The disclosure relates to coverage robots, cleaning rollers, and roller cleaning systems.
Sweeping and/or vacuuming may be performed by ordinary cleaners (vacuum cleaners, carpet sweepers) or mobile robots that sweep and/or vacuum. These cleaners and robots may include brush or beater rollers that pick up or help pick up debris. However, while such cleaners or mobile robots may include brush or beater rollers to agitate or sweep debris and dirt away from the floor (or other flat surface), filaments (i.e., hair, thread, string, carpet fiber) may become tightly wrapped around the roller. In particular, pet hair tends to accumulate rapidly and resist removal.
In one aspect, a coverage robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and at least one driven flapper brush rotatably coupled to the cleaning assembly housing. The flapper brush includes an elongated core having an outer surface and end mounting features extending beyond axial ends of the outer surface and defining a central longitudinal axis of rotation. The flapper brush includes a compliant flap extending radially outward from the core to sweep a floor surface as the roller is driven to rotate. The flap is configured to prevent errant filaments from spooling tightly about the core to aid subsequent removal of the filaments. The flapper brush includes axial end guards mounted on the core adjacent the ends of the outer core surface and configured to prevent spooled filaments from traversing axially from the outer core surface onto the mounting features.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the flapper brush includes multiple floor cleaning bristles extending radially outward from the core, wherein a diameter of the compliant flap about the core is less than a diameter of the bristles about the core. The end guard may be removable from each longitudinal end of the core. In some examples, the end guard is compliant, elastically deforming for removing accumulated errant filaments off of the flaps
In another aspect, a coverage robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and at least one driven sweeper brush rotatably coupled to the cleaning assembly housing. The sweeper brush includes an elongated core having an outer surface and end mounting features extending beyond axial ends of the outer surface and defining a central longitudinal axis of rotation. The sweeper brush includes multiple floor cleaning bristles extending radially outward from the core. The sweeper brush includes axial end guards mounted on the core adjacent the ends of the outer core surface and configured to prevent spooled filaments from traversing axially from the outer core surface onto the mounting features.
Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, the bristles are disposed about the core in multiple rows, each row forming a substantially V-shaped groove configuration along the core. The end guard may be removable from each longitudinal end of the core. In some examples, the end guard is compliant, elastically deforming for removing accumulated errant filaments off of the bristles. The end guard may be substantially conical.
In yet another aspect, a floor cleaner includes a chassis and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing, at least one driven cleaning roller rotatably coupled to the cleaning assembly housing, and a sensor system configured to detect spooled material accumulated by the cleaning roller. The sensor system includes an emitter disposed near a first end of the cleaning roller and a detector disposed near an opposite, second end of the cleaning roller and aligned with the emitter. The detector configured to receive a signal emitted by the emitter to detect spooled material accumulated by the cleaning roller.
Implementations of this aspect of the disclosure may include one or more of the following features. The emitter may be an infrared light emitter.
In another aspect, a coverage robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot, a controller carried by the chassis, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and at least one driven cleaning roller rotatably coupled to the cleaning assembly housing. The coverage robot includes a roller cleaning tool carried by the chassis and configured to longitudinally traverse the roller to remove accumulated debris from the cleaning roller. The roller cleaning tool includes a body and protrusions extending outward from the body and configured to remove debris from the roller while passing over the cleaning roller.
Implementations of this aspect of the disclosure may include one or more of the following features. The roller cleaning tool may include a linear drive configured to traverse the cleaning tool across the cleaning roller. In some examples, a user manually pushes/pulls the roller cleaning tool along the cleaning roller to remove accumulated debris. In some implementations, the roller cleaning tool is substantially tubular. In other implementations, the roller cleaning tool is semi-tubular or quarter-tubular. The cross-sectional profile of roller cleaning tool may be substantially circular, triangular, rectangular, octagonal, hexagonal, or other suitable shape. In some examples, the roller cleaning tool includes a depth adjustor configured to control a depth of interference of the housing into the cleaning roller.
In another aspect, a robot roller maintenance system includes a coverage robot and a filament stripping tool. The coverage robot includes a chassis, a drive system mounted on the chassis and configured to maneuver the robot, a controller carried by the chassis, and a cleaning assembly carried by the chassis. The cleaning assembly includes a cleaning assembly housing and at least one driven cleaning roller rotatably coupled to the cleaning assembly housing. The filament stripping tool for the roller includes a substantially tubular housing defining first and second openings configured to receive a cleaning roller. The cleaning roller includes a rotatable, elongated core with end mounting features defining a central longitudinal axis of rotation, multiple floor cleaning bristles extending radially outward from the core, and at least one compliant flap extending radially outward from the core and configured to prevent errant filaments from spooling tightly about the core. The roller filament stripping tool includes protrusions extending from an interior surface of the housing toward a central longitudinal axis defined by the housing to a depth that interferes with the compliant flap. The protrusion are configured to remove accumulated filaments spooled about the roller passing through the housing.
Implementations of this aspect of the disclosure may include one or more of the following features. In some examples, at least two of the protrusions extend toward the central longitudinal axis at different heights. At least one of the first and second openings is sized larger than a diameter of the cleaning roller and larger than a diameter of a middle region between the first and second openings. A deforming portion of the housing is sized smaller than a diameter of a cleaning roller to deform peripheral longitudinal edges of the roller as the cleaning roller passes through the housing. In some examples, the deforming portion is sized smaller than a diameter of the bristles and a diameter of the compliant flap about the cleaning roller. The bristles and compliant flap elastically deform to comply with the deforming portion of the housing when the cleaning roller passes through the housing. The filament stripping tool may include a trailing comb disposed on the interior surface of the housing. The trailing comb includes tines configured to remove debris from a cleaning roller passing through the housing. In some implementations, the roller cleaning tool includes a guide ring disposed on the interior surface of the housing. The guide ring is configured to support the housing substantially concentrically on a cleaning roller while permitting rotation of the housing relative to the cleaning roller. The filament stripping tool may include a filament blade disposed on the housing. The filament blade is configured to at filaments and debris away from the cleaning roller. The filament blade may be configured to cut the filaments and debris while the tool traverses over the roller or as a separate cleaning device on the tool. In some implementations, the filament stripping tool includes a fuzz comb extending from the housing in the longitudinal direction and comprising multiple rows of tines. A user may use the fuzz comb to pull fuzz and debris out of the roller bristles.
The details of one or more implementations of the disclosure are set fourth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
Installed along either side of the chassis 31 are differentially driven wheels 45 that mobilize the robot 10 and provide two points of support. The forward end 31A of the chassis 31 includes a caster wheel 35 which provides additional support for the robot 10 as a third point of contact with the floor and does not hinder robot mobility. Installed along the side of the chassis 31 is a side brush 20 configured to rotate 360 degrees when the robot 10 is operational. The rotation of the side brush 20 allows the robot 10 to better clean areas adjacent the robot's side, and areas otherwise unreachable by the centrally located cleaning head assembly 40. A removable cleaning bin 50 is located towards the back end 31B of the robot 10 and installed within the outer shell 6.
Referring to
For example, the roller 100 may be engaged in cleaning a carpeted surface. Although the roller 100 is shown without a vacuum or secondary roller and on a carpeted surface, the roller 100 is useful on hard floors, as part of a roller pair (either similar or dissimilar rollers), and/or with a vacuum (beside, adjacent to, or surrounding the roller). Generally, the construction discussed in detail in Applicant's U.S. Pat. No. 6,883,201, which is hereby incorporated by reference in its entirety, is an effective structure for such rollers.
The end guards 130 prevent the filaments 33 from winding or traversing beyond either extremity of the spool roller 100. In some implementations, the end guards 130 are made of a soft (and/or flexible, and/or compliant) rubber, plastic, polyethylene, polymer or polymer-like material similar to the inner pliable flaps 120. The end guards 130, in some examples, cause filaments 33 to slip back down to the core 140 of the roller 100, if the rotating action of the roller 100 should cause the filaments 33 to approach either end of the spool roller 100. The end guards 130 may be removable, in order to facilitate installation and/or removal of the spool roller 100 from a robot cleaner 10. The end guards 130 need not be conical. In some examples, the end guards 130 have a smaller diameter than the bristles 110.
The core 140 of the roller 100 includes both a twisted coarse wire (e.g. a doable-helix wine core that supports the bristles 110) and a set of integral ribs 125 (integral with end caps 144 and roller axle 145). The core 140 includes a driven part (keyed or geared end) and a supporting part. In this implementation, the end guard 130 is formed as a full or partial truncated cone, the small diameter portion of the truncated cone having a through hole formed therein for receiving the roller axle 145, and being mounted toward the roller axle 145, and the large diameter portion of the truncated cone being mounted away from the roller axle 145. The end guard 130 is removable for brush cleaning and it keeps any hair 33 trapped within the two ends, thus keeping the drive mechanism clean (free of hair).
Referring to
Referring to
The end guard 130 is compatible with and enhanced by the inner pliable flaps 120. For example, the diameter of the end guard 130 and the end caps 144 need not be the same, and if the end guards 130 are removed from a roller 100 having the inner pliable flaps 120, accumulations of pet hair can be readily removed, and the inner pliable flaps 120 are exposed in the axial direction for easy cleaning with (or without) secondary cleaning tools.
In any of these implementations, when a user removes the end guard 130 or 930 from the end of the spool roller 100, 600, 650, 800, 950, the ring-like clump of filaments 33 can easily be slipped off from the end of the spool roller 100 by simply pulling the filaments 33 off past the end. Alternatively or in addition, the mounting ring 132 of the end guard 130 may have an outer peripheral profile that conically slopes downward and inward (i.e., toward the center of the roller 100 away from the end of the roller 100), in order to urge any accumulating filaments 33 away from the end of the roller 100 as the roller 100 spins.
The end guard 130 may have an inner edge for closely abutting the outer edge of the end cap 144, such that the outer surface (e.g. axle) of the roller 100 is blocked and protected by the end guard 130. When the end guard 130 is detached from the roller 100, any accumulated filaments 33 can easily be removed if the smallest possible diameter for rings of accumulated filaments 33 is limited to the diameter of the mounting ring 132 of the end guard 130 abutting the end cap 144 (and thus not the diameter of the roller 100), which may prevent tight winding of the accumulating filaments 33 about the roller 100 and also prevent filaments 33 from reaching the bearings 143.
Referring to
The soft flaps 120 on the roller 100 act as a cushioning spool when long fringes/tassels get wrapped around the brushes 160. The soft flaps 120 cushion the tug on the tassels and permit easier release of the tassels since the elastic deformation on the flaps 120 acts as a spring-back mechanism to release the tassels from a tight wind on the hard roller core 140. When the robot 10 uses anti-tassel software, the robot 10 frees-up easier (as lesser force is required to unwind the already sprung-up tassels) when cleaning with such a flap-fitted brush roller 100.
In some implementations, bristles 110 of may extend radially outward from the core 140 (not shown in
In most cases, the roller 100 will rotate in a direction opposite to the direction of movement of the robot 10 (e.g., optionally facing a secondary, counter-rotating roller). However, in some cases, the roller 100 will rotate in a direction that is the same as the direction of movement during normal cleaning. In some implementations, as the roller 100 spins about its longitudinal central axis, the rows of bristles 110 impinge on the tufted fibers of carpet and contact dirt, filaments, debris on the piles of the carpet. In other implementations, the inner pliable flaps 120 are positioned to bend from contact with the cleaning surface, positioned to not contact the cleaning surface, and positioned so that only some inner pliable flaps 120 contact the cleaning surface.
The narrow, stiff fibers of the bristles 110 may beat or skim the carpet pile or other surface, or sink into and emerge from the carpet pile by virtue of the spinning of the roller 100. Debris driven by or caught by the bristles 110 may be carried off of or out of the carpet pile or other surface. The debris or filaments may be swept directly into the bin 50, or toward a vacuum, secondary roller 65, or other secondary transport device may serve to entrain, catch, or capture debris and/or filaments ejected from the direction of the roller 100, either in combination with or independently of the roller 100.
As the roller 100 is applied to a cleaning surface, strands of hair, thread, or other long fibers (also referred to as the filaments 33) lying on the surface may be picked up by the rotating bristles 110 or inner pliable flaps 120 and become wound around the roller 100. In addition to a direct sweeping action, the bristles 110 also may condition tight tufts of carpet fiber, drawing debris out from the carpet which can then adhere to “sticky” material of the inner pliable flaps 120. As the bristles 110 clean the work-surface, the bristles 120 trap and pick up hair among other debris, such as the filaments 33, for example.
The inner pliable flaps 120 generally extend in a paddle-wheel arrangement generally along the length of the roller, but may also extend in a spiraling or helical arrangement similar to the reel blades of a mower reel. The diameter of the inner pliable flaps 120 may be slightly shorter than the diameter of the bristles 110 themselves, and the inner pliable flaps 120 may work in conjunction with the bristles 110. In order to place the spooling diameter appropriately and facilitate cleaning with a tool, the inner pliable flaps 120 may have a diameter measurement that is less than the diameter of the bristles 110. The inner pliable flaps 120, in the case where they are supported by integral ribs 125, extend radially from about 1-20 mm less (in the radial direction) than the radius of end caps 144 to about 1-10 mm greater (in the radial direction) than the radius of end caps 144 (for a 30-60 mm diameter roller 100; larger rollers would have flaps 120 of proportional size).
The filaments 33 are permitted to sink slightly into the bristles 110 or between the bristles 110 while winding about the outer perimeter of the inner pliable flaps 120, but not to traverse to the base of the bristles 110 at the core 140 of the roller 100. The material and/or thickness or shape of the inner pliable flaps 120 may be selected so as to support spooling of filaments 33 on the outer edges thereof, while still maintaining elastic flexibility. Creases or “dead zones” in the cleaning bristles 110 of the roller 100 may be prevented. Instead of parting or crushing the fibers of the bristles 110 at the base of the bristles 110, the rings of filaments 33 accumulate on the inner pliable flaps 120 which are below the outer edges of the bristles 110.
The presence of inner pliable flaps 120 between bristles 110 provide a spooling frame that spools the hair or other filaments 33 and prevents hair or other filaments 33 from being wound tightly along a roller body 140. In the case of a spooling frame including integral ribs 125 and inner pliable flaps 120 (e.g. in a paddle-wheel arrangement), the inner pliable flaps 120 provide a stand-off. The hair or other filaments 33 will not tightly wind about the integral ribs 125. Where a roller body 140 is used, the inner pliable flaps 120 may add strength to the bristles 110 by acting as a backbone and by keeping bristles coordinated and/or aligned properly.
The inner pliable flaps 120 collect debris that may have evaded or slipped past the bristles 110 as the bristles 110 dig into medium to high pile carpets. The bristles 110 may agitate the carpet fibers for better cleaning and the flaps 120 may beat the debris into the cleaning/picked-up-dirt-travel path. On medium to high-pile carpets, dirt picked up or dirt picked-up per unit of power consumption increases by as much to ⅓ in comparison to bristles only. This brush, and the other brushes described herein, may be employed in manual vacuum cleaners and also sweepers, including upright, canister, and central vacuum cleaners.
Referring to
As shown in
In some examples, the teeth 250 can be installed or formed in the tubular tool 200 such that the teeth 250 protrude from the inner surface 243 at a substantially orthogonal orientation to the inner surface 243. In an alternative implementation, the teeth 250 may be canted or angled toward the opening of the tubular tool 200, for example, and/or may include a hook, angle, loop, or other appropriately shaped member for seizing and retaining debris, as shown in other drawings. The teeth 250 would usually be formed in one piece with the tube by molding, especially if the tube 240 and teeth 250 are plastic; but may be formed separately from the tube 240, and then attached thereto (e.g., by forming plastic to surround or affix metal teeth within a plastic tube). Some or all of the teeth 250 may also have a leading blade to cut hairs or filaments.
In some examples, the roller cleaning tool 200 defines a “bell-mouthed” or “musket-shaped” profile having a diameter that is wider at the (mouth) opening 241. A diameter D1 of the opening 241 of the bell-mouthed tubular tool 200 may also be greater than the diameter of the bristles 110 and/or inner pliable flaps 120 of the roller 100. The opening diameter D1 permits the user to more easily guide the roller 100 into the opening 241 of the bell-mouthed tubular tool 200 due to the compaction of the bristles 110 and/or inner pliable flaps 120 of the roller 100. The opening 241 may have a diameter D1 that tapers from its widest section at the opening 241 down to a substantially constant but narrower inner diameter D2 (e.g.
In some implementations, the inner pliable flaps 120 of the roller 100 are soft or pliable and can flex, which allows for a manual roller cleaning tool 200 with teeth 250 to be slid length-wise, optionally with a slight twisting action, over the combination flap-bristle roller 100. The roller cleaning tool 200 compresses the inner pliable flaps 120 allowing wound-up rings of hair or filament 31 to loosen and slide off the roller 100 easily, as teeth 250 in the tool 200 grab the windings and clumps of hair or other filaments 33.
Preferably, the diameter D2 of a portion of the tube 240 (and/or the entry 241 and/or exit opening 242 of the tube 240) is less than the undeformed diameter of the bristles 110 or beaters 111, and when inner pliable flaps 120 are provided, less than the inner pliable flaps 120 of the roller 100. As the roller 100 passes through the roller cleaning tool 200, the bristles 110 and/or inner pliable flaps 120 of the roller 100 deform inward such that the tension of any filaments 33 spooled around the bristles 110 and/or inner pliable flaps 120 is relieved by the deformation. Teeth 250 placed to work within any spooling diameter catch the filaments without necessarily relying upon the deforming the bristles or inner pliable flaps 120. Deforming bristles 110 to bend away from the direction of tube movement facilitates movement of clumps and filaments 33 off the end of the bristles 110 as the ends of the bristles 110 are curved to point in the direction of the tube movement. Deforming the inner pliable flaps 120 (or any beaters) to bend toward the axial center of the tube 240 facilitates movement of clumps and filaments 33 along the deformed inner pliable flaps 120 in the direction of the tube movement.
Referring to
In some examples, the tool 200 includes one or more protrusions 253 extending from the interior surface 243 toward the center axis 201 of the tube 240 and located rearward of the teeth 250. The protrusion 253 may be defined as a continuous ring extending inward from the interior surface 243 of the tube 243. The protrusion 253 aids filament 31 removal.
In some examples, the tool 200 includes a cutter 257 for cutting filament or other objects off the roller. In the example shown, the cutter 257 extends longitudinally off the exit end 242 of the tool 200. In other examples, the cutter 257 may extend laterally or at any angle off the entry end 241, exit end 242, or anywhere therebetween.
Each tooth 250, in some examples, is about 1-2 mm wide and spaced from a neighboring tooth 250 in the same group by about the same amount, the trailing comb teeth 255 are less than about 1 mm wide and spaced equal to or less than their width. One exemplary distribution has six groups of two to five teeth 250, and six groups of seven to fifteen trailing teeth 255 (the number of groups may correspond to the number of bristles 110; integral ribs 125; or inner pliable flaps 120). In some instances, the teeth 250 are configured as forward-pointing hooks or finger teeth rather than a comb tooth.
In some implementations, the teeth 250 may be arranged in two or more positions longitudinally along the length of the tubular tool 200. For example, the teeth 250 at the second position may be comb teeth rather than hook teeth, e.g., first (hook) teeth 250 extend inward toward the center of the tubular tool 200 near a first opening of the tubular tool 200, and second (comb) teeth 250B, extend inward by less than the teeth 250 at a second position farther away from the opening. Insertion effort required to initially insert the roller 100 into the tubular tool 200 may be designed by altering the diameter, bell mouth, and positioning of the teeth 250 at particular distance from the opening of the tubular tool 200. Alternatively, the teeth 250 and 255 may be positioned at the same longitudinal position along the tubular tool 200, at different positions and depths about the circumference, individually or in clusters, so that thicker or thinner accumulations of filaments and/or having varying degrees of tufting or fraying are more likely to be engaged by at least one of the clusters of teeth 250 or 255.
Referring to
In some examples, the teeth 250 and/or the tube 240 are configured to provide tooth depth adjustment. By varying the depth of the teeth 250, the tool 200 may be (i) used to remove resistant accumulations of filaments or hair in a stepwise manner and/or (ii) used to clear debris from different types of rollers which may have different bristle and/or inner pliable flap diameters, or different roller core diameters.
In one example, a brush roller 100 wound with many filaments may be difficult to clear in a single pass through the tube 200 due to removal resistance of a tight concentration of hair or spooled filaments by the teeth 250. Removal of accumulations of filaments may be facilitated by adjusting the depth of the teeth 250 between cleaning passes. The user may initially adjust the depth of the teeth 250 to a shallower setting such that the teeth 250 only catch an outermost layer of accumulated filaments 33. Thereafter (after cleaning the first collected accumulation from the tubular tool), the user may adjust the depth of the teeth 250 to a deeper setting, and pass the roller 100 through the tubular tool 200 again, catching another layer. The process of adjusting the depth may be repeated until all the debris is removed from the roller 100.
When the tool 200 is used on different rollers (e.g., both brushes of a dual brush cleaner, different brushes on different cleaners), a tooth depth may be set to be as close as possible to the outermost diameter of the core 140 of the roller 100, while still clearing the core 140 when the roller 100 is passed through the tubular tool 200. If the tool 200 is provided for use with two different rollers 100 of one cleaner, the adjusting mechanism may include two detents for the tightest clearance of each kind of roller 100. In order to adjustably attach the teeth 250 to the tubular tool 200, the teeth 250 themselves 250 may be threaded. Alternatively, adjustment of the teeth 250 may be achieved using wedging and friction, or any other suitable technique and/or structure. Each of the implementations depicted in the drawings may include an adjustment mechanism (an adjusting ring, threading, or the like) to change the radial depth of the teeth 250.
Referring to
The selection of brush may be made in view of the following characteristics, inter alia: a) ability to clean various kinds of debris; b) ability to move swept hair into the bin; c) ability to allow manual cleaning of the brush; d) lowest possible brush bounce.
Bristles may assist in picking up hair effectively. In one implementation, a cylindrical brush 2000 as illustrated in
Referring to
Referring to
A spinning roller 100 situated closely to the bristle brush 60 and powered by the same gear-train rolls hair onto itself thus lowering the hair entrapment on the bristle brush 60. The spinning roller 100 may have a sticky surface like that of a lint-roller, or a silicone type hair grabbing surface.
Referring back to
Once a cleaning cycle is complete, either via the roller full sensor system 85 or visual observation, the user can open the wire bale and pull the roller(s) 60, 65. The roller 60,65 can then be wiped clean off hair and inserted back in place.
Referring to
The cleaning head cleaner 510, in some examples, includes a series of teeth or combs 512 configured to strip filament and debris from a roller 60, 65. In some implementations, the cleaning head cleaner 510 includes one or more semi-tubular or quarter-tubular tools 511 having teeth 512, dematting rakes 514, combs, or slicker combs. The tubular tool 511 may be independently driven by one or more servo, step or other motors 505 and transmissions (which may be a belt, chain, worm, ball screw, spline, rack and pinion, or any other linear motion drive). In some examples, the roller 60, 65 and the cleaning head cleaner 510 are moved relative to one another. In other examples, the cleaning head cleaner 510 is fixed in place while the roller 60, 65 is moved over the cleaning head cleaner 510.
The robot 10 commences a cleaning routine by traversing the cleaning head 510 over the roller 60, 65 such that the teeth 512, dematting rakes 514, combs, or slicker combs, separately or together, cut and remove filaments and debris from the roller 60, 65. In one example, as the cleaning head 510 traverses over the roller 60, 65, the teeth 512 are actuated in a rotating motion to facilitate removal of filaments and debris from the roller 60, 65. In some examples, an interference depth of the teeth 512 into the roller 60, 65 is variable and progressively increases with each subsequent pass of the cleaning head 510.
Referring to
Other details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled “COVERAGE ROBOTS AND ASSOCIATED CLEANING BINS” having assigned Ser. No. 11/751,267; and “REMOVING DEBRIS FROM CLEANING ROBOTS” having assigned Ser. No. 11/751,470, the entire contents of the aforementioned applications are hereby incorporated by reference.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Although reference has been made to cleaning and/or vacuuming robots by way of examples, it is nonetheless understood that any of the features set forth in the above-discussed implementations also apply to any suitable type of robot or mobile machine which employs a rotating brush to sweep dirt or debris. For example, a hand-operated or automated vacuum-cleaner can equivalently employ the filament-removal features described herein, such as a roller having sweeping bristles and inner pliable flaps, the various tools, etc. Accordingly, other implementations are within the scope of the following claims.
This U.S. patent application claims priority under 35 U.S.C. §119(e) to U.S. provisional patent applications 60/747,791, filed on May 19, 2006, 60/803,504, filed on May 30, 2006, and 60/807,442, filed on Jul. 14, 2006. The entire contents of the aforementioned applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2770825 | Pullen | Nov 1956 | A |
3457575 | Bienek | Jul 1969 | A |
3550714 | Bellinger | Dec 1970 | A |
3674316 | De Brey | Jul 1972 | A |
3863285 | Hukuba | Feb 1975 | A |
3898311 | Mitchell et al. | Aug 1975 | A |
3937174 | Haaga | Feb 1976 | A |
4099284 | Shinozaki et al. | Jul 1978 | A |
4119900 | Kremnitz | Oct 1978 | A |
4175892 | De brey | Nov 1979 | A |
4306329 | Yokoi | Dec 1981 | A |
4369543 | Chen et al. | Jan 1983 | A |
4401909 | Gorsek | Aug 1983 | A |
4513469 | Godfrey et al. | Apr 1985 | A |
4626995 | Lofgren et al. | Dec 1986 | A |
4674048 | Okumura | Jun 1987 | A |
4679152 | Perdue | Jul 1987 | A |
4696074 | Cavalli et al. | Sep 1987 | A |
4700427 | Knepper | Oct 1987 | A |
4716621 | Zoni | Jan 1988 | A |
4733430 | Westergren | Mar 1988 | A |
4733431 | Martin | Mar 1988 | A |
4756049 | Uehara | Jul 1988 | A |
4777416 | George, II et al. | Oct 1988 | A |
4782550 | Jacobs | Nov 1988 | A |
4815157 | Tsuchiya | Mar 1989 | A |
4854000 | Takimoto | Aug 1989 | A |
4887415 | Martin | Dec 1989 | A |
4901394 | Nakamura et al. | Feb 1990 | A |
4919224 | Shyu et al. | Apr 1990 | A |
4933864 | Evans et al. | Jun 1990 | A |
4956891 | Wulff | Sep 1990 | A |
4962453 | Pong et al. | Oct 1990 | A |
4974283 | Holsten et al. | Dec 1990 | A |
5002145 | Waqkaumi et al. | Mar 1991 | A |
5049802 | Mintus et al. | Sep 1991 | A |
5086535 | Grossmeyer et al. | Feb 1992 | A |
5093955 | Blehert et al. | Mar 1992 | A |
5105502 | Takashima | Apr 1992 | A |
5109566 | Kobayashi et al. | May 1992 | A |
5115538 | Cochran et al. | May 1992 | A |
5136750 | Takashima et al. | Aug 1992 | A |
5163202 | Kawakami et al. | Nov 1992 | A |
5204814 | Noonan et al. | Apr 1993 | A |
5233682 | Abe et al. | Aug 1993 | A |
5239720 | Wood et al. | Aug 1993 | A |
5251358 | Moro et al. | Oct 1993 | A |
5261139 | Lewis | Nov 1993 | A |
5279672 | Betker, Jr. et al. | Jan 1994 | A |
5284522 | Kobayashi et al. | Feb 1994 | A |
5293955 | Lee | Mar 1994 | A |
5303448 | Hennessey et al. | Apr 1994 | A |
5315227 | Pierson et al. | May 1994 | A |
5319827 | Yang | Jun 1994 | A |
5319828 | Waldhauser et al. | Jun 1994 | A |
5321614 | Ashworth | Jun 1994 | A |
5324948 | Dudar et al. | Jun 1994 | A |
5341540 | Soupert et al. | Aug 1994 | A |
5345649 | Whitlow | Sep 1994 | A |
5353224 | Lee et al. | Oct 1994 | A |
5369347 | Yoo | Nov 1994 | A |
5440216 | Kim | Aug 1995 | A |
5444965 | Colens | Aug 1995 | A |
5446356 | Kim | Aug 1995 | A |
5454129 | Kell | Oct 1995 | A |
5455982 | Armstrong et al. | Oct 1995 | A |
5465525 | Mifune et al. | Nov 1995 | A |
5467273 | Faibish et al. | Nov 1995 | A |
5497529 | Boesi | Mar 1996 | A |
5498948 | Bruni et al. | Mar 1996 | A |
5507067 | Hoekstra et al. | Apr 1996 | A |
5515572 | Hoekstra et al. | May 1996 | A |
5534762 | Kim | Jul 1996 | A |
5537017 | Feiten et al. | Jul 1996 | A |
5539953 | Kurz | Jul 1996 | A |
5542146 | Hoekstra et al. | Aug 1996 | A |
5548511 | Bancroft | Aug 1996 | A |
5553349 | Kilstrom et al. | Sep 1996 | A |
5555587 | Guha | Sep 1996 | A |
5560077 | Crotchett | Oct 1996 | A |
5568589 | Hwang | Oct 1996 | A |
5608944 | Gordon | Mar 1997 | A |
5611106 | Wulff | Mar 1997 | A |
5611108 | Knowlton et al. | Mar 1997 | A |
5613261 | Kawakami et al. | Mar 1997 | A |
5621291 | Lee | Apr 1997 | A |
5622236 | Azumi et al. | Apr 1997 | A |
5634237 | Paranjpe | Jun 1997 | A |
5634239 | Tuvin et al. | Jun 1997 | A |
5650702 | Azumi | Jul 1997 | A |
5652489 | Kawakami | Jul 1997 | A |
5682313 | Edlund et al. | Oct 1997 | A |
5709007 | Chiang | Jan 1998 | A |
5761762 | Kubo et al. | Jun 1998 | A |
5781960 | Kilstrom et al. | Jul 1998 | A |
5787545 | Colens | Aug 1998 | A |
5794297 | Muta | Aug 1998 | A |
5815884 | Imamura et al. | Oct 1998 | A |
5839156 | Park et al. | Nov 1998 | A |
5841259 | Kim et al. | Nov 1998 | A |
5867800 | Leif | Feb 1999 | A |
5910700 | Crotzer | Jun 1999 | A |
5926909 | McGee | Jul 1999 | A |
5935179 | Kleiner et al. | Aug 1999 | A |
5940927 | Haegermarck et al. | Aug 1999 | A |
5940930 | Oh et al. | Aug 1999 | A |
5943730 | Boomgaarden | Aug 1999 | A |
5943733 | Tagliaferri | Aug 1999 | A |
5959423 | Nakanishi et al. | Sep 1999 | A |
6023814 | Imamura | Feb 2000 | A |
6041471 | Charky et al. | Mar 2000 | A |
6076226 | Reed | Jun 2000 | A |
6094775 | Behmer | Aug 2000 | A |
6444003 | Sutcliffe | Sep 2002 | B1 |
6496754 | Song et al. | Dec 2002 | B2 |
6496755 | Wallach et al. | Dec 2002 | B2 |
6525509 | Petersson et al. | Feb 2003 | B1 |
6532404 | Colens | Mar 2003 | B2 |
6571415 | Gerber et al. | Jun 2003 | B2 |
6571422 | Gordon et al. | Jun 2003 | B1 |
6574536 | Kawagoe et al. | Jun 2003 | B1 |
6580246 | Jacobs | Jun 2003 | B2 |
6586908 | Petersson et al. | Jul 2003 | B2 |
6605156 | Clark et al. | Aug 2003 | B1 |
6611120 | Song et al. | Aug 2003 | B2 |
6611738 | Ruffner | Aug 2003 | B2 |
6658693 | Reed, Jr. | Dec 2003 | B1 |
6671592 | Bisset et al. | Dec 2003 | B1 |
6690134 | Jones et al. | Feb 2004 | B1 |
6732826 | Song et al. | May 2004 | B2 |
6741054 | Koselka et al. | May 2004 | B2 |
6748297 | Song et al. | Jun 2004 | B2 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6781338 | Jones et al. | Aug 2004 | B2 |
6809490 | Jones et al. | Oct 2004 | B2 |
6830120 | Yashima et al. | Dec 2004 | B1 |
6841963 | Song et al. | Jan 2005 | B2 |
6883201 | Jones et al. | Apr 2005 | B2 |
6901624 | Mori et al. | Jun 2005 | B2 |
D510066 | Hickey et al. | Sep 2005 | S |
6938298 | Aasen | Sep 2005 | B2 |
6956348 | Landry et al. | Oct 2005 | B2 |
6965209 | Jones et al. | Nov 2005 | B2 |
6968592 | Takeuchi et al. | Nov 2005 | B2 |
6971140 | Kim | Dec 2005 | B2 |
6999850 | McDonald | Feb 2006 | B2 |
7024278 | Chiappetta et al. | Apr 2006 | B2 |
7053578 | Diehl et al. | May 2006 | B2 |
7055210 | Keppler et al. | Jun 2006 | B2 |
7085624 | Aldred et al. | Aug 2006 | B2 |
7206677 | Hulden | Apr 2007 | B2 |
7225500 | Diehl et al. | Jun 2007 | B2 |
20010047231 | Peless et al. | Nov 2001 | A1 |
20020011813 | Koselka et al. | Jan 2002 | A1 |
20020016649 | Jones | Feb 2002 | A1 |
20020120364 | Colens | Aug 2002 | A1 |
20020124343 | Reed | Sep 2002 | A1 |
20020156556 | Ruffner | Oct 2002 | A1 |
20020173877 | Zweig | Nov 2002 | A1 |
20030019071 | Field et al. | Jan 2003 | A1 |
20030025472 | Jones et al. | Feb 2003 | A1 |
20030060928 | Abramson et al. | Mar 2003 | A1 |
20030120389 | Abramson et al. | Jun 2003 | A1 |
20030137268 | Papanikolopoulos et al. | Jul 2003 | A1 |
20030192144 | Song et al. | Oct 2003 | A1 |
20030216834 | Allard | Nov 2003 | A1 |
20030233177 | Johnson et al. | Dec 2003 | A1 |
20040020000 | Jones | Feb 2004 | A1 |
20040030448 | Solomon | Feb 2004 | A1 |
20040030449 | Solomon | Feb 2004 | A1 |
20040030450 | Solomon | Feb 2004 | A1 |
20040030571 | Solomon | Feb 2004 | A1 |
20040031113 | Wosewick et al. | Feb 2004 | A1 |
20040049877 | Jones et al. | Mar 2004 | A1 |
20040068351 | Solomon | Apr 2004 | A1 |
20040068415 | Solomon | Apr 2004 | A1 |
20040068416 | Solomon | Apr 2004 | A1 |
20040074044 | Diehl et al. | Apr 2004 | A1 |
20040076324 | Burl et al. | Apr 2004 | A1 |
20040088079 | Lavarec et al. | May 2004 | A1 |
20040111184 | Chiappetta et al. | Jun 2004 | A1 |
20040134336 | Solomon | Jul 2004 | A1 |
20040134337 | Solomon | Jul 2004 | A1 |
20040156541 | Jeon et al. | Aug 2004 | A1 |
20040158357 | Lee et al. | Aug 2004 | A1 |
20040200505 | Taylor et al. | Oct 2004 | A1 |
20040204792 | Taylor et al. | Oct 2004 | A1 |
20040211444 | Taylor et al. | Oct 2004 | A1 |
20040236468 | Taylor et al. | Nov 2004 | A1 |
20040244138 | Taylor et al. | Dec 2004 | A1 |
20040255425 | Arai et al. | Dec 2004 | A1 |
20050000543 | Taylor et al. | Jan 2005 | A1 |
20050010331 | Taylor et al. | Jan 2005 | A1 |
20050150519 | Keppler et al. | Jul 2005 | A1 |
20050156562 | Cohen et al. | Jul 2005 | A1 |
20050183229 | Uehigashi | Aug 2005 | A1 |
20050204717 | Colens | Sep 2005 | A1 |
20060037170 | Shimizu | Feb 2006 | A1 |
20060060216 | Woo et al. | Mar 2006 | A1 |
20070157415 | Lee et al. | Jul 2007 | A1 |
20070157420 | Lee et al. | Jul 2007 | A1 |
20070226949 | Hahm et al. | Oct 2007 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20090049640 | Lee et al. | Feb 2009 | A1 |
20100011529 | Won et al. | Jan 2010 | A1 |
20100107355 | Won et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
44 14 683 | Oct 1995 | DE |
10242257 | Apr 2003 | DE |
102004038074 | Jun 2005 | DE |
102004041021 | Aug 2005 | DE |
1 331 537 | Jul 2003 | EP |
1 331 537 | Jul 2003 | EP |
1380245 | Jan 2004 | EP |
1557730 | Jul 2005 | EP |
2 238 196 | Aug 2005 | ES |
2 828 589 | Aug 2001 | FR |
702 426 | Jan 1954 | GB |
2 283 838 | May 1995 | GB |
62-120510 | Jun 1987 | JP |
62-154008 | Jul 1987 | JP |
62154008 | Jul 1987 | JP |
63-183032 | Jul 1988 | JP |
63-241610 | Oct 1988 | JP |
2-6312 | Jan 1990 | JP |
03-051023 | Mar 1991 | JP |
06-038912 | Feb 1994 | JP |
06-327598 | Nov 1994 | JP |
7-295636 | Nov 1995 | JP |
08-089451 | Apr 1996 | JP |
08-152916 | Jun 1996 | JP |
9-179625 | Jul 1997 | JP |
9185410 | Jul 1997 | JP |
11-508810 | Aug 1999 | JP |
11-510935 | Sep 1999 | JP |
2001-258807 | Sep 2001 | JP |
2001-275908 | Oct 2001 | JP |
2001-525567 | Dec 2001 | JP |
2002-78650 | Mar 2002 | JP |
2002-204768 | Jul 2002 | JP |
2002-532178 | Oct 2002 | JP |
3356170 | Oct 2002 | JP |
2002-323925 | Nov 2002 | JP |
2002-355206 | Dec 2002 | JP |
2002-360471 | Dec 2002 | JP |
2002-360482 | Dec 2002 | JP |
2003-10076 | Jan 2003 | JP |
2003-5296 | Feb 2003 | JP |
2003-036116 | Feb 2003 | JP |
2003-38401 | Feb 2003 | JP |
2003-38402 | Feb 2003 | JP |
2003-505127 | Feb 2003 | JP |
2003036116 | Feb 2003 | JP |
2003-061882 | Mar 2003 | JP |
2003 180587 | Jul 2003 | JP |
2003-310489 | Nov 2003 | JP |
WO 9526512 | Oct 1995 | WO |
WO9530887 | Nov 1995 | WO |
WO 9715224 | May 1997 | WO |
WO 9740734 | Nov 1997 | WO |
WO 9741451 | Nov 1997 | WO |
WO 9928800 | Jun 1999 | WO |
WO 9938056 | Jul 1999 | WO |
WO 9938237 | Jul 1999 | WO |
WO 9943250 | Sep 1999 | WO |
WO 0004430 | Jan 2000 | WO |
WO 0036962 | Jun 2000 | WO |
WO 0038026 | Jun 2000 | WO |
WO 0078410 | Dec 2000 | WO |
WO 0106904 | Feb 2001 | WO |
WO 0106905 | Feb 2001 | WO |
WO 0239864 | May 2002 | WO |
WO 0239868 | May 2002 | WO |
WO 02058527 | Aug 2002 | WO |
WO 02062194 | Aug 2002 | WO |
WO 02067744 | Sep 2002 | WO |
WO 02067745 | Sep 2002 | WO |
WO 02071175 | Sep 2002 | WO |
WO 02074150 | Sep 2002 | WO |
WO 02075356 | Sep 2002 | WO |
WO 02075469 | Sep 2002 | WO |
WO 02075470 | Sep 2002 | WO |
WO 02101477 | Dec 2002 | WO |
WO 03026474 | Apr 2003 | WO |
WO 03040845 | May 2003 | WO |
WO 03040846 | May 2003 | WO |
WO 2004006034 | Jan 2004 | WO |
WO 2004004533 | Jan 2004 | WO |
WO 2004058028 | Jan 2004 | WO |
WO 2004058028 | Jul 2004 | WO |
WO 2004059409 | Jul 2004 | WO |
WO 2005055795 | Jun 2005 | WO |
WO2005055795 | Jun 2005 | WO |
WO 2005077244 | Aug 2005 | WO |
WO 2006061133 | Jun 2006 | WO |
WO 06068403 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080052846 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60747791 | May 2006 | US | |
60803504 | May 2006 | US | |
60807442 | Jul 2006 | US |