The present disclosure relates to the technical field of cleaning devices, in particular to a cleaning robot and a motion control method thereof.
Chinese patent publication CN102920393A discloses a cleaning machine for cleaning plates, which makes the cleaning machine adhered to the plates by forming negative pressure between the cleaning machine and the plates. Specifically, the cleaning machine comprises a link arm (i.e., a machine body) arranged between two cleaning elements. The two cleaning elements are both fixedly connected to the machine body. The driving module does not rotate one of the cleaning elements, and the other cleaning element is driven to rotate along a first rotation direction, so that a torsion force is generated between the rotating cleaning element and the machine body. The machine body swings to a second rotation direction (the second rotation direction is opposite to the first rotation direction) by the torsion force. The two cleaning elements are alternately driven to rotate, so that the cleaning machine moves on the a plate in a twisting manner.
Chinese patent document CN104414573A discloses a window cleaning device with a similar structure. The window cleaning device adheres on the glass by negative pressure generated in a suction cup by a vacuum pump. The adsorption turntable of the window cleaning device is connected with the machine body through a bearing (the outer ring of the bearing is fixedly connected with the machine body, and the inner ring of the bearing is fixedly connected with the adsorption turntable). The control unit controls the magnitude and direction of power output on the two adsorption turntables, respectively. A pair of adsorption turntables are driven to rotate or are stationary around the vertical axis perpendicular to the glass surface, so that the pair of adsorption turntables alternately become high-speed ends or low-speed ends, resulting in a difference in rotation speed. Therefore, the window cleaning device twists alternately, so that the window cleaning device walks in a twisting manner.
Almost all the existing cleaning machines/window cleaning devices that walk in a twisting manner use structures similar to those of the above patents, in which two adsorption turntables are adsorbed on the surface of the plate, and the two adsorption turntables are rigidly connected into a whole to walk in a twisting manner on the plate. Because of this, almost all twisting cleaning devices require that the surface of the plate on which the cleaning devices work must be a very flat plane. When the plate is bent to form an arc surface, air leakage results from the increasing gap between the adsorption turntable and the surface of the plate, so that the machine may fall off in the process of walking. In order to prevent the machine from falling off, the usual means is to provide a sensor to monitor the pressure change in the negative pressure area. Once the pressure in the negative pressure area exceeds the set threshold, the machine will be immediately controlled to turn around instead of moving forward. Therefore, almost all the existing twisting cleaning devices are not suitable for working on the surface of a plate with a certain radian.
One of the technical problems to be solved by the present disclosure is to provide a cleaning robot with a wider application range.
In order to solve the above technical problems, the present disclosure uses the following technical solution: a cleaning robot for removing particles attached to a surface to be cleaned, comprising: a cleaning element, which is configured to be in contact with the surface to be cleaned to perform a cleaning function and define at least one chamber 1a with the surface to be cleaned: a suction module, which is communicated with the chamber and is configured to draw air in the chamber to form negative pressure in the chamber so that the cleaning element is adsorbed on the surface to be cleaned: a driving module, which is connected with the cleaning element and drives the cleaning element to rotate with the axis perpendicular to the surface to be cleaned as the rotation axis: a controller, which is coupled to and controls the suction module and the driving module: a bridge, which connects a plurality of cleaning elements and the driving module, wherein at least one of the cleaning elements is configured to be able to deflect with respect to the bridge, so as to enable the rotation axis corresponding to the cleaning element to be staggered with the rotation axes corresponding to other cleaning elements to form an included angle.
In an embodiment, the cleaning robot further comprises a deflection driving mechanism, which is configured to apply deflection acting force, which causes the cleaning element to deflect, to the cleaning element configured to deflect with respect to the bridge, so that when the cleaning element is placed on the surface to be cleaned, one side of the cleaning element is in contact with the surface to be cleaned first, and after the cleaning element is adsorbed on the surface to be cleaned, the pressure of the side on the surface to be cleaned is greater than that of other parts thereof on the surface to be cleaned.
In an embodiment, at least two cleaning elements of the plurality of cleaning elements are connected with the bridge through rotating shafts arranged at intervals, the rotating shafts are perpendicular to the rotation axes corresponding to the at least two cleaning elements, the deflection driving mechanism is configured to apply deflection acting force, which causes the cleaning element to deflect, to the at least two cleaning elements, so that when the at least two cleaning elements are placed on the surface to be cleaned, one side of the cleaning elements is in contact with the surface to be cleaned first, and after the at least two cleaning elements are adsorbed on the surface to be cleaned, the pressure of the side on the surface to be cleaned is greater than that of other parts thereof on the surface to be cleaned.
When the at least two cleaning elements are adsorbed on the surface to be cleaned, the pressure of one side of the at least two cleaning elements subjected to the deflection acting force on the surface to be cleaned is greater than or less than the pressure of other parts thereof on the surface to be cleaned.
In an embodiment, the deflection driving mechanism comprises an elastic part arranged between the bridge and the corresponding cleaning element, both ends of the elastic part abut against the bridge and the corresponding cleaning element, respectively, alternatively, both ends of the elastic part are fixedly connected with the bridge and the corresponding cleaning element, respectively, and the elastic part which generates elastic deformation applies deflection acting force, which causes the cleaning element to deflect, to the cleaning element configured to deflect with respect to the bridge.
In an embodiment, the deflection driving mechanism comprises magnetic components which are fixedly installed on the bridge and the corresponding cleaning elements and attract or repel each other, and applies deflection acting force, which causes the cleaning element to deflect, to the cleaning element configured to deflect with respect to the bridge, by means of the attractive or repulsive interaction between the magnetic components.
Preferably, the magnetic component comprises an electromagnet, and the control circuit of the electromagnet is coupled to the controller.
The suction module comprises fans or vacuum pumps as many as the cleaning elements, the chambers defined by each of the cleaning elements and the surface to be cleaned are independent of each other, and the fans or vacuum pumps are connected to the chambers one by one.
In another aspect, the present disclosure further relates to a motion control method of the cleaning robot described above, wherein a plurality of cleaning elements of the cleaning robot at least comprise first cleaning element and second cleaning element, which are used to move the cleaning robot on the surface to be cleaned. In an embodiment, the motion control method comprises the following steps:
In another embodiment, the motion control of the cleaning robot is that the at least two cleaning elements are driven simultaneously to rotate in a proper direction with respect to the surface to be cleaned via the corresponding driving module, and the deflection driving mechanism applies deflection acting force to the at least two cleaning elements, so that the resultant force of all static friction forces applied to all cleaning elements by the surface to be cleaned is greater than zero, thereby driving the cleaning robot to walk straight in the direction of the resultant force.
Preferably, in an embodiment where a magnetic component including an electromagnet is used as the deflection driving mechanism, the motion of the cleaning robot is controlled as follows: first, controlling the corresponding suction module so that the negative pressure of the chamber defined by the first cleaning element of the at least two cleaning elements and the surface to be cleaned is greater than the negative pressure of the chamber defined by the second cleaning element and the surface to be cleaned, and turning off a power supply circuit of an electromagnet corresponding to the first cleaning element, and turning on a power supply circuit of an electromagnet corresponding to the second cleaning element, so that the pressure of one side of the second cleaning element on the surface to be cleaned is greater than or less than that of other parts thereof on the surface to be cleaned, and controlling the corresponding driving module to apply an appropriate driving force to the first cleaning element and the second cleaning element along a first rotation direction, so that the second cleaning element and the bridge twist around the first cleaning element along a second rotation direction opposite to the first rotation direction: subsequently, controlling the corresponding suction module so that the negative pressure of the chamber defined by the first cleaning element and the surface to be cleaned is less than the negative pressure of the chamber defined by the second cleaning element and the surface to be cleaned, and turning on a power supply circuit of an electromagnet corresponding to the first cleaning element, and turning off a power supply circuit of an electromagnet corresponding to the second cleaning element, so that the pressure of one side of the first cleaning element on the surface to be cleaned is greater than or less than that of other parts thereof on the surface to be cleaned, and controlling the corresponding driving module to apply an appropriate driving force to the first cleaning element and the second cleaning element along the second rotation direction, so that the first cleaning element and the bridge twist around the second cleaning element along the first rotation direction opposite to the second rotation direction: executing the above steps alternately, so that the cleaning machine walks on the surface to be cleaned in a twisting manner.
Different from the existing machines, the present disclosure configures at least one of the cleaning elements to be able to deflect with respect to the bridge, and correspondingly, other parts of the machine (including the bridge, other cleaning elements, etc.) can also deflect with respect to the cleaning element. By using a deflectable/floating structure, the cleaning element can better fit the surface to be cleaned with a certain radian, which can improve the adsorption effect between the cleaning element and the surface to be cleaned, reduce the risk that the machine falls off, and better ensure the cleaning effect. In addition, when the existing machine cleans the flat surface to be cleaned, if there are hard-to-erase solid attachments (such as solidified cement blocks and hard glue blocks) on the surface to be cleaned, even if the height of the solid attachments protruding from the surface to be cleaned is not large. The machine will misjudge the position of the solid attachments as the plate boundary (in order to prevent the machine from falling off) because the cleaning element is pushed by the interference of the solid attachments. The present disclosure can avoid the solid attachments in a certain extent through the deflection/floating structure of the cleaning element, thereby reducing the misjudgment caused by interference. To sum up, compared with the existing cleaning robot, the present disclosure has better adaptability and a wider application range.
In the figures:
1—cleaning element, 2—suction module, 3—driving module, 4—controller, 5—bridge, 6—deflection driving mechanism, 7—rotating shaft, 1a—chamber, 1-1-1 #cleaning element, 1-2-2 #cleaning element
In the description of the present disclosure, it should be understood that the orientational or positional relationships indicated by the terms “center”, “upper”, “lower”, “front”, “back”, “top”, “bottom”, “inside” and “outside” are based on the orientational or positional relationships shown in the drawings only for the convenience of describing the present disclosure and simplifying the description, rather than indicate or imply that the indicated devices or elements must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as limiting the present disclosure. In addition, the terms “first” and “second” are only used for purpose of description, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
In order to facilitate those skilled in the art to understand the concept of the present disclosure more clearly, the present disclosure will be further explained with reference to embodiments and drawings hereinafter.
In the cleaning robot illustrated above, the cleaning element 1 is mainly configured to be in contact with the surface to be cleaned to perform a cleaning function and define at least one chamber 1a with the surface to be cleaned. In addition to taking the shape of a wheel disc as shown in the figure, the cleaning element I can also take the shape of a Reuleaux triangle. In addition, it should be understood by those skilled in the art that the aforementioned surface to be cleaned comprises but is not limited to the surface of a flat plate (for example, an upright glass window), which can also be a floor surface or a curved surface with a certain radian (for example, a glass surface with a certain radian like the front windshield of an automobile). In this embodiment, the cleaning element 1 is adsorbed on the surface to be cleaned by the suction module 2. Specifically, the suction module 2 comprises two negative pressure fans. The chambers 1a formed by the two cleaning elements 1 are independent of each other, and the two negative pressure fans are connected to the two chambers 1a one by one. In the operation, the negative pressure fans pump air in the chamber 1a to form negative pressure in the chamber 1a, so that the corresponding cleaning element 1 is adsorbed on the surface to be cleaned. After each cleaning element 1 uses a separate negative pressure fan and its corresponding chambers 1a are independent of each other, the adsorption forces of each cleaning element 1 do not affect each other. Even if one of the cleaning elements I moves out of the working area of the surface to be cleaned and air leaks, as long as one of the cleaning elements 1 is still located in the safe working area, the cleaning element 1 in the safe working area will still be firmly adsorbed on the surface to be cleaned, which will not result in the risk that the machine falls off. This is higher in security. In addition, the cleaning function of the cleaning element 1 is powered by the driving module 3 connected to the cleaning element. The driving module 3 drives the cleaning element 1 to rotate with the axis perpendicular to the surface to be cleaned as the rotation axis, so that the cleaning element 1 and the surface to be cleaned have a relative displacement. Under the action of friction, the cleaning element 1 erases the particles attached to the surface to be cleaned. Like the existing cleaning robot, the suction module 2 and the driving module 3 can be powered by rechargeable battery modules, or can be powered by the commercial power after voltage reduction by providing a power cord externally connected to the commercial power. When the commercial power is used for power supply, the battery module can be used as a backup power supply. When the commercial power is cut off (for example, in the case of power failure), the suction module 2 and driving module 3 are switched to the battery module for power supply. Meanwhile, the controller 4 is coupled with the suction module 2 and the driving module 3 to control the suction module 2 and the driving module 3. Unlike the existing cleaning robot, which fixedly connects each adsorption turntable into a whole through the machine body/casing, in this embodiment, two cleaning elements 1 are connected through the bridge 5, and the two cleaning elements 1 are both configured to be able to deflect with respect to the bridge 5. Specifically, the two cleaning elements 1 are connected to the bridge 5 through two sets of rotating shafts 7 arranged in parallel at intervals on the bridge 5, respectively. In the figure, the rotating shafts 7 are perpendicular to the rotation axes corresponding to the two cleaning elements 1. After either of the cleaning elements 1 deflects, its corresponding rotation axis will be staggered with the rotation axis corresponding to the other cleaning element 1 to form an included angle. The main purpose that the cleaning element 1 uses the above-mentioned structure that can deflect/float with respect to the bridge 3, is to enable the cleaning element to better fit the surface to be cleaned with a certain radian, so as to improve the adsorption effect between the cleaning element 1 and the surface to be cleaned, reduce the risk that the machine falls off, and ensure the cleaning effect. Moreover, the solid attachments existing on the surface to be cleaned can be avoided in a certain extent through the deflection/floating of the cleaning element 1, thus reducing the situation that the machine misjudges the position of the solid attachments as the boundary due to the interference and pushing between the solid attachments and the cleaning element 1. It should be clear that, in another embodiment, only one of the cleaning elements 1 can be configured to deflect with respect to the bridge. According to the principle of relativity of motion, other parts of the machine (including the bridge 5, other cleaning elements 1, etc.) can also deflect with respect to the cleaning element 1 with the cleaning element 1 as a reference, so that the above purpose can also be achieved.
Next, the motion control method of the above-mentioned cleaning robot is described in detail. For convenience of description, the two cleaning elements 1 in the figure are numbered as first cleaning element 1-1 and second cleaning element 1-2, respectively.
As shown in
First, the suction modules 2 corresponding to the first cleaning element 1-1 and the second cleaning element 1-2 are controlled, respectively, so that the negative pressure of the chamber 1a corresponding to the first cleaning element 1-1 is greater than that of the chamber 1a corresponding to the second cleaning element 1-2. The corresponding driving module 3 is controlled to drive the first cleaning element 1-1 and the second cleaning element 1-2 clockwise. The driving force applied by the driving module 3 should be within an appropriate range. For the first cleaning element 1-1, the driving force applied by the driving module 3 should be less than the maximum static friction force with the surface to be cleaned. However, for the second cleaning element 1-2, the driving force applied by the driving module 3 should be greater than the maximum static friction force with the surface to be cleaned, so that the second cleaning element 1-2 rotates with the axis perpendicular to the surface to be cleaned as the rotation axis. The second cleaning element 1-2 and the surface to be cleaned have a relative displacement. The first cleaning element 1-1 is stationary with respect to the surface to be cleaned. According to the principle of acting force and counter-acting force, the counter-acting force corresponding to the driving force applied to the first cleaning element 1-1 (the counter-acting force is equal to the static friction force generated by the surface to be cleaned) will be transmitted to the bridge 5. Because the sliding friction force between the rotating second cleaning element 1-2 and the surface to be cleaned is less than the static friction force between the first cleaning element 1-1 and the surface to be cleaned, when driven by the above counter-acting force, the bridge 5 and the second cleaning element 1-2 will twist counterclockwise around the first cleaning element 1-1, so that the second cleaning element 1-2 moves to the B1 position and the first cleaning element 1-1 is still located at the A0 position.
Thereafter, the suction modules 2 corresponding to the first cleaning element 1-1 and the second cleaning element 1-2 are controlled, respectively, so that the negative pressure of the chamber 1a corresponding to the first cleaning element 1-1 is less than that of the chamber 1a corresponding to second cleaning element 1-2. Moreover, the corresponding driving module 3 is controlled to drive the first cleaning element 1-1 and the second cleaning element 1-2 counterclockwise, similar to the previous steps. The driving force applied by the driving module 3 should also be within an appropriate range. Different from the previous steps, in this step, for the first cleaning element 1-1, the driving force applied by the driving module 3 should be greater than the maximum static friction force with the surface to be cleaned. However, for the second cleaning element 1-2, the driving force applied by the driving module 3 should be less than the maximum static friction force with the surface to be cleaned, so that the first cleaning element 1-1 rotates with the axis perpendicular to the surface to be cleaned as the rotation axis. The first cleaning element 1-1 and the surface to be cleaned have a relative displacement. The second cleaning element 1-2 is stationary with respect to the surface to be cleaned. According to the principle of acting force and counter-acting force, the counter-acting force corresponding to the driving force applied to the second cleaning element 1-2 (the counter-acting force is equal to the static friction force generated by the surface to be cleaned) will be transmitted to the bridge 5. Because the sliding friction force between the rotating first cleaning element 1-1 and the surface to be cleaned is less than the static friction force between the second cleaning element 1-2 and the surface to be cleaned, when driven by the above counter-acting force, the bridge 5 and the first cleaning element 1-1 will twist counterclockwise around the second cleaning element 1-2, so that the first cleaning element 1-1 moves to the A1 position and the second cleaning element 1-2 is still located at the B1 position.
By executing the above two steps alternately, the cleaning robot can walk on the surface to be cleaned in a twisting manner. In the process that the cleaning robot walks on the surface to be cleaned in a twisting manner, the first cleaning element 1-1 and the second cleaning element 1-2 alternately rotate with respect to the surface to be cleaned and erase the dirt particles attached to the surface to be cleaned, thus realizing the cleaning operation of the surface to be cleaned.
In this embodiment, the cleaning robot also uses the external structure as shown in
The biggest difference between this embodiment and Embodiment 1 is that a deflection driving mechanism 6 is further provided, which is configured to apply deflection acting force, which causes the cleaning element to deflect, to the two cleaning elements 1 configured to deflect with respect to the bridge 5. When the cleaning element 1 is placed on the surface to be cleaned by means of the deflection acting force applied by the deflection driving mechanism 6, one side of the cleaning element is in contact with the surface to be cleaned first, and after the two cleaning elements 1 are adsorbed on the surface to be cleaned, the pressure of the aforementioned side (i.e., the side that is in contact with the surface to be cleaned first) on the surface to be cleaned is greater than that of other parts thereof on the surface to be cleaned. Specifically, in this embodiment, a deflection driving mechanism 6 is arranged between the bridge 5 and the two cleaning elements 1, respectively, as shown in
Next, the motion control method of the cleaning robot in this embodiment will be described in detail. For convenience of description, the two cleaning elements 1 in the figure are numbered as first cleaning element 1-1 and second cleaning element 1-2, respectively. As shown in
Referring to the control steps in Embodiment 1, the first cleaning element 1-1 and the second cleaning element 1-2 are driven to walk in a twisting manner, so that the first cleaning element 1-1 and the second cleaning element 1-2 move to the A1 position and the B1 position in the figure, respectively. As shown in
In addition to the above motion control method, the cleaning robot of this embodiment can also be used to clean horizontal surfaces to be cleaned (such as floors). As shown in
It should be emphasized that the aforementioned deflection driving mechanism 6 is not limited to the structure of the coil spring, but can be other elastic parts or other parts besides the elastic parts that can be arranged between the bridge 5 and the cleaning elements 1 and apply deflection acting force to the cleaning elements 1. In an embodiment, the deflection driving mechanism 6 can be magnetic components which are fixedly installed on the bridge 5 and the corresponding cleaning elements 1 and attract (with respect to the tension spring) or repel (with respect to the compressed spring) each other. The deflection acting force can also be applied to the cleaning elements 1 by means of the attractive or repulsive interaction between the magnetic components. Preferably, the magnetic component comprises an electromagnet, and the control circuit of the electromagnet is coupled to the controller 4. The controller 4 can control the ON/OFF of the electromagnet to control the deflection driving mechanism 6. After the electromagnet is used as the deflection driving mechanism 6, the cleaning robot can walk on the surface to be cleaned in a twisting manner as follows. First, the corresponding suction module 2 is controlled so that the negative pressure of the chamber 1a corresponding to the first cleaning element 1-1 is greater than the negative pressure of the chamber 1a corresponding to the second cleaning element 1-2. A power supply circuit of an electromagnet corresponding to the first cleaning element 1-1 is turned off, and a power supply circuit of an electromagnet corresponding to the second cleaning element 1-2 is turned on, so that the pressure of one side of the second cleaning element 1-2 on the surface to be cleaned is greater than or less than that of other parts thereof on the surface to be cleaned. The corresponding driving module 3 is controlled to apply an appropriate driving force to the first cleaning element 1-1 and the second cleaning element 1-2 clockwise. The requirement of an “appropriate” driving force in this embodiment is the same as that in Embodiment 1 (that is, one cleaning element 1 is stationary with respect to the surface to be cleaned, and the other cleaning element 1 rotates with respect to the surface to be cleaned), so that the second cleaning element 1-2 and the bridge 5 twist around the first cleaning element 1-1 counterclockwise. Thereafter, the corresponding suction module 2 is controlled so that the negative pressure of the chamber 1a corresponding to the first cleaning element 1-1 is less than the negative pressure of the chamber 1a corresponding to the second cleaning element 1-2. A power supply circuit of an electromagnet corresponding to the first cleaning element 1-1 is turned on, and a power supply circuit of an electromagnet corresponding to the second cleaning element 1-2 is turned off, so that the pressure of one side of the first cleaning element 1-1 on the surface to be cleaned is greater than or less than that of other parts thereof on the surface to be cleaned. The corresponding driving module 3 is controlled to apply an appropriate driving force to the first cleaning element 1-1 and the second cleaning element 1-2 counterclockwise, so that the first cleaning element 1-1 and the bridge 5 twist around the second cleaning element 1-2 clockwise. By executing the above steps alternately, the cleaning robot can be controlled to walk on the surface to be cleaned in a twisting manner. After the electromagnet is used, the cleaning element 1 which is stationary with respect to the surface to be cleaned is not subjected to the deflection acting force in the process of walking in a twisting manner, but only the clean element 1 which rotates with respect to the surface to be cleaned is subjected to the deflection acting force. The stationary cleaning element 1 is balanced in force and firmly adsorbed on the surface to be cleaned, and only the rotating cleaning element 1 is subjected to unbalanced counter-acting force from the surface to be cleaned, so that it is easier for the rotating cleaning element 1 to deflect around another cleaning element 1 which is stationary with respect to the surface to be cleaned, and the risk that the cleaning robot falls off from the surface to be cleaned in the process of walking in a twisting manner is further reduced.
The above embodiments are preferred implementations of the present disclosure, and any obvious substitutions fall within the scope of protection of the present disclosure without departing from the concept of this technical solution.
Some drawings and descriptions of the present disclosure have been simplified to make it easier for those skilled in the art to understand the improvement of the present disclosure over the prior art. Moreover, for the sake of clarity, some other elements are omitted in the application. Those skilled in the art should realize that these omitted elements can also constitute the content of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202210112901.4 | Jan 2022 | CN | national |
PCT/CN2022/081489 | Mar 2022 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2022/081489 | 3/17/2022 | WO |