the lenses in the lens array 506. In such a configuration, the magnet 602 and the holding body 505 do not directly come in contact with each other.
Furthermore, a cleaning portion 604 is provided on the front end side of the rod 601. Since the cleaning portion 604 is fixed to the rod 601, the cleaning portion 604 moves together with the rod 601 that has been inserted into the insertion portion 550 and that is moved by the operator. In the present embodiment, the cleaning portion 604 is a flexible blade-shaped member formed of, for example, urethane rubber having a thickness of 0.5 mm. The cleaning portion 604 is provided on the front end side of the rod 601 so as to protrude downwards from the rod 601. In other words, a portion of the cleaning portion 604 is exposed to the lower side from the rod 601. Note that the cleaning portion 604 is not limited to the urethane rubber blade and may be a resin blade, a sponge, or nonwoven fabric, for example. In the present embodiment, the blade-shaped cleaning portion 604 protrudes about 3 mm from the lower side of the rod 601. While details will be described later, in a state in which the yoke 605a and the yoke 605b are in contact with the upper side of the holding body 505, about 0.5 mm of the lower side of the cleaning portion 604 is in contact with the light emission surface of the lens array 506.
As illustrated in
Furthermore, an inclined surface 601a and an inclined surface 601b are formed on the front end side of the rod 601. The inclined surface 601a and the inclined surface 601b are inclined surfaces that are inclined upwards towards the front end side. As described above, by having the inclined surface 601a and the inclined surface 601b be formed on the front end side of the rod 601, the rod 601 can be inserted into the image forming apparatus 1 smoothly. The configuration in which the cleaning member 600 is inserted from the outside of the image forming apparatus 1 will be described in detail later.
Referring to
In the present embodiment, the cleaning portion 604 is a sheet-shaped blade formed of urethane rubber, and a portion thereof is exposed to the lower side of the rod 601 through a hole (not shown) formed on the front end side of the attachment surface 608. In a state in which the cleaning portion 604 is mounted on the attachment surface 608, a seal 607 is adhered to the cleaning portion 604 and the attachment surface 608. The seal 607 has adhesiveness on both sides.
As illustrated in
The yoke 605a is inserted into the hole 606a formed on the front end side of the rod 601. Furthermore, the yoke 605b is inserted into the hole 606b formed on the front end side of the rod 601. The hole 606a is formed on the left side with respect to the attachment surface 608, and the hole 606b is formed on the right side with respect to the attachment surface 608. Accordingly, a portion of the yoke 605a inserted into the hole 606a protrudes, at a portion on the left side with respect to the cleaning portion 604, to the lower side from the rod 601. Furthermore, a portion of the yoke 605b inserted into the hole 606b protrudes, at a portion on the right side with respect to the cleaning portion 604, to the lower side from the rod 601. In other words, the yoke 605a and the yoke 605b protrude to the lower side from the rod 601 so as to interpose the cleaning portion 604 therebetween in the left-right direction. In other words, in a state in which the cleaning member 600 is inserted in the insertion portion 550, the yoke 605a and the yoke 605b protrude to the side on which the holding body 505 is disposed with respect to the magnet 602.
The magnet 602 is inserted between the yoke 605a and the yoke 605b. The magnet 602 is mounted on an upper surface of the seal 607 adhered to the attachment surface 608. The magnet 602 is fixed to the rod 601 in the above manner. An engagement protrusion 610a that opposes a front surface of the magnet 602 attached to the rod 601 is provided on the front end side of the rod 601. Similarly, an engagement protrusion 610b that opposes a rear surface of the magnet 602 attached to the rod 601 is also provided on the front end side of the rod 601. The engagement protrusion 610a, the engagement protrusion 610b, and the magnet 602 form a snap-fit structure. With the above, the magnet 602 attached to the front end side of the rod 601 is fixed to the rod 601 with the engagement protrusion 610a and the engagement protrusion 610b. Note that the fitting of the magnet 602 to the rod 601 is not limited to snap fitting and may be done by the adhesive power of the seal 607 alone or another adhesive agent may be applied.
The yoke 605a is in contact with a left lateral surface of the magnet 602, and the yoke 605b is in contact with the right lateral surface of the magnet 602. The yoke 605a and the yoke 605b become magnetized by being in contact with the magnet 602. By disposing the yoke 605a and the yoke 605b in the above manner, the magnetic flux leaking to the atmosphere from the front surface, the rear surface, the lower surface, and the upper surface of the magnet 602 can be reduced and the magnetic flux emitted by the magnet 602 can be concentrated to the yoke 605a and the yoke 605b.
The positional relationship between the yoke 605a, the yoke 605b, and the cleaning portion 604 will be described briefly next. A portion of the yoke 605a and a portion of the yoke 605b are, with respect to the cleaning portion 604, both positioned on the front end side of the rod 601 in the longitudinal direction of the rod 601. In other words, a portion of the yoke 605a and a portion of the yoke 605b are both located downstream of the cleaning portion 604 in a direction extending from the second end side (the rear end side) of the rod 601 in the longitudinal direction of the rod 601 towards the first end side (the front end side) of the rod 601 in the longitudinal direction of the rod 601. Furthermore, a portion of the magnet 602 as well is disposed so as to be located downstream of the cleaning portion 604 in the direction extending from the second end side (the rear end side) of the rod 601 in the longitudinal direction of the rod 601 towards the first end side (the front end side) of the rod 601 in the longitudinal direction of the rod 601. In other words, at least a portion of the magnet is disposed so as to be located nearer to the first end side than the cleaning portion. By having a portion of the yoke 605a and a portion of the yoke 605b be located on the front end side of the rod 601 with respect to the cleaning portion 604, the portion of the cleaning member 600 on the front end side with respect to the cleaning portion 604 is drawn to the holding body 505 by the attractive force created by the magnetic force; accordingly, the light emission surface of the lens array 506 can be cleaned sufficiently with the cleaning portion 604.
As illustrated in
Note that in a state in which the cleaning member 600 is inserted in the insertion portion 550, there is a slight gap between the cleaning member 600 and the insertion portion 550. In the present embodiment, the gap between the cleaning member 600 inserted in the insertion portion 550 and the insertion portion 550 in the left-right direction is about 2 mm. Furthermore, in the up-down direction as well, there is a gap of about 2 mm between the cleaning member 600, which is inserted in the insertion portion 550 and is in contact with the bottom surface of the insertion portion 550, and an upper portion of the insertion portion 550. As described above, in a state in which the cleaning member 600 is inserted in the insertion portion 550, a slight gap is provided between the cleaning member 600 and the insertion portion 550. With the above, the operator can insert and remove the cleaning member 600 into and from the insertion portion 550 in a smooth manner.
However, in a state in which the cleaning member 600 is inserted in the insertion portion 550 and in which there is a slight gap between the cleaning member 600 and the insertion portion 550 in the up-down direction, when the operator applies a downward force to the grip portion 603, the front end side of the cleaning member 600 may move upwards with the insertion portion 550 of the cleaning member 600 as a fulcrum, and the cleaning portion 604 may become separated from the light emission surface of the lens array 506. In the above state, when the operator inserts and removes the cleaning member 600 into and from the insertion portion 550, the cleaning portion 604 may not rub the light emission surface of the lens array 506.
On the other hand, as the gap between the cleaning member 600 and the insertion portion 550 becomes smaller when the cleaning member 600 is inserted in the insertion portion 550, the operability when the cleaning member 600 is inserted into the insertion portion 550 from the outside of the apparatus main body becomes lower. Specifically, by obtaining a certain degree of clearance between the cleaning member 600 and the insertion portion 550 when the cleaning member 600 is inserted in the insertion portion 550, the operator will be able to easily insert the cleaning member 600 into the insertion portion 550.
Accordingly, in the present embodiment, the magnet 602 is provided on the front end side of the cleaning member 600. The magnet 602 and the holding body 505 try to draw each other towards each other with the magnetic force emitted by the magnet 602. Since the magnet 602 is provided in the rod 601, the front end side of the rod 601 also moves in a direction approaching the holding body 505. As described above, by creating attractive force between the magnet 602 and the holding body 505, the possibility of the front end side of the cleaning member 600 becoming separated from the holding body 505 in the up-down direction is reduced. While reducing the possibility of the cleaning portion 604 from becoming separated from the light emission surface of the lens array 506, the operability of the cleaning member 600 is maintained in the above manner.
The cleaning member 600 is inserted into and removed from the insertion portion 550 in the direction of the arrow by the operator. In the insertion direction of the cleaning member 600, the insertion portion 550 is provided upstream of the light emission surface of the lens array 506. When the operator inserts the cleaning member 600 into the insertion portion 550, the cleaning portion 604 (not shown) opposes the light emission surface of the lens array 506. In a state in which the cleaning portion 604 and the light emission surface of the lens array 506 oppose each other, attractive force, which is magnetic force, emitted by the magnet 602 acts on the yoke 605a (605b) provided on the front end side of the rod 601, and the holding body 505. In other words, force that draws the yoke 605a (605b) and the holding body 505 to each other acts on the yoke 605a (605b) and the holding body 505. In the above, since force oriented towards the holding body 505 also acts on the front end side of the rod 601 to which the yoke 605a (605b) is attached, the cleaning portion 604 and the light emission surface of the lens array 506 come in contact with each other. While maintaining the state in which the cleaning portion 604 and the light emission surface of the lens array 506 are in contact with each other, by inserting and removing the cleaning member 600 in the direction of the arrow, the cleaning portion 604 rubs and cleans the light emission surface of the lens array 506.
The size of the attractive force between the front end side of the rod 601 and the holding body 505 is desirably a size that maintains the state in which the cleaning portion 604 and the lens array 506 are in contact with each other when the operator pushes the grip portion 603 of the cleaning member 600 inserted in the insertion portion 550 downwards. In the present embodiment, the attractive force in the up-down direction (the optical axis direction of the lens array 506) that acts on the front end side of the rod 601 and the holding body 505 is about 100 gf. While the above value changes depending on the flexibility of the material of the rod 601, when the rod 601 is resin molded, attractive force of about 100 gf is needed.
Note that when cleaning the light emission surface of the lens array 506, the operator may in some cases insert and remove the cleaning member 600 into and from the insertion portion 550 a few times. When cleaning is performed by inserting and removing the cleaning member 600 into and from the insertion portion 550 a few times, even if the cleaning portion 604 and the light emission surface of the lens array 506 become separated on the first insertion, it is only sufficient that the cleaning portion 604 rubs the light emission surface of the lens array 506 when removing the cleaning member 600 or on the second insertion. Taking the above into consideration, the attractive force described above may be about 100 gf or less as long as the magnet 602 provided on the front end side of the rod 601 emits magnetic force that maintains the state in which the cleaning portion 604 and the light emission surface of the lens array 506 are in contact with each other and the attractive force is functioning to attract the front end side of the rod 601 and the holding body 505 to each other.
When the light emission surface of the lens array 506 and the cleaning portion 604 oppose each other in the optical axis direction of the lens array 506, the yoke 605a and the yoke 605b, and the holding body 505 are attracted to each other by the magnetic force and are in contact with each other.
By having the yoke 605a and the yoke 605b, and the holding body 505 come in contact with each other and attract each other by magnetic force, force that draws the front end side of the rod 601 and the holding body 505 to each other also acts on the front end side of the rod 601 and the holding body 505. In other words, the magnet 602 emits magnetic force that generates force that pulls the magnet 602 itself and the holding body 505 to each other. With the above, the cleaning portion 604 provided on the front end side of the rod 601 also moves in the optical axis direction of the lens array 506 so as to approach the holding body 505. As illustrated in
When the cleaning member 600 is in a state illustrated in
As illustrated in
Note that in the present embodiment, the width of the cleaning portion 604 in the left-right direction is about 2.5 mm. A sum of the width of the right lateral surface 601R of the rod 601 and the holding body 505 in the left-right direction, and a sum of the width of the left lateral surface 601L of the rod 601 and the holding body 505 in the left-right direction are each about 2.5 mm or less. Accordingly, even when the rod 601 moves in the left-right direction with respect to the holding body 505, the cleaning portion 604 does not move to the right side or the left side with respect to the light emission surface of the lens array 506. A state in which the cleaning portion 604 and the light emission surface of the lens array 506 are in contact with each other in the left-right direction is maintained in the above manner.
With the above, in a state in which the cleaning member 600 has been inserted into the insertion portion 550 from the outside of the apparatus main body by the user and in which the cleaning portion 604 and the light emission surface of the lens array 506 oppose each other in the optical axis direction of the lens array 506, the state in which the cleaning portion 604 and the light emission surface of the lens array 506 are in contact with each other is maintained. The light emission surface of the lens array 506 is cleaned by having the cleaning member 600 be inserted into and removed from the insertion portion 550 while maintaining the contact between the cleaning portion 604 and the light emission surface of the lens array 506.
Detailed Configuration Around Cleaning Portion
As in the configuration illustrated previously in
Accordingly, as illustrated in
The protruded portion 630a and the protruded portion 630b are both, same as the rod 601, formed of resin. Accordingly, even when the protruded portion 630a and the protruded portion 630b rub the metal holding body 505, the protruded portion 630a and the protruded portion 630b do not damage the surface of the holding body 505 as the yokes 605 damage the holding body 505. Furthermore, the frictional force generated when the resin protruded portions 630 rub the metal holding body 505 is smaller than the frictional force generated when the metal yokes 605 rub the metal holding body 505. Accordingly, compared with when the cleaning member 600 is moved while the yokes 605 and the holding body 505 are in contact with each other, the force needed to inset and remove the cleaning member 600 into and from the insertion portion 550 is smaller when the cleaning member 600 is moved while the protruded portions 630 and the holding body 505 are in contact with each other and the yokes 605 and the holding body are not in contact with each other.
In the present embodiment, since a resin with high sliding property, such as a polyacetal resin, is used for the protruded portions 630, the cleaning operation can be performed smoothly. Note that the distal ends of the protruded portions 630 that are in contact with the holding body 505 alone may be formed of polyacetal resin, and the other portions may be formed of acrylonitrile-butadiene-styrene (ABS) resin or the like.
Furthermore, rather than with the protruded portions 630, direct contact between the yokes 605 and the holding body 505 may be prevented by adhering a resin seal (an example of the contact portion) on the holding body 505 side of each yoke 605. By so doing, the yokes 605 can be prevented from rubbing the holding body 505, and the plating on the holding body 505 can be suppressed from coming off and shaving of the yokes 605 themselves can be reduced.
As illustrated in
Furthermore, as illustrated in
As the force drawing the magnet 602 and the holding body 505 to each other became larger, the contact between the cleaning portion 604 and the light emission surface of the lens array 506 was established more reliably. On the other hand, the force needed to insert and remove the cleaning member 600 into and from the insertion portion 550 became larger.
When the force drawing the magnet 602 and the holding body 505 to each other became smaller, while the force needed to insert and remove the cleaning member 600 into and from the insertion portion 550 became smaller, one cannot dismiss the possibility of the cleaning portion 604 becoming easily detached from the holding body 505. Based on the experiment conducted by the inventors, the attractive force of the magnet 602 acting on the holding body 505 was set to about 100 gf, and the protrusion amount of the protruded portions 630 from the rod 601 was set so that the gap d was 0.5 mm.
As illustrated in
Furthermore, the protruded portion 630a may be configured as in
As illustrated in
Positional Relationship Between Yoke and Protruded Portion
Referring to
As illustrated in
Referring to
For example, as illustrated in
Furthermore, in a similar manner, the protruded portion 603a needs to be provided in the rod 601 so as to be located inside the width Wd in the holding body 505 as well, and the protruded portion 603b needs to be provided in the rod 601 so as to be located inside the width Wc in the holding body 505 as well.
In consideration of the above, in the example in
In order to fabricate such a configuration, the width of the rod 601 in the left-right direction and the width of the holding body 505 in the left-right direction need to be wide, which cannot be said as an optimum configuration in view of miniaturization of the cleaning member 600 and the holding body 505.
Accordingly, as illustrated in
While the present invention has been described with reference to embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. It will of course be understood that this invention has been described above by way of example only, and that modifications of detail can be made within the scope of this invention.
This application claims the benefit of Japanese Patent Application No. 2019-046340, filed Mar. 13, 2019, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-046340 | Mar 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8269812 | Morimoto | Sep 2012 | B2 |
10824108 | Iwai | Nov 2020 | B2 |
20180364636 | Imai | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
3306410 | Apr 2018 | EP |
H10-164289 | Jun 1998 | JP |
2004-226536 | Aug 2004 | JP |
2006-106446 | Apr 2006 | JP |
2019-3113 | Jan 2019 | JP |
2019-003114 | Jan 2019 | JP |
Entry |
---|
Nagase, JP 2004-226536 A, Aug. 2004, JPO Computer Translation (Year: 2004). |
Translation of JP 2006-106446. |
Translation of JP10-164289. |
Number | Date | Country | |
---|---|---|---|
20200292985 A1 | Sep 2020 | US |