The present patent application relates to surface cleaning systems, and, more particularly, to a surface cleaning system that utilizes a regenerative blower as a vacuum source.
Cleaning carpet, upholstery, tile floors, and other surfaces enhances the appearance and extends the life of such surfaces by removing the soil embedded in the surface. Moreover, carpet cleaning removes allergens, such as mold, mildew, pollen, pet dander, dust mites, and bacteria. Indeed, regular cleaning keeps allergen levels low and thus contributes to an effective allergy avoidance program.
Vacuum extractors for cleaning surfaces, such as carpet, typically deposit a cleaning fluid upon the carpet or other surface to be cleaned. The deposited fluid, along with soil entrained in the fluid, is subsequently removed by high vacuum suction. This enables the carpet to be completely dry before mold has time to grow. The soiled fluid, i.e., waste fluid, is then separated from the working air and is collected in a recovery tank.
Due to the prevalence of carpeted surfaces in commercial establishments, institutions, and residences, there exists a thriving commercial carpet cleaning industry. In order to maximize the efficacy of the cleaning process, industrial floor cleaning systems should be powerful to minimize the time in which the soil entrained cleaning fluid is present in the carpet. Industrial floor cleaning systems should also be durable. That is, such a cleaning system should be manufactured from durable working parts so that the system has a long working life and requires little maintenance.
Industrial floor cleaning systems generally provide for the management of heat, vacuum, pressure, fresh and gray water, chemicals, and power to achieve the goal of efficient, thorough cleaning of different surfaces, usually carpets but also hard flooring, linoleum and other surfaces, in both residential and commercial establishments. Professional surface cleaning systems are also utilized in the restoration industry for water extraction.
Of the many industrial surface cleaning systems available, a major segment are self-contained having an own power plant, heat source, vacuum source, chemical delivery system, and water dispersion and extraction capabilities. These are commonly referred to as “slide-in” systems and install permanently in cargo vans, trailers, and other commercial vehicles, but can also be mounted on portable, wheeled carts. Slide-in systems comprise a series of components designed and integrated into a package with an overall goal of performance, economy, reliability, safety, useful life, serviceability, and sized to fit in various commercial vehicles.
Currently, the vacuum source found in the industrial surface cleaning systems comprises a positive displacement blower. One common type of positive displacement blower is a rotary blower. Rotary blowers typically include two or more meshing lobes that rotate within a blower chamber. In operation, as the lobes rotate, air is trapped in pockets surrounding the lobes and is carried from an intake side of the blower to an exhaust side of the blower. Positive displacement blowers are designed such that there is no contact between the lobes and the walls of the blower chamber, and the air is trapped due to the substantially low clearance between the components. However, because of the clearance that must be maintained between the lobes and the chamber walls, single-stage blowers can pump air across only a limited pressure differential. Furthermore, if the blower is used outside of its specified operating conditions, the compression of the air can generate such a large amount of heat that the lobes may expand to the point that they become jammed within the blower chamber, thereby damaging the pump. Because of the limited pressure differential that can be generated by a single-stage blower and the potential for damaging the blower if blower is run too hot, some industrial surface cleaning systems use blowers having multiple stages, which adds to the cost of the blower.
Positive displacement pumps, while popular, have several downfalls associated with their use. As discussed above, because rotary blowers are sensitive to heat, there is a risk of damaging the blower if the operation of the blower is not carefully monitored. Damage to the blower can include, for example, timing issues, clashing of the lobes, and total blower failure due to jamming of the components within the blower housing. Over time, reliability can also be an issue if proper maintenance is not performed. Rotary blowers also produce a significant amount of vibration during operation, which can lead to increased wear and tear on the blower and adjacent components of the cleaning system. Furthermore, rotary blowers can be very noisy. The noise produced by rotary blowers is not only a nuisance to those in the vicinity of the cleaning system, but it can also contribute to hearing loss if proper ear protection is not worn.
To better illustrate the cleaning system disclosed herein, a non-limiting list of examples is provided here:
In Example 1, a cleaning system can be provided that includes a power plant, a regenerative blower having a power input shaft, a suction port, and a discharge port, an interface assembly configured for transmitting power from the power plant to the regenerative blower, a pump configured for generating pressurized water, and a heat exchanger system configured for heating the pressurized water.
In Example 2, the cleaning system of Example 1 is optionally configured to include a support frame, wherein at least one of the power plant, the regenerative blower, and the pump is coupled to the support frame.
In Example 3, the cleaning system of any one of or any combination of Examples 1-2 is optionally configured to include one or more wands having an input configured to receive the pressurized water for distribution to a surface to be cleaned.
In Example 4, the cleaning system of Example 3 is optionally configured to include one or more delivery hoses extending between the pump and the one or more wands and configured to deliver the pressurized water to the one or more wands.
In Example 5, the cleaning system of Example 4 is optionally configured to include a vacuum recovery tank, the vacuum recovery tank having a first input coupled to the suction port of the regenerative blower and one or more second inputs coupled to one or more vacuum hoses extending between the recovery tank and the one or more wands.
In Example 6, the cleaning system of Example 5 is optionally configured to include a chemical distribution system configured to deliver a stream of cleaning chemical into the pressurized water for delivery by the one or more wands.
In Example 7, the cleaning system of Example 6 is optionally configured such that the discharge port of the regenerative blower is operably coupled to the heat exchanger system and configured to provide exhaust gases for heating the pressurized water.
In Example 8, the cleaning system of any one of or any combination of Examples 1-7 is optionally configured such that the regenerative blower includes an impeller coupled to the power input shaft.
In Example 9, the cleaning system of Example 8 is optionally configured such that the impeller is formed integral with the power input shaft.
In Example 10, the cleaning system of any one of or any combination of Examples 1-9 is optionally configured such that the power plant is a combustion engine.
In Example 11, the cleaning system of any one of or any combination of Examples 1-9 is optionally configured such that the power plant is an electric motor.
In Example 12, a cleaning system can be provided that includes a power plant having a power output shaft, a regenerative blower including a blower housing having a suction port and a discharge port and defining a blower chamber, the regenerative blower further including an impeller disposed within the blower chamber and a power input shaft extending from the impeller, an interface assembly configured for transmitting power from the power output shaft of the power plant to the power input shaft of the regenerative blower, a pump configured for generating pressurized water, a heat exchanger system configured for heating the pressurized water, and one or more wands having an input configured to receive the pressurized water for distribution to a surface to be cleaned.
In Example 13, the cleaning system of Example 12 is optionally configured to include a vacuum recovery tank, the vacuum recovery tank having a first input coupled to the suction port of the regenerative blower and one or more second inputs coupled to one or more vacuum hoses extending between the recovery tank and the one or more wands.
In Example 14, the cleaning system of any one of or any combination of Examples 12-13 is optionally configured such that the blower housing includes a first housing portion and a second housing portion configured to be secured together to substantially enclose the impeller.
In Example 15, the cleaning system of Example 14 is optionally configured to include a bearing assembly positioned between an inner surface of one of the first housing portion and the second housing portion and a central hub of the impeller, the bearing assembly configured to allow rotation of the impeller relative to the blower housing.
In Example 16, the cleaning system of any one of or any combination of Examples 12-15 is optionally configured such that the impeller includes a central hub and a plurality of blades extending around a circumference of the central hub, wherein each of the blades is curved between a first end adjacent to the central hub and a second end spaced from the central hub.
In Example 17, the cleaning system of any one of or any combination of Examples 12-16 is optionally configured such that the discharge port includes a silencer configured to reduce a noise output level of the regenerative blower.
In Example 18, the cleaning system of any one of or any combination of Examples 12-17 is optionally configured such that the power plant is a combustion engine.
In Example 19, the cleaning system of any one of or any combination of Examples 12-17 is optionally configured such that the power plant is an electric motor.
In Example 20, a vacuum extraction cleaning system can be provided that includes a power plant and a regenerative blower including a blower housing having a suction port and a discharge port and defining a blower chamber, one or more impellers disposed within the blower chamber, a power input shaft extending from the one or more impellers, and one or more bearings configured to allow rotation of the one or more impellers within the blower chamber. The vacuum extraction apparatus can further include an interface configured to allow coupling of the power plant to the power input shaft of the regenerative blower, a pump configured for generating pressurized water, a heat exchanger system configured for heating the pressurized water, one or more wands configured to receive the pressurized water for distribution to a surface to be cleaned, and a vacuum recovery tank, the vacuum recovery tank having a first input coupled to the suction port of the regenerative blower and one or more second inputs coupled to one or more vacuum hoses extending between the recovery tank and the one or more wands.
In Example 21, the cleaning system of any one of or any combination of Examples 1-20 is optionally configured such that all elements or options recited are available to use or select from.
This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
The present patent application relates to a regenerative blower for a cleaning system, such as a truck-mounted cleaning system, that utilizes vacuum extraction to remove gray water from a floor surface. Truck-mounted cleaning systems generally fall into two categories, including slide-in systems and vehicle-powered systems. Slide-in systems can be powered by their own engines, or power plants, and can be supported by a frame that is secured to the vehicle. Vehicle-powered systems differ from slide-in systems in that they receive power from the engine, or power plant, of the vehicle rather than from a dedicated engine of the cleaning system. However, both slide-in systems and vehicle-powered systems can include components for supplying cleaning solution, heat, pressure, and vacuum for the cleaning operation.
One benefit of slide-in systems over vehicle-powered systems is that they can be transferred between vehicles with relative ease. However, as compared to vehicle-powered systems, slide-in systems generally require more cargo space in a vehicle.
For purposes of example only, the cleaning system of the present disclosure is described as a slide-in cleaning system. However, various components of the cleaning system, such as the drive system, can be modified to provide for a vehicle-powered system rather than a slide-in system. Thus, both slide-in systems and vehicle-powered systems are within the intended scope of the present disclosure.
As illustrated in
In an example, the power plant 4 and the regenerative blower 5 of the drive system 3 can be independently hard-mounted on the support frame 2 either directly using one or more mechanical fasteners 16, or indirectly using one or more mounting plates or brackets 17. In an alternative example, the power plant 4 and the regenerative blower 5 can be mounted together as a combined unit, which is then mounted either directly or indirectly on the support frame 2. Thus, independent mounting of the power plant 4 and the regenerative blower 5 is shown merely for purposes of example and not limitation. Any suitable mechanical fasteners 16 can be used including, but not limited to, bolts, screws, or the like. The brackets 17 can be formed from any suitable material, such as metal. The support frame 2 can be configured for mounting in a van, truck or other suitable vehicle for portability, as illustrated in
The cleaning system 1 can operate by delivering fresh water to an inlet of the system utilizing, for example, a standard garden hose or a fresh-water container. The system can add energy to the fresh water, i.e., pressurize it, by means of the pump 9. The fresh water can be pushed throughout the one or more heat exchanger systems 10 using pressure provided by the pump 9. The one or more heat exchanger systems 10 can gain their heat by thermal energy rejected from the regenerative blower 5 or the power plant 4, e.g., from hot exhaust gasses, coolant water used on certain engines, or other suitable means. On demand from the wand 14, the pump 9 can drive the heated water through the solution hose 12 where one or more cleaning chemicals can be added from the chemical container 13, and then can deliver the water-based chemical cleaning solution to the wand 14 for cleaning the floor, carpet or other surface. The hot water can travel, for example, between about 50 feet and about 300 feet to the wand 14. The operator can deliver the hot solution via the wand 4 to the surface to be cleaned, and can almost immediately extract the solution along with soil that has been emulsified by thermal energy or dissolved and divided by chemical energy. The extracted, soiled water can be drawn via the vacuum hose 15 into the recovery tank 11 for eventual disposal as gray water. An auxiliary pump (not shown), commonly referred to as an APO or Automatic Pump Out device, may be driven by the power plant 4 for automatically pumping the gray water from the recovery tank 11 into a sanitary sewer or other approved dumping location. Alternatively, this task can be performed manually.
Various types of interface assemblies 6 can be used for transmitting power from the power plant 4 to the regenerative blower 5. A non-exhaustive subset of such interface assemblies is discussed below. However, it should be understood that regenerative blowers in accordance with the present disclosure can be utilized in cleaning systems that incorporate any type of interface assembly. Thus, the interface assemblies described herein are provided merely for purposes of example and not limitation. Furthermore, the type of interface assembly utilized can depend on the type of power plant selected for a particular cleaning system, such as an internal combustion engine or an electric motor.
One type of interface assembly that can be used for transmitting power from the power plant 4 to the regenerative blower 5 is a rigid, direct drive coupling, which is discussed in further detail below with reference to
In an example, as illustrated in
As illustrated in
The coupling hub 50 can include a central hub portion 84 that can be structured with the flywheel assembly output surface 30 for forming a substantially inflexible or rigid, rotationally fixed mechanical joint with the power input shaft 27 of the regenerative blower 5 for directly transmitting torque thereto from the power plant 4. For example, the flywheel assembly output surface 30 can be a bore in the central huh portion 84, the bore being formed with an internal spline, a keyway, or other suitable means for forming a rigid and rotationally fixed joint with the power input surface 34 of the coupling 32, and thereafter to the regenerative blower input shaft 27.
The coupling 32 can include, for example, a hub 86 formed with the power input surface 34 and a power output surface 88. The power input surface 34 can be structured to cooperate with the power output surface 30 portion of the coupling hub 50 to form a rigid, rotationally fixed joint. For example, when the power output surface 30 is a bore that includes an internal spline, the power input surface 34 of the cooperating hub 86 can include an external spline structured to mate with the internal spline 30.
The power output surface 88 can be structured to cooperate with the power input drive shaft 27 to form a rigid, rotationally fixed joint therewith. The hub 86 can thereby form a rigid, rotationally fixed joint between the regenerative blower 5 and the power plant 4 for directly transmitting torque thereto. For example, the power output surface 88 can include an internal bore sized to accept the power input shaft 27 of the regenerative blower 5.
The coupling 32 can also include means for rotationally fixing the hub 86 relative to the regenerative blower power input shaft 27. For example, a key 90 can be inserted in respective cooperating keyways 92, 94 in the input drive shaft 27 of the regenerative blower 5 and the internal bore 88 of the hub 86. The key 90 can therefore rotationally fix the hub 86 relative to the blower shaft 27 for transmitting torque through the interface assembly 6 to the regenerative blower 5.
In an example, the structural connector 38 can be configured as a rigid metal housing that can be bolted or otherwise secured to the face 40 of the regenerative blower 5 adjacent to where the power input shaft 27 projects. An opposing side of the structural connector can be bolted or otherwise secured to the adapter plate 24 of the power plant The structural connector 38 can be configured to precisely and coaxially align the power input shaft 27 of the regenerative blower with the power output shaft 25 of the power plant 4.
After being rigidly joined and rotationally secured to the power input shaft 27 of the regenerative blower 5 as described herein, the splined hub 86 can be inserted into the internally splined central hub portion 84 of the coupling hub 50. The intermeshed output and input splines 30, 34 can thereby conjoin the power input shaft 27 in rigid, rotationally fixed contact with the power output shaft 25. Torque generated by the power plant 4 can thus be transmitted to the regenerative blower 5 without relative rotational motion between the power output and input shafts 25, 27.
As illustrated in
In an example, the blower housing 120 can be coupled to a bracket or mounting plate (not shown) that is configured to be secured to the support frame 2 (
As further illustrated in
In operation, air can be drawn from the recovery tank 11 (
As further illustrated in
The first housing portion 121A can be coupled to the second housing portion 121B using any suitable connection means. In an example, as illustrated in
As further illustrated in
In an example, as illustrated in
As discussed above, in an example, the impeller 133 can be formed integral with the power input shaft 127, such as by a casting process. However, the power input shaft 127 can be formed separate from the impeller 133, and the two components can be coupled together using any suitable coupling means. Furthermore, the blades 172 can be formed separate from the central hub 170 and attached thereto during manufacturing, such as by welding.
The electric motor 190 can convert the electric current from the battery pack 186 into rotary motion, which can be transmitted to the power input shaft 127 (not shown) of the regenerative blower 5A. In an example, the electric motor 190 can also be used to power other components, such as pumps, compressors, heating elements, or the like.
The motor controller 188 can be configured to condition and regulate the electric voltage and current into the components to which it supplies power, such as the electric motor 190. The motor controller 188 can also provide means to indirectly regulate the operational speed of the electric motor 190.
Although not shown, the electric drive assembly 180 can include various interconnecting and control devices. These interconnecting and control devices can include, for example, wires, switches, bulbs, overcurrent protection (such as fuses/breakers), and thermal protection.
The regenerative blower 5A is described and illustrated herein as a “single-stage” blower, wherein air molecules travel around the blower housing 120 a single time prior to being exhausted, merely for purposes of example. In various alternative examples, the regenerative blower 5A can be a “multi-stage” blower, such as a “two-stage” blower that can be configured to provide about twice the vacuum of a single-stage unit. Two-stage regenerative blowers can be configured to operate similar to a single-stage blower wherein an impeller can repeatedly strike the air molecules to create pressure and, consequently, the vacuum. However, in a two-stage blower, air molecules can make a first revolution around a front side impeller and, rather than being exhausted after the first revolution like the regenerative blower 5A, the air flow can be directed back to a rear side impeller through one or more channels provided in the blower housing. The redirected air molecules can then make a second revolution around the rear side impeller thereby doubling the number of times that impellers strike the air molecules. Once the air molecules have completed the second revolution around the rear side impeller, the air flow can be exhausted. Thus, two-stage blowers can be operable to provide higher pressures and vacuums because the impellers strike the air molecules over a period of two revolutions instead of just one as in a single-stage regenerative blower.
One benefit of the exemplary regenerative blower 5A in accordance with the present disclosure, compared to other blowers such as positive displacement pumps, can be that the blower requires minimal monitoring and maintenance. As discussed above, the impeller 133 is the only moving part in the regenerative blower 5A. Because the impeller 133 does not contact the blower housing 120 during rotation, the impeller 133 can be substantially wear-free. The first and second bearings 136 and 140, which can generally be self-lubricated, can be the only components that experience any significant wear over a long period of operation. Another benefit of the exemplary regenerative blower 5A can reside in the fact that the blower does not utilize oil, and also do not require a complicated intake and exhaust valve system. Because regenerative blowers are non-positive displacement devices, another benefit of the exemplary regenerative blower 5A can be the generation of discharge air that is generally “clean” and substantially pulsation-free.
Although the regenerative blower 5A is illustrated as being mounted with the impeller 133 in a plane generally perpendicular to the support frame 2, the regenerative blower 5A can alternatively be mounted in any plane. Regardless of the plane in which the regenerative blower 5A is mounted, the impeller 133 can be dynamically balanced such that minimal vibration is generated by the blower during operation. Additionally, although the regenerative blower 5A is described herein as including a single suction port 124 and a single discharge port 126, in various examples, multiple suction and discharge connection configurations can be utilized.
The above Detailed Description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples or one or more aspects thereof) shown or described herein.
In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 CFR. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This application is a continuation of U.S. patent application Ser. No. 14/203,169, filed on Mar. 10, 2014, and issued as U.S. Pat. No. 9,345,373 on May 24, 2016, which claims the benefit of priority to U.S. Provisional Application Ser. No. 61/792,754, filed Mar. 15, 2013, the benefit of priority of each of which is claimed hereby, and each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4949424 | Shero | Aug 1990 | A |
5371918 | Shero | Dec 1994 | A |
5815869 | Hopkins | Oct 1998 | A |
5950273 | Suhaka | Sep 1999 | A |
5979012 | Fritz | Nov 1999 | A |
6675437 | York | Jan 2004 | B1 |
7191489 | Heath | Mar 2007 | B1 |
7600289 | Hayes et al. | Oct 2009 | B2 |
9345373 | Betton | May 2016 | B2 |
20100200080 | Roden | Aug 2010 | A1 |
20140259512 | Betton et al. | Sep 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160262588 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61792754 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14203169 | Mar 2014 | US |
Child | 15162137 | US |