Cleaning system for imaging devices

Information

  • Patent Grant
  • 11419487
  • Patent Number
    11,419,487
  • Date Filed
    Friday, April 20, 2018
    6 years ago
  • Date Issued
    Tuesday, August 23, 2022
    2 years ago
Abstract
An apparatus includes a tubular structure having a proximal end, a distal end, and a body extending between the proximal and distal ends, wherein the body includes a lumen for housing at least a part of an imaging device, and a fluid delivery channel that is fixed in position relative to the body, and an opening that is in fluid communication with the fluid delivery channel, wherein the fluid delivery channel has a first portion, and a second portion that forms an angle with an axis of the first portion.
Description
FIELD

This application relates to a surgical instrument, and more particularly, to a surgical instrument for use in a vessel harvesting procedure.


BACKGROUND

A significant area of cardiovascular disease involves the build up of plaque inside arteries that feed blood to the muscles of the heart. These deposits can cause occlusions which reduce or interrupt blood flow through these arteries. Coronary artery bypass grafting is a surgical procedure that has been used to address occlusions by creating an alternative blood path that bypasses the occluded artery.


Before a bypass surgery is performed, a vessel needs to be harvested from a patient's body for use as a conduit in the bypass surgery. In endoscopic vessel harvesting (EVH) surgical procedures, a long slender cannula with a working lumen may be inserted inside a patient, and advanced into a tunnel next to the saphenous vein in the patient's leg, the radial artery in the patient's arm, or any other targeted vessel for grafting. A surgical tool housed at least partially within the working lumen of the cannula may be placed along the saphenous vein to dissect the vessel away from adjacent tissue, and to sever side-branch vessels along the course of the vessel to be harvested. The surgical tool may be configured to grasp a vessel, and may include one or more operative elements for cutting and/or sealing the vessel. While the surgical tool is used to operate on tissue, an endoscope may be used to view the procedure.


Applicant of the subject application discovers that sometimes during the EVH procedure, blood, fatty tissue, debris, or other bodily substance may stick onto the lens of the endoscope, and/or may smear the endoscope lens. Thus, applicant of the subject application determines that it may be desirable to have a cleaning system for cleaning the lens of the endoscope during the EVH procedure, or during any procedure which requires the use of an endoscope or other types of imaging device.


SUMMARY

In accordance with some embodiments, an apparatus includes a tubular structure having a proximal end, a distal end, and a body extending between the proximal and distal ends, wherein the body includes a lumen for housing at least a part of an imaging device, and a fluid delivery channel that is fixed in position relative to the body, and an opening that is in fluid communication with the fluid delivery channel, wherein the fluid delivery channel has a first portion, and a second portion that forms an angle with an axis of the first portion.


In accordance with other embodiments, an apparatus includes a tube having a proximal end, a distal end, and a body extending between the proximal and distal ends, a lumen located in the body, wherein the lumen has a first portion that is parallel to a longitudinal axis of the body, and a second portion that forms an angle with the first portion, and an opening at a surface of the body, wherein the opening is in fluid communication with the second portion of the lumen.


In accordance with other embodiments, an apparatus includes a shaft having a proximal end, a distal end, and a body extending between the proximal and distal ends, a lumen in the body, a retractor attached to a rod, wherein at least a part of the rod is located within the lumen, and the retractor is slidable relative to the shaft, wherein the retractor comprises a first portion and a second portion, the first portion having a first tip, the second portion having a second tip, and wherein the first and second tips are separated from each other to define a space therebetween for allowing a vessel to enter therethrough, and wherein the first and second portions define a region having a first cross-sectional dimension that is larger than a second cross-sectional dimension perpendicular to the first cross-sectional dimension.


Other and further aspects and features will be evident from reading the following detailed description of the embodiments, which are intended to illustrate, not limit, the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate the design and utility of embodiments, in which similar elements are referred to by common reference numerals. These drawings are not necessarily drawn to scale. In order to better appreciate how the above-recited and other advantages and objects are obtained, a more particular description of the embodiments will be rendered, which are illustrated in the accompanying drawings. These drawings depict only typical embodiments and are not therefore to be considered limiting of its scope.



FIG. 1 illustrates a surgical instrument having a handle in accordance with some embodiments;



FIGS. 2A-2D illustrate a tool for cauterizing and cutting tissue in accordance with some embodiments;



FIG. 2E illustrates a retractor for engaging a vessel in accordance with some embodiments;



FIG. 3 is a perspective view of another tool for welding and cutting tissue in accordance with other embodiments, showing the tool having a pair of jaws;



FIG. 4A is a perspective cross sectional view of the pair of jaws of FIG. 3 in accordance with some embodiments;



FIG. 4B is a cross sectional view of the pair of jaws of FIG. 4A, showing the jaws being used to cut a side branch vessel;



FIG. 5 is a partial exploded view of some components of a surgical instrument in accordance with some embodiments;



FIG. 6A illustrates components of the handle of FIG. 1 in accordance with some embodiments;



FIGS. 6B and 6C illustrate the handle of FIG. 1, showing a control being operated in different configurations;



FIG. 7 illustrates some components of the handle of FIG. 1 in accordance with some embodiments;



FIGS. 8 and 9 illustrate additional components of the handle of FIG. 1 in accordance with some embodiments;



FIG. 10 illustrates an actuator of the handle of FIG. 1 in accordance with some embodiments;



FIG. 11 illustrates some components of the actuator of FIG. 10 in accordance with some embodiments;



FIG. 12 illustrates a surgical instrument having another handle in accordance with other embodiments;



FIG. 13 illustrates a surgical instrument having another handle in accordance with other embodiments;



FIG. 14 illustrates some components of the handle of FIG. 13;



FIG. 15 illustrates a surgical instrument having another handle in accordance with other embodiments;



FIGS. 16A and 16B illustrate a distal end of a surgical instrument having a washing system in accordance with some embodiments;



FIG. 17 illustrates a component of the washing system of FIG. 16 in accordance with some embodiments;



FIG. 18 illustrates a cross sectional side view of the washing system of FIG. 16;



FIG. 19 illustrates another washing system in accordance with other embodiments;



FIG. 20 illustrates another washing system in accordance with other embodiments;



FIG. 21 illustrates another washing system in accordance with other embodiments;



FIG. 22 illustrates a technique for forming a distal portion of a tube that includes a fluid delivery channel;



FIGS. 23 and 24 illustrate a distal end of a surgical instrument having a washing system in accordance with other embodiments; and



FIG. 25 illustrates a distal end of a surgical instrument having a washing system in accordance with other embodiments.





DETAILED DESCRIPTION

Various embodiments are described hereinafter with reference to the figures. It should be noted that the figures are not drawn to scale and that elements of similar structures or functions are represented by like reference numerals throughout the figures. It should also be noted that the figures are only intended to facilitate the description of the embodiments. They are not intended as an exhaustive description of the invention or as a limitation on the scope of the invention. In addition, an illustrated embodiment needs not have all the aspects or advantages shown. An aspect or an advantage described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced in any other embodiments even if not so illustrated.



FIG. 1 illustrates a surgical instrument 9 in accordance with some embodiments. The surgical instrument 9 includes a handle 11, an elongated body 13 having a proximal end 10 and a distal end 12, and a surgical device 14 located at the distal end 12 of the body 13. As used in this specification, the term “surgical device” refers to any device or component that may be used to operate on tissue (e.g., to treat, manipulate, handle, hold, cut, heat, or energize, etc., tissue). The surgical instrument 9 also includes an elongated tube 20 having a lumen for housing at least a part of the elongated body 13. In some embodiments, the lumen may also house at least a portion of the surgical device 14. As used in this specification, the term “tube” or similar terms (e.g., “tubular structure”) may refer to any device that has a tubular configuration, wherein the device may have a unity configuration (e.g., formed as a single structure), or may be an assembly formed from assembling different components together. Also, as used in this specification, the term “lumen” or similar terms (e.g., “bore,” “opening,” etc.) may refer to any space that is defined by any components. For example, a lumen of a tube may refer to any space that is defined at least partially by the tube, by a component of the tube, or a component/device that is located within the tube.


The elongated tube 20 has a proximal end 22 that is coupled to the handle 11. The proximal end 10 of the elongated body 13 is coupled to the handle 11 such that the body 13 (and therefore the surgical device 14) is rotatable and translatable relative to the tube 20. The elongated body 13 may be rigid, or alternatively, flexible. The handle 11 includes a manual actuator 15 that is coupled to the surgical device 14 (a tool) through linkage (not shown) within a bore of the body 13 for manually controlling an operation of the surgical device 14. The handle 11 and the actuator 15 may be made from insulative material(s) such as plastic. The details of the handle 11 will be described below.


The surgical instrument 9 is configured to be coupled to an energy source 30 during use. The energy source 30 is configured to deliver radiofrequency energy in some embodiments. In other embodiments, the energy source 30 is direct current (DC) source configured to deliver DC energy.



FIG. 2A illustrates the surgical device 14 at the distal end of the surgical instrument 9 in accordance with some embodiments. The surgical device 14 includes a first electrode 102, a second electrode 104, and a cutter 106. The electrodes 102, 104 are fixedly coupled to the distal end of the body 13, and the cutter 106 is slidably mounted to the body 13. The cutter 106 is configured to slide in and out of a slot at the distal tip of the body 13. The first electrode 102 has a loop configuration that is formed by a wire. Similarly, the second electrode 104 also has a loop configuration that is formed by another wire. In other embodiments, the electrodes 102, 104 may have other configurations (e.g., shape, size, and form). The first and second electrodes 102, 104 function together as a pair of bi-polar electrodes during use. As shown in the figure, the electrodes 102, 104 are spaced apart from each other, thereby defining a space 108 therebetween for accommodating and securing a vessel (e.g., a side-branch vessel). As shown in the figure, the elongated tube 20 may optionally includes an endoscopic lumen 24 for housing an endoscope 150 during use. The surgical device 14 may be translated and/or rotated relative to the tube 20 (and hence, relative to the endoscope) by operating the actuator 15 at the handle 11. In some embodiments, the surgical instrument 9 may further include the endoscope 150.


The distal end of the tube 20 may optionally further include a retractor 130 that is slidable relative to the elongated tube 20 and the body 13. The retractor 130 is attached to two rods 116a, 116b (FIG. 2B). As shown in the figure, the rods 116 have a curvilinear configuration such that when they are deployed out of the lumen of the tube 20, they curve away from the surgical tool/device 14. In other embodiments, the rods 116 may have a rectilinear or other configuration. As shown in the figure, the tube 20 has a cleaning device 160 for cleaning the lens of the endoscope 150 during use. Alternatively, one of the two rods 116 may have a fluid delivery lumen for delivering fluid (e.g., saline, water) towards the endoscope 150 for cleaning the lens of the endoscope during use.


The handle 11 may further include another actuator that is mechanically coupled by linkage (e.g., which may be the rods 116 themselves, or may be another component, e.g., a shaft, that couples to the two rods 116) housed within the tube 20 for moving the retractor 130 relative to the tube 20. The retractor 130 is configured to engage a main vessel 111 during use (FIG. 2B). As used in this specification, the term “retractor” may refer to any device or component that is configured to engage a vessel. Thus, the term “retractor” should not be limited to any particular device or component that retracts or moves in a certain way. In some embodiments, the retractor 130 may be considered to be a part of the surgical device/tool 14 at the distal end of the surgical instrument 9. As shown in FIG. 2E, the retractor 130 includes a first portion 132 with a first tip 136, and a second portion 134 with a second tip 138.


The tips 136, 138 define a space 140 therebetween for allowing a vessel to enter therethrough. The first and second portions 132, 134 define a space 141 for accommodating the vessel once the vessel enters through the opening 140. In the illustrated embodiments, the space 141 has a dimension 142 that is longer to another dimension 144 perpendicular to the dimension 142. The space 141 has an elliptical shape. In other embodiments, the space 141 may have other shapes, such as a circular shape.


As shown in FIG. 2B, the electrodes 102, 104 may be configured (e.g., size, shaped, spaced apart by a certain distance, etc.) to capture a vessel 110 (e.g., a side branch vessel), while the retractor 130 engages with the main branch vessel 111. The cutter 106 is omitted in FIG. 2B for clarity purpose. The electrode 104 has a ramp portion 114 that allows the vessel 110 to be easily captured at the space 108. When the vessel 110 is captured between the electrodes 102, 104, energy may be delivered from an energy source 30 to the electrodes 102, 104, which function as bi-polar electrodes to deliver RF energy, thereby heating the vessel. The vessel may be heated to a temperature that welds/seals the vessel. When the vessel 110 is sealed, the actuator 15 at the handle 11 may be operated to slidably move the cutter 106 relative to the electrodes 102, 104 from a first position (FIG. 2C) to a second position (in the direction shown) to thereby cut the sealed vessel 110 (FIG. 2D). Such may be accomplished by providing a mechanical linkage housed within the body 13, which couples the actuator 15 to the cutter 106. As shown in the figures, the body 13 may include a protrusion at the interior wall that functions as a deflector 152 for causing the cutter 106 to move downward when a top portion 154 of the cutter 106 engages with the deflector 152.


It should be noted that the tool at the distal end of the surgical instrument 9 is not limited to the example shown in FIG. 2, and that the surgical instrument 9 may include other tools having different configurations in other embodiments. FIG. 3 illustrates another surgical device 14 at the distal end of the surgical instrument 9 in accordance with other embodiments. In the illustrated embodiments, the surgical device 14 is a jaw assembly that includes a pair of jaws 321, 323 for clamping, cutting, and sealing a vessel. The jaw 321 includes an electrically conductive material 325 which faces towards the opposing jaw 323. Alternatively, or additionally, the jaw 323 may include an electrically conductive material which faces towards jaw 321. The electrically conductive material 325 is in a form of an electrode, and is configured to provide heat during use. As used in this specification, the term “electrode” refers to a component that is for delivering energy, such as heat energy, RF energy, etc., and thus, should not be limited to a component that delivers any particular form of energy. The electrically conductive material 325 may be Ni-chrome, stainless steel, or other metals or alloys in different embodiments. The jaws 321, 323 are configured to close in response to actuation (e.g., pressing, pulling, or pushing, etc.) of the actuator 15, thereby clamping a vessel during use. In the illustrated embodiments, the actuator 15 may be further actuated (e.g., further pressed, further pulled, or further pushed, etc.) to cause the electrically conductive material 325 to provide heat, thereby cutting and sealing the clamped vessel. In particular, when the actuator 15 is further actuated, the electrically conductive material 325 is electrically coupled to an energy source 30 (e.g., a DC source), which provides a current to the electrically conductive material (electrode) 325, thereby heating the electrode 325. After the vessel is cut and sealed, the actuator 15 may be de-actuated to open the jaws 321, 323, thereby stopping the delivery of heat. The mechanical linkage for translating operation of the actuator 15 into closing and opening of the jaws 321, 323 may be implemented using cables, shafts, gears, or any of other mechanical devices that are known in the art. In other embodiments, a separate actuator (either on the handle 11 or otherwise coupled to the source 30, such as a separate foot pedal, etc.), may be provided for directing energy from the energy source 30 to the electrode 325. In such cases, the actuator 15 is for closing and opening the jaw assembly, and is not used to cause the energy source 30 to deliver energy to the electrode 325.


The linkage that mechanically couples the jaws 321, 323 to the actuator 15 may be electrically insulated, for example, by silicone rubber, ceramic or other suitable non-electrically conductive material. In some embodiments, energy is supplied from the energy source 30 via electric line housed by the body 13 to the electrically conductive material (electrode) 325 at jaw 321 (and/or electrode at jaw 323). In other embodiments, the body 13 may not include an electric line for delivering energy to the electrode 325. Instead, the linkage that mechanically couples the jaws 321, 323 to the actuator 15 may be electrically conductive, and is used to deliver energy to the electrode 325 at jaw 321 (and/or electrode at jaw 323).


As shown in the figure, the electrically conductive material 325 forms a heating element (electrode) 340 that is disposed on a surface of the jaw 321. The heater element 340 includes two outer portions 350, 352, and an inner (middle) portion 348. The outer portions 350, 352 have respective outer terminals 344, 346 at their ends, and the middle portion 348 has an inner terminal 342 at its end. Thus, the portions 348, 350, 352 form an electrical heater circuit between the center terminal 342 and outer terminals 344, 346. In the illustrated embodiments, the outer portions 350, 352 and the inner portion 348 function as an electrode that is configured to deliver heat during operation. In particular, during operation, the terminal 342 of the electrode 340 is electrically coupled to a first terminal of the DC source 30, and terminals 344, 346 of the electrode 340 are electrically coupled to a second terminal of the DC source 30, thereby allowing the electrode 340 to receive DC energy (e.g., for cutting and/or welding tissue). The heating element 340 may be formed using a single, flat sheet of electrically conductive material (e.g., Ni-chrome alloy, such as stainless steel at an outer layer, and Ni-chrome at an inner layer). This has reliability, manufacturing and cost advantages. It also reduces the likelihood of tissue build up and entrapment during use by not creating crevices into which the tissue can migrate.


As shown in FIG. 3, the jaw-operating mechanism and linkage thereof may be supported in a metal housing 368 that includes metal sliding pin 370 and attachment pin 372, all covered with an insulating layer of flexible material such as silicone rubber, or the like, to restrict energy discharges and to isolate tissue from moving parts. Also, such insulating cover retains the sliding and attachment pins 370, 372 in place to obviate the need for more expensive fasteners and mechanisms.


During use, current from the DC source 30 is conducted through the center terminal 342, and flows in the middle portion 348 of the heater element 340 and in parallel through the dual outer portions 350, 352 of the heating element 340 to the common terminals 344, 346. Thus, for heater portions 348, 350, 352 of equal thicknesses and equal widths, current density in the middle portion 348 is twice as high as the current density in each of the outer portions 350, 352 in response to electrical heater signal applied between terminal 342 and the common terminals 344, 346. Of course, current densities in the center and outer portions 348, 350, 352 may be altered (for example, by altering the relative widths of the heater portions, by altering resistances through selection of different materials, by altering both the widths and resistances, etc.) to alter the operating temperatures thereof in response to applied electrical heater signals. In operation, the outer heater portions 350, 352 may operate at a temperature sufficient to weld a tissue structure (e.g., a blood vessel) grasped between the jaws 321, 323, and the center heater portion 348 may operate at a higher temperature sufficient to sever the grasped tissue structure intermediate the welded segments.


Referring now to FIG. 4A, there is shown a partial cross sectional perspective view of the jaws 321, 323 that illustrates the placement of heater portions 348, 350, 352. The jaw 321 includes a structural support 364, and the jaw 323 includes a structural support 366. The supports 364, 366 may be made from any materials, such as ceramic, polymers, stainless steel, or other metals or alloys. In some embodiments, the structural supports 364, 366 may be made from electrically conductive material that allows the supports 364, 366 to function as electrical lines (e.g., for transmitting current, RF signal, etc.). The structural supports 364, 366 are covered by respective layers 374, 376 of electrically insulating material, such as rubber, polymers, silicone, polycarbonate, ceramic or other suitable insulating material. The structural supports 364, 366 may include opening(s) 378, 380 along the length of the respective supports 364, 366 (FIG. 4B). This allows the layers 374, 376 to be overmolded onto the respective supports 364, 366 without using any adhesive to secure the layers 374, 376 relative to the respective supports 364, 366. In particular, as the layers 374, 376 are molded over the respective supports 364, 366, the molding material will flow through the openings 378, 380, thereby mechanically anchoring the layers 374, 376 relative to the respective supports 364, 366. As shown in the figure, the jaw 323 includes a surface elevation (protrusion) 354 substantially in alignment with the middle portion 348 in order to increase the compression force applied to a tissue structure grasped by the jaws 321, 323 and in contact with the middle portion 348. This promotes more efficient tissue severance, while adjacent regions 356, 358 of lower surface elevations on jaw 323 in alignment with the outer portions 350, 352 of the heater element introduce less compression force suitable for welding grasped tissue.


In the illustrated embodiments, the cross sections of the respective jaws 321, 323 are not symmetrical. Instead, jaw 321 has a protrusion 360, and jaw 323 has a protrusion 362. Each of the protrusions 360, 362 has a length so that when the protrusions 360, 362 abut against a main branch vessel MB, the cutting point of the side branch vessel SB is at a prescribed distance D that is spaced away from the main branch vessel MB (FIG. 4B). In the illustrated embodiments, the distance D is at least 1 mm, and more preferably, at least 1.5 mm. In other embodiments, the distance D may have other values, such as that which is sufficient to prevent or minimize thermal spread from electrode 340 to the main branch vessel MB being harvested. As illustrated in the embodiments, the protrusions 360, 362 are advantageous in that they help reduce thermal spread resulting from the cutting and sealing of the side branch vessel SB, thereby preserving the integrity of the main branch vessel MB that is being harvested. Also, the protrusions 360, 362 obviate the need for an operator to guess whether the cutting of the side branch vessel SB is sufficiently far (e.g., beyond a minimum prescribed spacing) from the main branch vessel MB. Instead, the operator merely abuts the protrusions 360, 362 of the jaw assembly against the main branch vessel MB, and the protrusions 360, 362 will automatically place the jaw assembly relative to the side branch vessel SB so that the side branch vessel SB is cut at a minimum prescribed distance D from the main branch vessel MB. In some cases, if the surgical instrument 9 is used to cut other types of tissue, such as nerves, organs, tendons, etc., the protrusions 360, 362 also provide the same benefits of preserving the integrity of tissue that is being cut, and obviating the need for a user to guess what is the appropriate margin. As shown in the figure, the protrusions 360, 362 diverge away from part of the side branch vessel SB. Such configuration allows part of the side branch vessel SB that is immediately next to the main branch vessel MB not to be clamped by the jaws. As a result, the end of the side branch vessel SB will fall away once it is cut. In other embodiments, the surgical instrument 9 does not need to include both protrusions 360, 362. Instead, the surgical instrument 9 may include either protrusion 360 or protrusion 362. Such configuration allows the device at the distal end of the instrument 9 to have a smaller profile, thereby allowing a user to effectively maneuver the distal device in tight tissue conditions.


As shown in the figure, the heater portion 352 may protrude laterally along an outer edge of the closed jaws 321, 323. Such configuration may allow the heater portion 352 to deliver energy from the side of the jaw assembly even when the jaw assembly is closed. This may allow the heater portion 352 to heat tissue from a side of the jaw assembly during an operation, such as, for bleeding control. In other embodiments, the jaws may not include the protrusions 360, 362.


As shown in FIG. 3, the jaw assembly has a concave side and a convex side. In one method of use, while the jaw assembly is used to cut a side branch vessel SB, the jaw assembly is oriented so that its concave side faces towards the main branch vessel MB. The endoscope or viewing device may be placed next to the jaw assembly with the endoscope or viewing device viewing the concave side of the jaw assembly. This allows the user to better visualize the tip of the jaw assembly. Such configuration also provides a safety feature by allowing the user to know where the tips are during the vessel cutting procedure. Also as shown in FIG. 3, the exposed electrode portion 352 is on the convex side of the jaw assembly while the protrusions 360, 362 are on the concave side of the jaw assembly. The concavity provides extra spacing to protect the main branch vessel MB by keeping the distance along the side branch vessel SB even greater when it is grasped. Furthermore, having the exposed electrode 352 on the convex side creates an apex point that makes it easier to contact the side wall of the tunnel to address bleeding. In other embodiments, the protrusions 360, 362 may be on the convex side of the jaw assembly. In such cases, during use, the convex side of the jaw assembly would be oriented towards the main branch vessel MB, thereby ensuring that the tips of the jaw assembly are away from the main branch vessel MB to enhance protection (e.g., preventing the tip of the jaw assembly from touching or injuring the main branch vessel MB).


Referring now to FIG. 5, there is illustrated an exploded view showing some components of the surgical instrument 9. Specifically, the heater elements 348, 350, 352 (conductive material 325) are attached to jaw 321. Both jaws 321, 323 are pivotally attached via pin 377 to the metal housing 368. Pin 370 is disposed to slide within the aligned slots 379, and within the mating angled slots 381, 383 in the frame-mounts of the associated jaws to effect scissor-like jaw movement between open and closed positions as the slide pin 370 is moved relative to the pivot pin 377. Actuator rod 336 is linked to the slide pin 370, for example, via yoke 399. In the illustrated embodiments, the proximal end of the rod 336 is mechanically coupled to the actuator 15 at the handle 11. Axial movement of the rod 336 in one direction will cause the slide pin 370 to move towards the pin 377, thereby opening the jaws 321, 323. Axial movement of the rod 336 in the opposite direction will cause the slide pin 370 to move away from the pin 377, thereby closing the jaws 321, 323. An electrical conductor 389 connects to the inner terminal 342 of the heating element 348, 350, 352, and the outer terminals 344, 346 are electrically connected in common to conductor 391. In some embodiments, either conductor 389 or 391 may be housed within the wall or the bore of the elongated body 13. In other embodiments, if the rod 336 is electrically conductive, either conductor 389 or 391 may be coupled to the rod 336. In such cases, the rod 336 will be electrically coupled to one terminal of the DC source 30 during use. During use, the conductors 389, 391 may be electrically coupled to terminals of the DC source 30, which provides a current to thereby heat up the heater elements 348, 350, 352. The center heater element 348 is configured to cut a vessel (e.g., a side branch vessel) while the outer heater elements 350, 352 are configured to weld (seal) the vessel. In some embodiments, parts of the surgical device 14 may be insulated via an outer insulating layer for isolating certain components from biologic tissue and fluids.


In any of the embodiments described herein, the jaw assembly at the distal end of the surgical instrument 9 does not need to include all of the features described herein. For example, in some embodiments, the jaw assembly does not include outer electrode portions 350, 352. Instead, the jaw assembly includes one electrode strip (like the middle electrode portion 348 described above) for cutting or sealing tissue. Furthermore, in other embodiments, the jaw 323 may not have the raised portion 354. Instead, the jaw 323 may have a flat surface that is for contacting the electrode portions 348, 350, 352. In addition, in further embodiments, the jaws 321, 323 may not include the respective protrusions 360, 362. Instead, the cross section of the jaw 321/23 may have a symmetrical configuration. In other embodiments, protrusion(s) may be provided on both sides of the jaw assembly (e.g., one or more protrusions at the concave side of the jaw assembly, and one or more protrusions at the convex side of the jaw assembly). Such configuration provides buffering on both sides of the jaw assembly, and allows for correct placement of the jaw assembly regardless of which side (the concave or convex side) of the jaw assembly is oriented towards the main branch vessel MB during use. In further embodiments, instead of the curved configuration, the jaws could be straight. Also, in any of the embodiments described herein, instead of, or in addition to, using the jaw assembly for cutting and/or welding of vessel tissue, the jaw assembly may be used for transection of other types of tissue, such as fatty and connective tissue encountered during a vessel harvesting procedure or other procedures.



FIG. 6A illustrates the handle 11 of the surgical instrument 9 of FIG. 1 in accordance with some embodiments. The handle 11 includes a support portion 400, a carriage 402 slidably mounted to the support portion 400, the actuator 15, and a coupler 404 for coupling the actuator 15 to the carriage 402. As used in this specification, the term “support portion” may refer to any part of a handle, relative to which the carriage 402 or the actuator 15 may move, and does not need to provide any particular form of support for the remaining components of the handle. Thus, the term “support portion” should not be limited to a base or any other parts of the handle. During use, the actuator 15 may be moved by a finger (e.g., thumb, index finger, etc.) laterally as indicated by the arrow shown. Movement of the actuator 15 moves the coupler 404 relative to the carriage 402, thereby rotating the body 13 (and hence, the surgical device/tool 14) relative to the tube 20.


For example, the actuator 15 may be moved laterally towards the right side (FIG. 6B), thereby rotating the coupler 404 about an axis that is parallel to the longitudinal axis of the handle 11. Rotation of the coupler 404 relative to the carriage 402 actuates a gear system at the carriage 402, thereby turning the body 13 (and hence, the surgical device/tool 14) relative to the tube 20 in the same direction as the rotation of the coupler 404. During use, either the actuator 15 or the coupler 404 may be operated by the user's finger to rotate the tube 20.


Similarly, the actuator 15 may be moved laterally towards the left side (FIG. 6C), thereby rotating the coupler 404 about an axis that is parallel to the longitudinal axis of the handle 11. Such rotation of the coupler 404 relative to the carriage 402 actuates a gear system at the carriage 402, thereby turning the body 13 (and hence, the surgical device/tool 14) relative to the tube 20 in the same direction as the rotation of the coupler 404. During use, either the actuator 15 or the coupler 404 may be operated by the user's finger to rotate the tube 20.



FIGS. 7-11 illustrate some components of the handle 11. As shown in FIG. 7, the handle 11 includes a gear system 410 having a first gear 412 and a second gear 414 mounted between a first carriage portion 420 and a second carriage portion 422, wherein the first and second carriage portions 420, 422 together form the carriage 402. The first gear 412 includes a small gear 423 and a large gear 424, and is rotatably mounted to the carriage 402. The small gear 423 and the large gear 424 are fixedly secured to each other. The second gear 414 is also rotatably mounted to the carriage 402, and engages with the small gear 423. The carriage 402 includes an opening 430 for allowing a part of the large gear 424 to be accessed. As shown in the figure, a gear 440 is fixedly secured to the proximal end 10 of the body 13. The proximal end 10 with the gear 440 extends through an opening 442 at the carriage 402, thereby allowing the gear 440 to be engaged with the second gear 414. Also, as shown in the figure, wires that are connected to the electrodes 102, 104 (in the embodiments of FIG. 2) or to terminals at the electrode 325 (in the embodiments of FIG. 3) may be housed in a cable 441, which extends out of the body 13 and through a central opening at the gear 440. In some embodiments, the wires may be coupled to the energy source 30. In other embodiments, if the handle 11 is also used to deliver energy to the surgical device/tool 14, then at least one of the wires may be connected to a switch located in the handle 11.


As shown in FIGS. 8 and 9, the coupler 404 includes a first coupler portion 450 and a second coupler portion 452, which are secured to each other via two screws 454, 456. The coupler 404 also includes a protrusion 458, which is configured (e.g., sized and shaped) to engage with a slot 459 at the carriage 402. The slot 459 guides the motion of the coupler 404 so that the coupler 404 will move relative to the carriage 402 in a defined path (e.g., in a curvilinear path). The coupler 404 also includes a ring gear 460, which is configured to engage with the large gear 424 at the opening 430 of the carriage 402. Although the actuator 15 and the coupler 404 have been described as separate components, in other embodiments, the coupler 404, or any of its components, may be considered to be a part of the actuator 15. Also, although the carriage 402 and the coupler 404 have been described as separate components, in other embodiments, the coupler 404, or any of its components, may be considered to be a part of the carriage 402.


Also, as shown in the figures, the actuator 15 includes a surface 471 for allowing manipulation of the actuator 15 by a finger, and protrusions 470, 472 for preventing the finger from sliding off the edge of the actuator 15 during use. During use, the actuator 15 may be moved laterally towards the right side (such as that shown in FIG. 6B) to push the coupler 404 to rotate relative to the carriage 402 in the direction of actuation. The rotation of the coupler 404 relative to the carriage 402 causes the ring gear 460 to move relative to the carriage 402, thereby turning the large gear 424 at the opening 130. Since the large gear 424 is fixedly secured to the small gear 423, rotation of the large gear 424 will rotate the small gear 423 in the same direction as that of the large gear 424. Rotation of the small gear 423 turns the second gear 414, which in turn, rotates the gear 440 at the proximal end 10 of the body 13. Thus, the second gear 414 is for causing the body 13 and the surgical device 14 to rotate in the same direction as that of the actuator 15. Also, during use, the actuator 15 may be moved laterally towards the left side (such as that shown in FIG. 6C) to push the coupler 404 to rotate relative to the carriage 402 in the direction of actuation. This will result in the body 13 rotating in the same direction as the direction of actuation, as similarly discussed.


In some embodiments, the gear system may be configured (e.g., by selecting a desired gear ratio, gear size, number of gears, etc.) such that a relatively small amount of movement by the actuator 15 will result in a rotation of the body 13 and the surgical device 14 through a large angular range. For example, in some embodiments, a rotation of the actuator 15 through an angular range of ±40° or less will result in turning of the body 13 and the surgical device 14 by ±180° or more of 40°. Thus, by moving the actuator 15 from the left-most position to the right-most position (or vice versa), the body 13 and the surgical device 14 may be turned 360°. Such configuration is beneficial in that it achieves amplification of motion for the body 13, thereby allowing the body 13 and the surgical device 14 to be rotated relative to the handle 11 efficiently. In should be understood that during use of the surgical instrument 9, the body 13 does not always need to be rotated 360°. For example, a user may want to rotate the body 13 and the surgical device 14 by an angle θt that is less than 360°. In such cases, the user may rotate the actuator 15 by an angle θc to a desired position as determined by the user, thereby rotating the body 13 and the surgical device 14 by a desired angular range θt. As discussed, θt is larger than θc. In some embodiments, the gear system may be configured such that a movement by the actuator 15 will result in a relatively smaller rotation of the body 13 and of the surgical device 14, for finer control of angular position. In such cases, θt is less than θc. In some embodiments, θt and θc may be governed by the relationship: θt=k θc, wherein k represents an amplification factor when k>1, and represents a reduction factor when k<1. In some cases, k is a constant that is based on the design of the gear system.


In the illustrated embodiments, the actuator 15 is slidably coupled to a base 500 (FIG. 10). The base 500 has projections 480, 482 on either side of the base 500 for engagement with respective slots 484, 486 at the coupler 404 (see FIGS. 9-11). The actuator 15 is also rotatably coupled to an arm 476 via the shaft 490. In particular, the shaft 490 is housed within a slot formed by a first actuator portion 502 and a second actuator portion 504 (FIG. 11). The shaft 490 allows the arm 476 to be pivotable relative to the actuator 15 in the direction shown in FIG. 10. Such tilting motion allows the actuator 15 to be moved laterally (as in FIG. 6B or 6C) along an arc-path with a center that is offset from a longitudinal axis of the body 13. In other embodiments, if the arc-path of the actuator's 15 movement has a center that coincides with a longitudinal axis of the body 13, then the tilting of the arm 476 relative to the actuator 15 is not required. The actuator portion 504 has a slot 506 for slidable engagement with a protrusion 512 at the base 500. Similarly, the actuator portion 502 has a slot (with the same configuration as that of slot 506) for slidable engagement with a protrusion 510 at the base 500. The arm 476 has a socket 478 at its end for mating with a sphere 448 at an end of a rod 446 that extends out of the body 13. In some embodiments, the rod 446 may be coupled to the cutter 106 in the embodiment of FIG. 2 for actuating movement of the cutter 106. In other embodiments, the rod 446 may be the shaft 336 in the embodiment of FIG. 5 for actuating movement of the jaw assembly. The socket 478 together with the sphere 448 forms a ball joint that allows the arm 476 to move in different degrees of freedom with respect to the rod 446. In any of the embodiments described herein the arm 476 and/or the base 500 may be considered to be a part of the actuator 15. In other embodiments, the arm 476 and/or the base 500 may be considered to be a part of the coupler 404.


When the surface 471 of the actuator 15 is pressed down towards the base 500, the slidable engagement between the slot 506 and the protrusion 512 at the base 500 will guide the actuator 15 to move in a curvilinear path (defined by the shape of the slot 506). In the illustrated embodiments, the pressing of the surface 471 of the actuator 15 will cause the actuator 15 to move proximally relative to the base 500. This in turn causes the bottom end of the arm 476 to move proximally to pull the ball joint, thereby pulling the rod 446 backward. This in turn pulls the cutter 106 at the distal end of the surgical instrument 9 proximally. Alternatively, in the case of the embodiment of FIG. 5, this will in turn pull the rod 336 proximally to close the jaw assembly. After the surface 471 is pressed down, the rear surface 520 of the actuator 15 will be moved to a higher elevation. The user may press the rear surface 520 downward against the base 500 so that the actuator 15 is slidably moved distally relative to the base 500, as governed by the slidable engagement between the slot 506 and the protrusion 512. This in turn causes the bottom end of the arm 476 to move distally to push the ball joint, thereby pushing the rod 446 distally. This in turn pushes the cutter 106 at the distal end of the surgical instrument 9 distally. Alternatively, in the case of the embodiment of FIG. 5, this will in turn push the rod 336 distally to open the jaw assembly.


Also, during use, the actuator 15 (or the coupler 404) may be pushed distally so that the carriage 402 together with the body 13 and the surgical device 14 is translated distally relative to the tube 20. Alternatively, the actuator 15 (or the coupler 404) may be pulled proximally so that the carriage 402 together with the body 13 and the surgical device 14 is translated proximally relative to the tube 20.


In some embodiments, the handle 11 may further includes an electrical contact, such that when the actuator 15 is further pulled proximally, the electrical contact will close a conductive path, thereby allowing a current to be delivered from the energy source 30 to the electrodes 102, 104, or to the electrode 325 at the jaw assembly. For example, the cable 441 may carry a first wire connected to a first terminal at the electrode 325, and a second wire connected to a second terminal at the electrode 325. At the proximal end, the first wire may be electrically connected to the electrical contact at the actuator 15, and a receiving contact (not shown) in the handle 11 may be coupled to a first terminal at the energy source 30. Also, at the proximal end, the second wire may be coupled to a second terminal at the energy source 30. During use, the actuator 15 may be pulled all the way to the back to engage the electrical contact at the actuator 15 with the receiving contact, thereby closing a conductive path formed by the energy source 30, the electrode 325, and the first and second wires, and allowing energy to be delivered from the energy source 30 to the electrode 325. In other embodiments, the actuator 15 is not configured to cause delivery of energy from the energy source 30 to the electrodes 102, 104, or to the electrode 325.


As illustrated in the above embodiments, the handle 11 is advantageous in that it allows rotation and/or translation of the body 13 (and hence, the surgical device 14) relative to the tube 20, and movement of a component of the surgical device 14, to be accomplished by manipulation of a single actuator 15. In some embodiments, the control may be configured to be operated like a joystick so that it can be used to rotate the tool 14 (e.g. by moving the control left or right) and translate the tool 14 (e.g., by moving the control forward or backward), wherein the translation of the tool 14 may be done simultanesoulsy or separately from the rotation of the tool 14. Such joystick like control may also allow actuation of a component (e.g., a cutting element, a jaw, an electrode, etc.) of the tool 14 (e.g. by providing a pivitable or depressable control surface, such as a button). In some cases, the actuator 15 also allows delivery of energy from the energy source 30 to the surgical device 14. The handle 11 is also advantageous in that it rotates the surgical device 14 by a large angular amount in response to a relatively small movement of the actuator 15, thereby providing amplification of movement of the surgical device 14.


During use of the surgical instrument 9 to harvest a vessel, the tube 20 is inserted into the patient's body through an opening (e.g., an incision through the patient's skin). The endoscope 150 may be placed inside the tube 20 for viewing at distal end while a surgical procedure is being performed by the surgical device 14. In some cases, the endoscope 150 may optionally include a light source and/or fiber optics for illuminating the target site. The distal end of the tube 20 is placed next to a vessel that is desired to be harvested, such that the longitudinal axis of the tube is approximately parallel to the vessel. The retractor 130 is then deployed to engage and capture the vessel. The tube 20 is then advanced distal along the length of the vessel. When a side branch vessel is encountered, the user may then operate the handle 11 to deploy the surgical device 14 for cutting and/or sealing the side branch vessel. In particular, various components (e.g., the actuator 15 and/or the coupler 404) of the handle 11 may be operated to translate the surgical device 14 proximally or distally relative to the tube 20 (as described herein), and/or to rotate the surgical device 14 relative to the tube 20 (as described herein), thereby placing the surgical device 14 at an operative position relative to the side branch vessel for operation on the side branch vessel.


The handle 14 may then be further used to cause the surgical device 14 to cut and/or seal the side branch vessel. For example, for the embodiments of FIG. 2, the actuator 15, or another actuator on the handle 11, or a control at the energy source 30, may be operated to cause energy to be delivered to the electrodes 102, 104, thereby heating the side branch vessel, and sealing it. The actuator 15 may then be operated (or further operated) to pull the cutter 106 proximally to cut the sealed vessel, as described herein. For the embodiments of FIG. 3, the actuator 15 may be operated to close the jaws 321, 323 to grasp and compress the side branch vessel. Power is then supplied using the DC source 30 to the heater elements 48, 50, 52 (which function as resistive element that heats up in response to the delivered direct current) to effect tissue welds at tissues that are in contact with outer segments 50, 52, and to effect tissue cutting at tissue that is in contact with segment 48.



FIG. 12 illustrates another handle 11 in accordance with other embodiments. In the illustrated embodiments, the handle 11 is similar to the embodiments described previously, except that the coupler 404 is configured to move laterally to control a rotation of the surgical device/tool 14 independent of the actuator 15. In such cases, the actuator 15 and/or the coupler 404 is for translating the surgical device/tool 14 longitudinally relatively to the tube 20. The actuator 15 may also be used for moving a component (such as the cutter 106, the jaw members, etc.) of the surgical device/tool 14, as similarly discussed. However, unlike the embodiments of FIGS. 6-11, the actuator 15 cannot be used to rotate the surgical device 14 relative to the tube 20. Instead, rotation of the surgical device 14 relative to the tube 20 is performed by moving the coupler 404 in either direction shown in the figure. The handle 11 of FIG. 12 has components that are the same as those in the previous embodiments, except that the actuator 15 is not configured to move laterally with the coupler 404. Thus, in the illustrated embodiments, the actuator 15 may be coupled to a base (e.g., base 500) that is fixedly secured to the carriage 402.



FIG. 13 illustrates another handle 11 in accordance with other embodiments. The handle 11 includes a ring 600 located distal to the actuator 15 for rotating the body 13 (and hence the surgical device/tool 14). The ring 600 is circumferentially disposed at the handle 11 so that it may be conveniently manipulated by one or more fingers of a user. In the illustrated embodiments, the operation of the ring 600 is independent from the operation of the actuator 15. Thus, the actuator 15 and/or the coupler 404 may be used to translate the body 13 distally or proximally relative to the tube 20 without involving the ring 600. The actuator 15 may also be used to move a component (e.g., the cutter 106, the jaws, etc.) of the surgical device/tool 14 without involving the ring 600. Also, the ring 600 may be used to rotate the body 13 without involving the actuator 15 and the coupler 404.



FIG. 14 illustrates some components of the handle 11 of FIG. 13 in accordance with some embodiments. In the illustrated embodiments, the handle 11 includes many components that are the same as those of FIGS. 6-11. However, unlike the previous embodiments, the handle 11 does not include the carriage 402, and the coupler 404 is not rotatably coupled to the carriage 402. Instead, the coupler 404 is slidably coupled to the support 400. This allows the body 13 and the surgical device 14 to be translated relative to the body 20 by translational movement of the coupler 404 (or the actuator 15) relative to the support 400. The handle 11 also includes the gear system 410 having the gears 412, 414. However, unlike the previous embodiments of FIG. 6, the gear system 410 is not coupled to the moveable carriage 402. Instead, the gear system 410 is coupled to a portion of the handle 11 that is fixed relative to the support 400. As shown in the figure, the ring 600 has a ring gear 602 located circumferentially at an interior surface of the ring 600. The ring gear 602 is configured to engage with the gear 412 during use. The body 13 has a non-circular cross section (such as a square section) so that it can transmit rotation from the gear train to the tool, as well as allow sliding of the tool back and forth. In other embodiments, the body 13 can have other cross sectional shapes.


In some embodiments, the gear system 410 may be configured (e.g., by selecting a desired gear ratio, gear size, number of gears, etc.) such that a relatively small amount of movement by the ring 600 will result in a rotation of the body 13 through a large angular range. For example, in some embodiments, a rotation of the ring 600 through an angular range of ±40° or less will result in turning of the body 13 by ±180° or more. Thus, by turning the ring 600 over a small angular range, the body 13 may be turned 360°. Such configuration is beneficial in that it achieves amplification of motion for the body 13, thereby allowing the body 13 to be rotated relative to the handle 11 efficiently. In should be understood that during use of the surgical instrument 9, the body 13 does not always need to be rotated 360°. For example, a user may want to rotate the body 13 by an angle θt that is less than 360°. In such cases, the user may rotate the ring 600 by an angle θc to a desired position as determined by the user, thereby rotating the body 13 by a desired angular range θt. As discussed, θt is larger than θc. In some embodiments, the gear system may be configured such that a movement by the actuator 15 will result in a relatively smaller rotation of the body 13 and of the surgical device 14, for finer control of angular position. In such cases, θt is less than θc. In some embodiments, θt and θc may be governed by the relationship: θt=kθc, wherein k represents an amplification factor when k>1, and represents a reduction factor when k<1. In some cases, k may be a constant that is based on the design of the gear system.



FIG. 15 illustrates another handle 11 in accordance with other embodiments. The handle 11 includes a plurality of wheels 700 located at a periphery of the handle 11. The wheels 700 are rotatably coupled to the carriage 702 through the gear system 410 that is housed inside the carriage 702. In the illustrated embodiments, the handle 11 is similar to the embodiments of FIG. 6, except that it doesn't have the coupler 404, and rotation of the body 13 is not controlled by the actuator 15. In such cases, the actuator 15 and/or the wheels 700 may be pushed distally or pulled proximally for translating the surgical device/tool 14 longitudinally relatively to the tube 20. The actuator 15 may also be used for moving a component (such as the cutter 106, the jaw members, etc.) of the surgical device/tool 14, as similarly discussed. However, unlike the embodiments of FIGS. 6-11, the actuator 15 cannot be used to rotate the surgical device 14 relative to the tube 20. Instead, rotation of the surgical device 14 relative to the tube 20 is performed by turning any one of the wheels 700. The handle 11 of FIG. 15 has components that are the same as those in the previous embodiments, except that the handle does not include the coupler 404, and the actuator 15 is not configured to move laterally. Thus, in the illustrated embodiments, the actuator 15 may be coupled to a base (e.g., base 500) that is fixedly secured to the carriage 402.


In some embodiments, the gear system 410 may be configured (e.g., by selecting a desired gear ratio, gear size, number of gears, etc.) such that a relatively small amount of movement by any one of the wheels 700 will result in a rotation of the body 13 through a large angular range. For example, in some embodiments, a rotation of the wheel 700 through an angular range of ±40° or less will result in turning of the body 13 by ±180° or more. Thus, by turning the wheel 700 over a small angular range, the body 13 may be turned 360°. Such configuration is beneficial in that it achieves amplification of motion for the body 13, thereby allowing the body 13 to be rotated relative to the handle 11 efficiently. In should be understood that during use of the surgical instrument 9, the body 13 does not always need to be rotated 360°. For example, a user may want to rotate the body 13 by an angle θt that is less than 360°. In such cases, the user may rotate the wheel 700 by an angle θc to a desired position as determined by the user, thereby rotating the body 13 by a desired angular range θt. As discussed, θt is larger than θc. In some embodiments, the gear system may be configured such that a movement by the actuator 15 will result in a relatively smaller rotation of the body 13 and of the surgical device 14, for finer control of angular position. In such cases, θt is less than θc. In some embodiments, θt and θc may be governed by the relationship: θt=kθc, wherein k represents an amplification factor when k>1, and represents a reduction factor when <1. In some cases, k is a constant that is based on the design of the gear system.


It should be noted that the handle 11 should not be limited to the examples described previously, and that the handle 11 may have different configurations in different embodiments. For example, in other embodiments, the handle 11 may not include all of the features described previously. Also, in other embodiments, the handle 11 may have other shapes and forms. Furthermore, in any of the embodiments described herein, in addition to the control (e.g., the actuator 15, the coupler 404, the ring 600, the wheel(s) 700, or any combination of the foregoing) described, the handle 11 may further include additional control(s) for performing other functions. As used in this specification, the term “control” may refer to any of the components of the handle 11, or any combination of the components of the handle 11.


Also, it should be noted that the surgical device/tool 14 of the surgical instrument 9 should not be limited to the examples described above, and that the surgical instrument 9 may include other tools 14 in other embodiments. For example, although the above embodiments have been described with reference to the surgical device 14 being for clamping, cutting, and/or sealing vessel (e.g., saphenous vein, an artery, or any other vessel), in other embodiments, the surgical device 14 may be any have different configurations, and different functionalities. For example, in other embodiments, the surgical device 14 may be clip appliers or grasping jaws for grasping other types of tissues.


The cleaning system 160 for cleaning the lens of the endoscope 150 will now be described with reference to FIGS. 16-21. For clarity purpose, the surgical device 14 and the retractor 130 are omitted in these figures.



FIGS. 16A and 16B illustrate the cleaning system 160 that includes a tubular structure 800 in accordance with some embodiments. As shown in FIG. 17, the tubular structure 800 has a distal end 801, a proximal end 802, and a body 803 extending between the ends 801, 802. The tubular structure 800 also has a first channel 804 that extends along the length of the tubular structure 800, and a second channel 806 that forms an angle with the first channel 804. In the illustrated embodiments, the angle may be a value that is between 20° and 40°, such as 30°. In other embodiments, the angle may be other values, as long as the fluid can be delivered to the lens of the endoscope 150. The second channel 806 is in fluid communication with the first channel 804, and ends with an opening 808 that is located at an exterior surface of the tubular structure 800. The tubular structure 800 also includes a protrusion 810 that is configured to mate with a slot at the tube 20 (FIG. 16A). In other embodiments, the protrusion 810 is optional, and the tubular structure 800 may not include the protrusion 810. The tubular structure 800 may be secured to the tube 20 via an adhesive. In further embodiments, the structure 800 and the distal portion of the tube 20 may be integrally formed by a molding process to have a unity configuration.


As shown in FIG. 16B, the cleaning system 160 is located at a radial angle relative to the lens of the endoscope 150 such that the cleaning system 160 is not directly across from the endoscope 150. Such configuration allows the tool 14 to be directly across the endoscope 150 without having the cleaning system 160 interfering with the tool 14. Also, such configuration allows the opening 808 to be aimed at the lens of the endoscope 150 such that the fluid injection path does not intercept the tool 14 and the support structures 116a, 116b of the retractor 130. In other embodiments, the cleaning system 160 may be directly across from the endoscope 150. In such cases, the tool 14 may be located at a radial angle relative to the endoscope 150 such that it is not directly across from the endoscope 150. Thus, in other embodiments, the cleaning system 160 may be located at any position relative to the endoscope 150 (e.g., the cleaning system 160 may be implemented at any location along the circumferential cross section of the tube 20). Also, in other embodiments, the cleaning system 160 may be configured so that the opening 808 is pointed towards other directions (e.g., for providing cleaning function at other target sites).



FIG. 18 illustrates a partial side view of the distal end of the tube 20 in accordance with some embodiments. As shown in the figure, the proximal end 802 of the tubular structure 800 is coupled to a fluid delivery tube 826. During use, the proximal end of the fluid delivery tube 826 is connected to a fluid source, such as a syringe. If the user determines that the lens of the endoscope 150 needs to be cleaned, the user may operate on the syringe to cause fluid (e.g., saline, water, etc.) to be delivered from the syringe to the tubular structure 800 via the tube 826. The fluid is delivered through the channel 804 and the channel 806, and out of the opening 808. As shown in the figure, the second channel 806 is oriented such that fluid exiting from the opening 808 is directed proximally towards the lens of the endoscope 150, thereby cleaning the lens of the endoscope 150.


It should be noted that the cleaning system 160 should not be limited to the example described previously, and that the cleaning system 160 may have other configurations in other embodiments. For example, in other embodiments, the cleaning system 160 may include a tubular structure 800 that is in a form of a bent tube (FIG. 19). In other embodiments, instead of having a tubular structure coupled to the fluid delivery tube 826, the cleaning system 160 may include just the fluid delivery tube 826 having a bent distal end (FIG. 20). The fluid delivery tube 826 may be secured to the tube 20 using an adhesive or a mechanical coupler. In any of the embodiments described herein, the tube 20 may include a distal section that is mechanically attached (e.g., via an adhesive or a mechanical coupler) to a remaining part of the tube 20. In such cases, the cleaning system 160 may be coupled to the distal section of the tube 20.


In further embodiments, the cleaning system 160 may be implemented by providing fluid delivery channels 840, 842 within the wall of the tube 20 (FIG. 21). In such cases, the interior surface of the wall of the tube 20 will include an opening 844 for allowing fluid to be exiting therethrough. In some embodiments, the tube 20 may include a distal section that is mechanically attached (e.g., via an adhesive or a mechanical coupler) to a remaining part of the tube 20. In such cases, the cleaning system 160 may be implemented at the distal section of the tube 20.


Also, as shown in the above embodiments, the distal end of the tube 20 does not have any wall near the location where the endoscope 150 is located. In particular, the tube 20 has a cut-out section 888 at the distal end next to the endoscope 150, which allows fluid from the cleaning system 160 to escape without being trapped inside the tube 20 (wherein trapped fluid may obstruct the view of the endoscope). The tube 20 with the cut-out section may be formed by removing a section of a tube that is used to construct the tube 20. Alternatively, the tube 20 with the cut-out section may be formed by molding the tube 20 to have the configuration shown. In other embodiments, the distal end of the tube 20 does not have the cut-out section.


In some embodiments, the distal end of the tube 20 may be a separate component that is separately formed from a remaining part of the tube 20, and is then coupled to the remaining part of the tube 20. For example, the distal end of the tube 20 may be molded to have an unity configuration. In some cases, such distal end of the tube 20 may be molded to have the cut-out section 888, and the fluid delivery channels 840, 842 (such as those shown in FIG. 21). One technique for forming the channel 842 at the distal component 889 of the tube 20 is to place a pin 890 relative to the material of the distal component 889 like that shown in FIG. 22. The pin 890 may be longer and may have a bent configuration so that it can also be used to form the channel 840. Such technique may result in the distal component 889 having an opening 892 through the wall of the component 889. Such opening 892 may be used to drain fluid during use. For example, in some cases, cleaning fluid that is delivered from the opening 844 may escape through the cut-out section 888 and through the opening 892.


Also, in any of the embodiments described herein, instead of using the cleaning system 160 to clean the lens of the endoscope, the cleaning system 160 may be used to clean other devices, such as another imaging device, a window of a component that is used to house an endoscope or another type of imaging device, or other surgical tools.


It should be noted that the distal end 20/889 of the surgical instrument is not limited to the configurations described previously, and that the distal end 20/889 of the surgical instrument may have other configurations in other embodiments. For example, in other embodiments, instead of the configuration shown in FIGS. 16-17, the distal end of the tube 20/component 889 may have the configuration shown in FIGS. 23 and 24. Also, in other embodiments, instead of the configuration shown in FIG. 21, the distal end of the tube 20/component 889 may have the configuration shown in FIG. 25.


Although particular embodiments have been shown and described, it will be understood that they are not intended to limit the present inventions, and it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present inventions. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense. The present inventions are intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the present inventions as defined by the claims.

Claims
  • 1. An apparatus, comprising: a first tubular structure having a proximal end, a distal end, and a body extending between the proximal and distal ends, wherein the body includes a lumen for housing at least a part of an imaging device, wherein the first tubular structure is configured for attachment to a distal end of a second tubular structure, wherein the distal end of the first tubular structure includes a first opening through an outer wall of the first tubular structure, wherein the first opening is configured to drain fluid from an interior of the first tubular structure to an exterior of the first tubular structure;a retractor that is slidable relative to the lumen;a fluid delivery channel that is fixed in position relative to the body; anda second opening that is in fluid communication with the fluid delivery channel;wherein the fluid delivery channel has a first portion, and a second portion that forms an angle with an axis of the first portion; andwherein the first opening through the outer wall of the first tubular structure and the second portion of the fluid delivery channel are aligned in a straight line and are separated by the interior of the first tubular structure.
  • 2. The apparatus of claim 1, wherein the retractor is configured to engage with a vessel.
  • 3. The apparatus of claim 1, wherein the second tubular structure is a part of a vessel harvesting device.
  • 4. The apparatus of claim 1, wherein the second opening is for delivering fluid towards the lumen where the imaging device is or will be located.
  • 5. The apparatus of claim 1, wherein the distal end of the first tubular structure has a cut-out section.
  • 6. The apparatus of claim 1, wherein the first tubular structure is integrally formed to include the fluid delivery channel and the second opening, wherein the second opening is located on an interior surface of the first tubular structure.
  • 7. The apparatus of claim 6, wherein the distal end of the first tubular structure has a cut-out section.
  • 8. The apparatus of claim 7, wherein the first opening is adjacent to the cut-out section.
  • 9. An apparatus, comprising: a first tubular structure having a proximal end, a distal end, and a body extending between the proximal and distal ends, wherein the body includes a lumen for housing at least a part of an imaging device, wherein the first tubular structure is configured for attachment to a distal end of a second tubular structure, wherein the distal end of the first tubular structure includes a first opening through an outer wall of the first tubular structure, wherein the first opening is configured to drain fluid from an interior of the first tubular structure to an exterior of the first tubular structure;a fluid delivery channel that is fixed in position relative to the body;a second opening that is in fluid communication with the fluid delivery channel; anda first tissue manipulator and a second tissue manipulator that are at least partially housed within the first tubular structure, wherein the first and second tissue manipulators are not in a way of a fluid path that extends from the second opening;wherein the fluid delivery channel has a first portion, and a second portion that forms an angle with an axis of the first portion; andwherein the first opening through the outer wall of the first tubular structure and the second portion of the fluid delivery channel are aligned in a straight line and are separated by the interior of the first tubular structure.
  • 10. The apparatus of claim 9, wherein the first tissue manipulator comprises a device for cutting tissue, and the second tissue manipulator comprises a retractor.
  • 11. The apparatus of claim 10, wherein the device for cutting tissue comprises a first jaw and a second jaw.
  • 12. The apparatus of claim 11, wherein the first jaw comprises an electrically insulating material extending along a length of the first jaw, the electrically insulating material forming a lateral protrusion on the first jaw, the lateral protrusion configured for abutting and positioning a main vessel away from a portion of an adjoining branch vessel grasped between the first and second jaws.
  • 13. The apparatus of claim 11, wherein each of the first and second jaws comprise an electrically insulating material extending along a length of each of the first and second jaws, the electrically insulating material forming on each of the first and second jaws a lateral protrusion, the lateral protrusions configured for abutting and positioning a main vessel away from a portion of an adjoining branch vessel grasped between the first and second jaws.
  • 14. The apparatus of claim 9, wherein the lumen, the first tissue manipulator, and the second tissue manipulator are aligned in a straight line.
  • 15. The apparatus of claim 9, wherein the first tubular structure is integrally formed to include the fluid delivery channel and the second opening, wherein the second opening is located on an interior surface of the first tubular structure.
  • 16. The apparatus of claim 15, wherein the distal end of the first tubular structure has a cut-out section.
  • 17. The apparatus of claim 16, wherein the first opening is adjacent to the cut-out section.
  • 18. The apparatus of claim 15, wherein the first tissue manipulator comprises a device for cutting tissue, and the second tissue manipulator comprises a retractor, wherein the device for cutting tissue comprises a first jaw and a second jaw.
  • 19. The apparatus of claim 18, wherein the first jaw comprises an electrically insulating material extending along a length of the first jaw, the electrically insulating material forming a lateral protrusion on the first jaw, the lateral protrusion configured for abutting and positioning a main vessel away from a portion of an adjoining branch vessel grasped between the first and second jaws.
  • 20. The apparatus of claim 18, wherein each of the first and second jaws comprise an electrically insulating material extending along a length of each of the first and second jaws, the electrically insulating material forming on each of the first and second jaws a lateral protrusion, the lateral protrusions configured for abutting and positioning a main vessel away from a portion of an adjoining branch vessel grasped between the first and second jaws.
Parent Case Info

This application is a divisional application of prior U.S. application Ser. No. 12/545,690, filed on Aug. 21, 2009, which is incorporated herein by reference in its entirety.

US Referenced Citations (271)
Number Name Date Kind
2137710 Anderson Dec 1937 A
4031898 Hiltebrandt Jun 1977 A
4071028 Perkins Jan 1978 A
4128099 Bauer Dec 1978 A
4281646 Kinoshita Aug 1981 A
4418692 Guay Dec 1983 A
4468217 Kuzmick Aug 1984 A
4759362 Taniguchi Jul 1988 A
4767519 de Nora Aug 1988 A
4801015 Lubock Jan 1989 A
4884559 Collins Dec 1989 A
4884599 Newman Dec 1989 A
5009661 Michelson Apr 1991 A
5052402 Bencini et al. Oct 1991 A
5098430 Fleenor Mar 1992 A
5108474 Riedy Apr 1992 A
5147356 Bhatta Sep 1992 A
5151102 Kamiyama Sep 1992 A
5154709 Johnson Oct 1992 A
5156613 Sawyer Oct 1992 A
5160334 Billings Nov 1992 A
5217460 Knoepfler Jun 1993 A
5258006 Rydell Nov 1993 A
5282799 Rydell Feb 1994 A
5290278 Anderson Mar 1994 A
5300065 Anderson Apr 1994 A
5312426 Segawa et al. May 1994 A
5314424 Nicholas May 1994 A
5318040 Kensey Jun 1994 A
5336221 Anderson Aug 1994 A
5342381 Tidemand Aug 1994 A
5352222 Rydell Oct 1994 A
5356408 Rydell Oct 1994 A
5361583 Huitema Nov 1994 A
5364395 West, Jr. Nov 1994 A
5383888 Zvenyatsky Jan 1995 A
5405344 Williamson Apr 1995 A
5443463 Stern Aug 1995 A
5445638 Rydell Aug 1995 A
5451222 De Maagd Sep 1995 A
5453599 Hall, Jr. Sep 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5496317 Goble Mar 1996 A
5507744 Tay Apr 1996 A
5507773 Huitema Apr 1996 A
5509922 Aranyi Apr 1996 A
5514134 Rydell May 1996 A
5562503 Ellman Oct 1996 A
5599350 Schulze Feb 1997 A
5624452 Yates Apr 1997 A
5647871 Levine et al. Jul 1997 A
5669934 Sawyer Sep 1997 A
5674219 Monson Oct 1997 A
5683412 Scarfone Nov 1997 A
5709675 Williams Jan 1998 A
5709680 Yates Jan 1998 A
5716366 Yates Feb 1998 A
5722962 Garcia Mar 1998 A
5725477 Yasui Mar 1998 A
5741285 McBrayer Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5766134 Lisak Jun 1998 A
5766166 Hooven Jun 1998 A
5776130 Buysse Jul 1998 A
5807393 Williamson et al. Sep 1998 A
5810810 Tay Sep 1998 A
5810811 Yates et al. Sep 1998 A
5827271 Buysse Oct 1998 A
5833690 Yates Nov 1998 A
5843017 Yoon Dec 1998 A
5849011 Jones Dec 1998 A
5853410 Greff Dec 1998 A
5860975 Goble Jan 1999 A
5871496 Ginn et al. Feb 1999 A
5891141 Rydell Apr 1999 A
5906630 Anderhub May 1999 A
5908415 Sinofsky Jun 1999 A
5908420 Parins Jun 1999 A
5911719 Eggers Jun 1999 A
5944718 Austin Aug 1999 A
5947984 Whipple Sep 1999 A
5954686 Garito Sep 1999 A
5997533 Kuhns Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6022313 Ginn et al. Feb 2000 A
6024741 Williamson, IV Feb 2000 A
6027501 Goble Feb 2000 A
6033424 Ouchi Mar 2000 A
6039733 Buysse Mar 2000 A
6059781 Yamanashi May 2000 A
6066151 Miyawaki May 2000 A
6074389 Levine et al. Jun 2000 A
6110190 Ginn et al. Aug 2000 A
6113596 Hooven Sep 2000 A
6174309 Wrublewski Jan 2001 B1
6179837 Hooven Jan 2001 B1
6190386 Rydell Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6251092 Qin Jun 2001 B1
6254623 Haibel, Jr. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270492 Sinofsky Aug 2001 B1
6270497 Sekino Aug 2001 B1
6273887 Yamauchi Aug 2001 B1
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer Mar 2002 B1
6391029 Hooven May 2002 B1
6406425 Chin Jun 2002 B1
6406454 Hajianpour Jun 2002 B1
6423055 Farr Jul 2002 B1
6432105 Ellman et al. Aug 2002 B1
6458122 Pozzato Oct 2002 B1
6464701 Hooven Oct 2002 B1
6478794 Trapp Nov 2002 B1
6517536 Hooven Feb 2003 B2
6521307 Weder Feb 2003 B2
6522933 Nguyen Feb 2003 B2
6524307 Palmerton Feb 2003 B1
6527771 Weadock Mar 2003 B1
6544210 Trudel Apr 2003 B1
6551313 Levin Apr 2003 B1
6558375 Sinofsky May 2003 B1
6572609 Farr Jun 2003 B1
6576033 Booth Jun 2003 B1
6579278 Bencini Jun 2003 B1
6579285 Sinofsky Jun 2003 B2
6582451 Marucci Jun 2003 B1
6582536 Shimada Jun 2003 B2
6582582 Becking Jun 2003 B2
6602252 Mollenauer Aug 2003 B2
6605055 Sinofsky Aug 2003 B1
6613069 Boyd Sep 2003 B2
6626901 Treat Sep 2003 B1
6652514 Ellman Nov 2003 B2
6656177 Truckai Dec 2003 B2
6663610 Thompson Dec 2003 B1
6676656 Sinofsky Jan 2004 B2
6679873 Rabiner Jan 2004 B2
6682528 Frazier Jan 2004 B2
6685665 Booth Feb 2004 B2
6695837 Howell Feb 2004 B2
6702780 Gilboa Mar 2004 B1
6746504 Booth Jun 2004 B2
6770072 Truckai Aug 2004 B1
6773409 Truckai Aug 2004 B2
6802843 Truckai Oct 2004 B2
6821273 Mollenauer Nov 2004 B2
6830569 Thompson Dec 2004 B2
6860880 Treat Mar 2005 B2
6908463 Treat Jun 2005 B2
6958070 Witt Oct 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall Nov 2005 B2
6994707 Ellman Feb 2006 B2
7033356 Latterell Apr 2006 B2
7083613 Treat Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7094231 Ellman Aug 2006 B1
7112199 Cosmescu Sep 2006 B2
7147637 Goble Dec 2006 B2
7204835 Latterell Apr 2007 B2
7211080 Treat May 2007 B2
7306599 Karasawa et al. Dec 2007 B2
7316683 Kasahara et al. Jan 2008 B2
7326202 McGaffigan Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7364577 Wham Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7396356 Mollenauer Jul 2008 B2
7513896 Orszulak Apr 2009 B2
7632270 Livneh Dec 2009 B2
7645289 Bayer Jan 2010 B2
7695470 Stewart et al. Apr 2010 B1
7699861 Bayer Apr 2010 B2
7887558 Lin et al. Feb 2011 B2
7918845 Saadat et al. Apr 2011 B2
7918848 Lau Apr 2011 B2
8197472 Lau Jun 2012 B2
8221306 Okada et al. Jul 2012 B2
8251989 Newton et al. Aug 2012 B1
8257352 Lawes et al. Sep 2012 B2
8425508 Kasahara et al. Apr 2013 B2
8623003 Lau et al. Jan 2014 B2
8657818 Lin Feb 2014 B2
8894638 Lau et al. Nov 2014 B2
8961503 Lau et al. Feb 2015 B2
9402679 Ginnebaugh Aug 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9955858 Pamnani May 2018 B2
9968396 Abbott May 2018 B2
10813681 Lau et al. Oct 2020 B2
10856927 Lau et al. Dec 2020 B2
10973568 Ginnebaugh et al. Apr 2021 B2
20010037109 Yamauchi et al. Nov 2001 A1
20020019631 Kidder Feb 2002 A1
20020058938 Cosmescu May 2002 A1
20020115997 Truckai Aug 2002 A1
20020128603 Booth Sep 2002 A1
20030014052 Buysse Jan 2003 A1
20030060816 Iida Mar 2003 A1
20030073991 Francischelli Apr 2003 A1
20030073994 Schulze Apr 2003 A1
20030125734 Mollenauer Jul 2003 A1
20030130654 Kasahara et al. Jul 2003 A1
20030130674 Kasahara et al. Jul 2003 A1
20030130675 Kasahara et al. Jul 2003 A1
20030139649 Kasahara et al. Jul 2003 A1
20030144652 Baker Jul 2003 A1
20030144660 Mollenauer Jul 2003 A1
20030163123 Goble Aug 2003 A1
20030171747 Kanehira Sep 2003 A1
20030187429 Karasawa Oct 2003 A1
20040006333 Arnold Jan 2004 A1
20040054365 Goble Mar 2004 A1
20040059397 Sinofsky Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040078035 Kanehira Apr 2004 A1
20040102450 Ewing et al. May 2004 A1
20040133228 Bayer Jul 2004 A1
20040176756 McGaffigan Sep 2004 A1
20040204725 Bayer Oct 2004 A1
20040260279 Goble Dec 2004 A1
20050033278 McClurken et al. Feb 2005 A1
20050049633 Watanabe Mar 2005 A1
20050070940 Genovesi Mar 2005 A1
20050072827 Mollenauer Apr 2005 A1
20050113826 Johnson May 2005 A1
20050113828 Shields et al. May 2005 A1
20050171533 Latterell Aug 2005 A1
20050182398 Paterson Aug 2005 A1
20060041254 Francischelli et al. Feb 2006 A1
20060074444 Lin et al. Apr 2006 A1
20060211916 Kasahara et al. Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217706 Lau et al. Sep 2006 A1
20060235379 McClurken et al. Oct 2006 A1
20060271037 Maroney et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20070021405 Abouabdellah et al. Jan 2007 A1
20070021424 Abouabdellah et al. Jan 2007 A1
20070027141 Abouabdellah et al. Feb 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070149993 Kasahara et al. Jun 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070213749 Kogasaka et al. Sep 2007 A1
20070260242 Dycus Nov 2007 A1
20070293856 Paul Dec 2007 A1
20070293858 Fischer Dec 2007 A1
20080015567 Kimura Jan 2008 A1
20080015575 Odom Jan 2008 A1
20080039835 Johnson Feb 2008 A1
20080154091 Dejima et al. Jun 2008 A1
20080306335 Lau et al. Dec 2008 A1
20090024121 Kasahara et al. Jan 2009 A1
20090118730 Mollenauer May 2009 A1
20090299367 Ginnebaugh et al. Dec 2009 A1
20100048992 Okada et al. Feb 2010 A1
20100292533 Kasahara et al. Nov 2010 A1
20110046439 Pamnani et al. Feb 2011 A1
20110046624 Lin Feb 2011 A1
20110257643 Lau Oct 2011 A1
20110288369 Ginnebaugh Nov 2011 A1
20110288546 Abbott Nov 2011 A1
20120283720 Newton et al. Nov 2012 A1
20120316550 Ullrich, Jr. et al. Dec 2012 A1
20120316650 Ullrich, Jr. Dec 2012 A1
20130018373 Lau et al. Jan 2013 A1
20140194876 Lau et al. Jul 2014 A1
20180310980 Abbott et al. Nov 2018 A1
Foreign Referenced Citations (47)
Number Date Country
2006229913 Nov 2011 AU
2602015 Oct 2006 CA
2602381 Oct 2006 CA
10328514 Mar 2005 DE
538984 Apr 1993 EP
538984 Jul 1993 EP
538984 Mar 1997 EP
1330991 Jul 2003 EP
1632192 Mar 2006 EP
1330991 Sep 2007 EP
1878399 Jan 2008 EP
1878400 Jan 2008 EP
1894535 Mar 2008 EP
1632192 Mar 2009 EP
2106762 Oct 2009 EP
1885270 Aug 2010 EP
1861034 Sep 2010 EP
2285305 Feb 2011 EP
1894535 Mar 2011 EP
H07508666 Sep 1995 JP
H10511030 Oct 1998 JP
2000135222 May 2000 JP
2000139943 May 2000 JP
2003144451 May 2003 JP
2005058553 Mar 2005 JP
2005514102 May 2005 JP
2008534068 Aug 2008 JP
2008534069 Aug 2008 JP
2011521723 Jul 2011 JP
4966959 Jul 2012 JP
1993020769 Oct 1993 WO
1997005829 Feb 1997 WO
1997010764 Mar 1997 WO
2000047124 Aug 2000 WO
2002080794 Oct 2002 WO
2003057058 Jul 2003 WO
2003061456 Jul 2003 WO
2003061456 Jan 2004 WO
2005048863 Jun 2005 WO
2006104835 Oct 2006 WO
2006104836 Oct 2006 WO
2006104836 Jan 2007 WO
2009039179 Mar 2009 WO
2009154976 Dec 2009 WO
2009154976 Mar 2010 WO
2009154976 May 2010 WO
2009154976 Feb 2011 WO
Non-Patent Literature Citations (84)
Entry
Stedman's Medical Dictionary, pp. 3 and 238 (1982), Waverly Press, Inc.
International Search Report and Written Opinion dated Jan. 19, 2010 for PCT Application No. PCT/US2009/045272; (20 pages).
Non-Final Office Action dated May 7, 2012 for U.S. Appl. No. 12/472,657; (22 pages).
U.S. Appl. No. 13/094,783, filed Apr. 26, 2011 (available via USPTO database).
PCT International Search Report and Written Opinion, PCT/US2006/010569, dated Jul. 24, 2006, 20 pages.
PCT International Preliminary Report on Patentability, PCT/US2006/010569, dated Sep. 25, 2007, 9 pages.
PCT International Search Report and Written Opinion, PCT/US2006/010568, dated Jul. 24, 2006, 8 pages.
PCT International Preliminary Report on Patentability, PCT/US2006/010568, dated Sep. 25, 2007, 6 pages.
European Examination Report, EP 06739388.4, dated Sep. 17, 2008, 7 pages.
Non-Final Office Action dated Mar. 14, 2012 for U.S. Appl. No. 13/094,783; (8 pages).
European Examination Report, EP Application No. EP 06739387.6, dated Dec. 11, 2008 (4 pages).
U.S. Appl. No. 13/047,778, filed Mar. 14, 2011 (available via USPTO database).
U.S. Appl. No. 14/148,671, filed Jan. 6, 2014 (available via USPTO database).
U.S. Appl. No. 12/472,657, filed May 27, 2009 (available via USPTO database).
U.S. Appl. No. 13/494,985, filed Jun. 12, 2012 (available via USPTO database).
U.S. Appl. No. 13/549,367, filed Jul. 13, 2012 (available via USPTO database).
PCT International Search Report, PCT/US2006/010569, dated Jul. 24, 2006, 6 pages.
PCT International Preliminary Report on Patentability, PCT/US2006/010569, dated Sep. 25, 2007 and dated Oct. 4, 2007, 10 pages.
PCT International Search Report, PCT/US2006/010568, dated Jul. 24, 2006, 3 pages.
L.S. Feldman et al. (eds.), Fundamentals of Electrosurgery Part I: Principles of Radiofrequency Energy for Surgery, the SAGES Manual on the Fundamental Use of Surgical Energy (FUSE), 2012, 15-59, Springer-Verlag, New York.
Dielectric Heating, downloaded Dec. 2, 2014 from http://www.comdel.com/dielectric-heating, 2 pages.
Ohanian, Hans C, Physics, 1985, 658-660, W.W. Norton & Company, Inc., New York.
How RF Heating Works, downloaded Dec. 2, 2014 from http://www.macrowave.com/rftech.html, 1 page.
Electrosurgery: the newest energy-based devices downloaded Dec. 3, 2014 from http://contemporary.obgyn.modernmedicine.com/contemporary-obgyn/cantent/tags/aescula . . . , 6 pages.
Joule heating, Wikipedia, downloaded Dec. 1, 2014 from http://en.wikipedia.org/wiki/Joule_heating, 6 pages.
Final Office Action Issued in U.S. Appl. No. 15/618,112 dated Jun. 29, 2020, 10 pages.
Non-Final Office Action Issued in U.S. Appl. No. 15/618,112 dated Nov. 26, 2019, 11 pages.
Final Office Action Issued in U.S. Appl. No. 15/225,753 dated Feb. 8, 2017, 7 pages.
Non-Final Office Action Issued in U.S. Appl. No. 13/094,795 dated Sep. 29, 2014, 13 pages.
Final Office Action Issued in U.S. Appl. No. 13/094,795 dated Apr. 2, 2015, 13 pages.
Non-Final Office Action Issued in U.S. Appl. No. 15/432,699 dated May 16, 2019, 6 pages.
Non-Final Office Action Issued in U.S. Appl. No. 14/629,423 dated Mar. 15, 2016, 6 pages.
Non-Final Office Action Issued in U.S. Appl. No. 14/148,671 dated May 9, 2014, 5 pages.
Non-Final Office Action Issued in U.S. Appl. No. 13/549,367 dated Nov. 26, 2012, 6 pages.
Final Office Action Issued in U.S. Appl. No. 13/549,367 dated Aug. 9, 2013, 5 pages.
Final Office Action Issued in U.S. Appl. No. 13/549,367 dated May 2, 2013, 6 pages.
Final Office Action Issued in U.S. Appl. No. 13/047,778 dated Apr. 13, 2012, 6 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,330 dated Mar. 22, 2010, 6 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,330 dated Nov. 17, 2009, 6 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,330 dated Jan. 29, 2009, 5 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,330 dated Apr. 2, 2008, 13 pages.
Final Office Action Issued in U.S. Appl. No. 11/090,330 dated Aug. 6, 2010, 5 pages.
Final Office Action Issued in U.S. Appl. No. 11/090,330 dated May 15, 2009, 5 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,750 dated May 16, 2011, 8 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Dec. 28, 2010, 5 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Feb. 22, 2010, 9 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Nov. 10, 2008, 13 pages.
Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Apr. 2, 2008, 10 pages.
Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Apr. 17, 2009, 9 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Dec. 23, 2013, 7 pages.
Non-Final Office Action Issued in U.S. Appl. No. 11/090,750 dated May 17, 2013, 7 pages.
Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Aug. 26, 2013, 7 pages.
Final Office Action Issued in U.S. Appl. No. 11/090,750 dated Aug. 19, 2012, 6 pages.
Non-Final Office Action Issued in U.S. Appl. No. 14/551,599 dated Feb. 4, 2016, 9 pages.
Final Office Action Issued in U.S. Appl. No. 14/551,599 dated May 26, 2016, 9 pages.
Non-Final Office Action Issued in U.S. Appl. No. 15/482,310 dated Jan. 8, 2020, 4 pages.
Non-Final Office Action Issued in U.S. Appl. No. 12/545,690 dated Nov. 5, 2015, 14 pages.
Non-Final Office Action Issued in U.S. Appl. No. 12/545,690 dated Apr. 28, 2014, 22 pages.
Non-Final Office Action Issued in U.S. Appl. No. 12/545,690 dated Jan. 8, 2013, 12 pages.
Final Office Action Issued in U.S. Appl. No. 12/545,690 dated Jul. 14, 2016, 20 pages.
Final Office Action Issued in U.S. Appl. No. 12/545,690 dated Dec. 15, 2014, 32 pages.
Final Office Action Issued in U.S. Appl. No. 12/545,690 dated Oct. 21, 2013, 15 pages.
Non-Final Office Action Issued in U.S. Appl. No. 12/472,657 dated Jun. 3, 2014, 19 pages.
Non-Final Office Action Issued in U.S. Appl. No. 12/472,657 dated May 7, 2012, 13 pages.
Final Office Action Issued in U.S. Appl. No. 12/472,657 dated Feb. 4, 2015, 17 pages.
Final Office Action Issued in U.S. Appl. No. 12/472,657 dated Jan. 14, 2013, 17 pages.
Final Office Action issued in U.S. Appl. No. 11/090,750, dated Jun. 11, 2010, 11 pages.
International Preliminary Report on Patentability issued in International Application No. PCT/US2009/045272 dated Nov. 30, 2010, 11 pages.
Ex Parte Quayle Action issued in U.S. Appl. No. 11/090,750, mailed Sep. 6, 2011, 4 pages.
Final Office Action issued in U.S. Appl. No. 13/094,783, dated Aug. 30, 2012, 12 pages.
Final Office Action issued in U.S. Appl. No. 13/494,985, dated Sep. 19, 2012, 7 pages.
Office Action issued in JP Application No. 2012-209125 dated Oct. 15, 2013, 6 pages.
Office Action issued in U.S. Appl. No. 13/094,783 dated Jul. 31, 2014, 16 pages.
Final Office Action issued in U.S. Appl. No. 13/094,783 dated Apr. 29, 2015, 17 pages.
Office Action issued in EP Application No. 09767288.5 dated Jun. 24, 2015, 4 pages.
Office Action issued in U.S. Appl. No. 13/094,783 dated Dec. 7, 2015, 18 pages.
Office Action issued in EP Application No. 09767288.5 dated Apr. 14, 2016, 3 pages.
Final Office Action issued in U.S. Appl. No. 13/094,783 dated Aug. 1, 2016, 18 pages.
Office Action issued in U.S. Appl. No. 13/094,783 dated Mar. 16, 2017, 18 pages.
Extended European Search Report issued in EP Application No. 16002268.7 dated Apr. 21, 2017, 7 pages.
Office Action issued in U.S. Appl. No. 15/961,676 dated Oct. 30, 2020, 10 pages.
Final Office Action issued in U.S. Appl. No. 15/961,676 dated Apr. 20, 2021, 12 pages.
Non-Final Office Action issued in U.S. Appl. No. 15/961,676 dated Oct. 13, 2021, 10 pages.
Final Office Action issued in U.S. Appl. No. 15/961,676 dated May 27, 2022, 9 pages.
Related Publications (1)
Number Date Country
20180303322 A1 Oct 2018 US
Divisions (1)
Number Date Country
Parent 12545690 Aug 2009 US
Child 15958447 US