The present disclosure relates to a cleaning tool comprising upstanding stems, and a method of cleaning a surface. In particular, the present disclosure relates to a cleaning material for gathering or removing debris, lint, or hair from a variety of surfaces by using a combination of small and large upstanding stems.
Adhesive or other tacky lint removal devices, such as lint rollers, or directional felted fabric, such as disclosed in U.S. Pat. No. 6,901,622 can be used to remove lint and debris, such as particles, dirt, or hair from a surface. Hair embedded into fabric surfaces presents a particular challenge to remove as the hair is often entangled into the fabric surface.
For adhesive lint removal devices, the adhesive may not be strong enough to capture strongly embedded hair. Also, even if the adhesive sheet can retain the hair, often the adhesive sheet becomes loaded with debris so quickly that it becomes inefficient to clean a large area or an area having heavy debris cover. For directional felted fabric, the fabric is only useful at removing debris, lint, or hair by use in one direction. Further, once the fabric becomes loaded with debris, the user must remove the debris to continue use as these types of materials are typically not disposable.
The present disclosure relates to a cleaning tool that removes debris, lint, or hair from a variety of surfaces. In particular, the cleaning tool is highly effective at removing embedded hair from fabric, upholstered, or carpeted surfaces. The cleaning tool is provided with a first array of stems and a second array of stems, wherein the first array of stems are smaller and more densely included on a cleaning surface of the cleaning tool. The larger stems are able to loosen and pull deeply embedded hair from loose fabric surfaces, while the smaller stems are able to capture and retain the loosened hair.
In one embodiment, a cleaning tool is disclosed. The cleaning tool comprises a working surface, a first array of stems comprising from 20 to 1000 upstanding stems per square centimeter projecting from the working surface, wherein each stem of the first array has a height from 0.2 and 2.0 millimeters and a shore hardness less than 105A, and a second array of stems comprising from 0.1 to 3 upstanding stems per square centimeter projecting from the working surface, wherein each stem of the second array has a height from 2.5 to 25 millimeters and a shore hardness less than 105 A. The first and second array of stems are wiped over a surface to be cleaned to gather debris, lint, or hair.
In one embodiment, a cleaning sheet is disclosed. The cleaning sheet comprises a first area including a first array of stems comprising from 20 to 1000 upstanding stems per square centimeter projecting from the working surface, wherein each stem of the first array has a height from 0.2 and 2.0 millimeters and a shore hardness less than 105 A and a second area including a second array of stems comprising from 0.1 to 3 upstanding stems per square centimeter projecting from the working surface, wherein each stem of the second array has a height from 2.5 to 25 millimeters and a shore hardness less than 105 A.
In another embodiment, the cleaning sheet comprises a first array of stems comprising from 20 to 1000 upstanding stems per square centimeter projecting from the working surface, wherein each stem of the first array has a height from 0.2 and 2.0 millimeters and a shore hardness less than 105 A and a second array of stems comprising from 0.1 to 3 upstanding stems per square centimeter projecting from the working surface, wherein each stem of the second array has a height from 2.5 to 25 millimeters and a shore hardness less than 105 A. The second array of stems are distributed within the first array of stems.
In another embodiment, a method of cleaning a surface is disclosed. The method comprises providing a cleaning tool comprising a backing and projecting from the backing is a first array of stems comprising from 20 to 1000 upstanding stems per square centimeter, wherein each stem of the first array has a height from 0.2 and 2.0 millimeters and a shore hardness less than 105 A and a second array of stems comprising from 1 to 5 upstanding stems per square centimeter, wherein each stem of the second array has a height from 5 to 50 millimeters and a shore hardness less than 105 A, wiping the first and second array of stems over a surface to be cleaned, loosening lint, hair or debris on the surface to be cleaned with the stems of the second array, and capturing lint, hair or debris with the stems of the first array.
While the above-identified drawings and figures set forth embodiments of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of this invention. The figures may not be drawn to scale.
The body 220 of the cleaning tool 200 is shown oriented about a first axis A1 and second axis A2. The body 220 of the cleaning tool 200 has a first end 202, a second end 204 opposite the first end 202, a proximal region 206, in this embodiment referred to as an upper region, and a distal region 208, in this embodiment referred to as a bottom region. The body of the cleaning tool 200 includes a working surface 221. The working surface 221 supports the cleaning material 100 to make contact with the surface to be cleaned and perform the cleaning function.
In this embodiment, the working surface 221 includes convexly curved surface 222 and a top face 224. The convexly curved surface 222 extends along the direction of axis A1 from the body first end 202, to the body second end 204 and continues a curve around the body second end 204. It is understood that the curve of the convexly curved surface may have a single radius of curvature over the whole surface or may have a varying radius of curvature. The top face 224 extends from the body first end 202, however is generally opposite the convexly curved surface 222. In this embodiment, the top face 224 is a planar surface, however it may be curved (convex or concave), stepped, textured, irregular, or other shape or configuration. The top face 224 and convexly curved surface 222 converge together at the first end 202 of the cleaning tool 200 to form a tapered portion 226.
In the embodiment shown in
The cleaning tool 200 includes an optional handle 210 to provide a mechanism for a user to securely hold the cleaning tool. In this embodiment, the handle includes a first end 212 and a second end 214 that are integrally attached to the body 220 of the cleaning tool 200. Generally, the handle first end 212 is adjacent the top face 224 near the body first end 202, and the handle second end 214 is adjacent the convexly curved surface 222 near the body second end 204. A recess or cavity 216 is included to allow a hand to grip around the handle 210 and fingers to recess into the cavity 216.
The cleaning material 100 comprises a first array of stems 110 and a second array of stems 120. The first array of stems 110 and second array of stem 120 are shown separate from one another. Unlike directional fabric, an array of stems can be wiped across a surface in any direction and gather and capture debris, lint, or hair. Generally, the first array of stems 110 is more densely arranged and shorter than the second array of stems 120.
The first array of stems 110 generally comprises a dense arrangement of small stems.
With reference to
The second array of stems 120 generally comprise a less dense arrangement of larger stems, relative to the first array of stems 110. With reference to
As shown in
A stem, for purposes of this disclosure, is distinguished from a hook. A stem is a protrusion that projects from a surface but does not form an interlocking fastening system like a hook may with a mating surface. Hooks generally have an overhang, or other portion that projects laterally from the main body of the hook to create the interlocking fastening system. A stem, alternatively, typically does not have a portion that projects laterally from the main body of the stem. As can be seen in the embodiment in
Stems that are generally upstanding tend to optimize the performance of the cleaning material 100. The stems are kept upstanding by the stem diameter and the nature of the elastomeric material. As shown in the embodiment of
Suitable materials for the stem web include elastomers. The elastomer and elastomer properties of the first array of stems 110 may be the same as or different than that of the second array of stems 120. The elastomer should have a Shore Hardness less than 105 A. In one embodiment, the elastomer has a Shore Hardness less than 85 A. Suitable materials include thermoplastic polyurethanes, polyvinyl chlorides, polyamides, polyimides, polyolefins (e.g., polyethylene and polypropylene), polyesters (e.g., polyethylene terephthalate), polystyrenes, nylons, acetals, block polymers (e.g., polystyrene materials with elastomeric segments, available from KRATON Polymers Company of Houston, Texas, under the designation KRATON™, polycarbonates, thermoplastic elastomers (e.g., polyolefin, polyester or nylon types) and copolymers and blends thereof. The thermoplastic material may also contain additives, including but not limited to fillers, fibers, antistatic agents, lubricants, wetting agents, foaming agents, surfactants, pigments, dyes, coupling agents, plasticizers, suspending agents, hydrophilic/hydrophobic additives, adhesives and tacky polymers, and the like.
Secured to the backing 21 may be an optional layer 22 that may serve as a reinforcing layer or attachment layer. The layer 22 may impart increased tear resistance or tensile strength to the stem web. The layer 22 may serve as an attachment mechanism. For example, layer 22 may be an adhesive layer for adhesively securing the stem web 20 to a surface. Layer 22 may provide a hook or loop surface to attach to other hooks for securing the stem web 20 to another surface, like a cleaning tool. If layer 22 is serving as an attachment mechanism, layer 22 may be a woven, knitted, or nonwoven material that provides a loop for attachment to a hook. Layer 22 may be a foamed or a solid polymeric material. It may include a porous and/or absorbent layer, such as layers of fibrous material or fabric scrim which may be woven or nonwoven. A porous material is useful for absorbing moisture and/or directing moisture away from the stems. In one embodiment, the layer 22 includes a substantially inelastic layer to prevent necking or stretching of the stem web.
The first array of stems 110 is densely formed of stems that are easily able to grip and entangle material within adjacent stems. However, the free volume of the first array of stems 110 provides sufficient open space for the debris, line or hair to become trapped in and held by the stem web. With a free volume from 60 to 98% of the first array of stems 110, a signification portion of the first array of stems is available for loading of the debris, lint or hair.
The second array of stems 120 includes larger stems that are more durable and able to penetrate further into loose or fluffy material such as carpets to catch and entangle hair embedded within. The second array of stems 120 is able to pull the deeply embedded hair sufficiently to the surface such that the first array of stems 110 can grip and entangle the loosened material.
Typically, because the first array of stems 110 is provided to grip and entangle the material, the area provided by the first array of stems 110 is at least 2 times greater than the area provided by the second array of stems 120. In another embodiment, the area provided by the first array of stems 110 is at least 3 times greater than the area provided by the second array of stems 120.
Typically, because the second array of stems 120 are provided to penetrate further into the fabric being cleaned than the first array of stems 110, the height of the second array of stems 120 is at least 3 times greater than the first array of stems 110. In another embodiment, the height of the second array of stems 120 is at least 4 times greater than the first array of stems 110.
Unlike a hook that could catch or snag fabric, an array of stems results in minimal damage when wiped repeatedly over a variety of surfaces, such as fabric and upholstery. Therefore, the stem can be repeatedly used to clean such things as clothing, furniture, carpeting to remove debris, lint or hair without excessive wear.
The body 420 of the cleaning tool 400 has a first end 402, a second end 404 opposite the first end 402, a proximal region 406, in this embodiment referred to as an upper region, and a distal region 408, in this embodiment referred to as a bottom region. The body of the cleaning tool 400 includes a working surface 421. The working surface 421 supports the cleaning material 300 to make contact with the surface to be cleaned and perform the cleaning function.
In this embodiment, the working surface 421 includes planar surface 422 and a top face 424. The planar surface 422 extends from the body first end 402 to the body second end 404. The top face 424 extends from the body first end 402, however is generally opposite the planar surface 422. In this embodiment, the top face 424 is a planar surface, however it may be curved (convex or concave), textured, irregular, or other shape or configuration. The top face 424 and planar surface 422 converge together at the first end 402 of the cleaning tool 400 to form a tapered portion 426.
The cleaning tool 400 includes a handle 410. In this embodiment, the handle includes a first end 412 and a second end 414. The handle first end 412 is attached to the body 420, while the handle second end 414 remains unattached to the body 420. The handle first end 412 projects from the body 420, opposite the planar surface 422. It is understood that a variety of handle shapes, configurations, and placements may be used to allow a user to securely grip the cleaning tool 400.
The cleaning material 300 includes a first array of stems 310 and second array of stems 320, as described above with respect to
Two embodiments of cleaning tools have been shown and described. However, it is understood that a variety of various shapes, sizes and configurations of the cleaning tool, supporting the cleaning material that comprises a first array of stems 110 and a second array of stems 120 may be used. For example, the working surface may have planar, non-planar, uniformly curved, non-uniformly curved, stepped, irregular, or micro or macro textured surface(s) that support the cleaning material. Also, the working surface may be hard and rigid or may partially or entirely include a layer of deformable, conformable, or flexible material such as, for example, foam or sponge. Also, the cleaning materials shown include a variety of surfaces. It is understood that a single surface, such as, a planar, non-planar, or curved may be used. Therefore, the tapered region is not essential and is optional.
The convexly curved surface 222 of
As opposed to a convexly curved surface, other non-planar surfaces, having uniform, or random arrays of structures such as ridges, peaks, or bumps may be suitable in preventing snowplowing and enhancing gathering or capturing of debris, lint or hair. A spacer or glider may be included that provides a low friction surface to remove or recess the cleaning surface. The spacer or glider may be in the form of a fin, rail, bumps, ridges, or other protrusions. To further enhance this ability, it may be advantageous to also include a convexly curved surface along the direction of another axis.
A tapered region 226, 426 provides a particularly advantageous combination of surfaces for supporting the first array of stems 110. The tapered region creates a narrowed portion or point having the first array of stems 110 on opposed directions available for cleaning. The tapered region provides a particularly desirable feature for gathering or capturing debris, lint, or hair in the crease of a chair, sofa, or the like, in the area where the back meets the seat.
The cleaning tool may comprise other portions of the working surface with cleaning materials in addition to the first and second stems. For example, one suitable cleaning material is a directional fabric, such as disclosed in U.S. Pat. No. 6,901,622, or woven, knitted, or nonwoven fabric. Another suitable cleaning material is an adhesive surface. The adhesive surface may be integrally formed on the working surface of the cleaning tool or may be on a sheet placed over the working surface. For example, an adhesive sheet may be an adhesive coated film or paper. Another suitable cleaning material comprises protrusions such as hooks. The hook may be integrally formed on the working surface of the cleaning tool or may be on a sheet removable from or permanently secured to the working surface.
If the cleaning material is in sheet form, two separate individual sheets may be provided: one sheet containing the first array of stems 110 and a second sheet containing the second array of stems 120. In another embodiment, a single sheet may contain the first array of stems 110 and second array of stems 120. The first array of stems 110 may be in one area of the sheet while the second array of stems 120 may be on a separate area of the sheet, such as shown on the sheet of
If a single sheet or multiple sheets are used in conjunction with a cleaning tool, the sheet or the cleaning tool will include an attachment mechanism for securing the sheet to the cleaning tool. During use a wiping motion causes frictional forces between the cleaning material and the surface to be cleaned. The attachment mechanism should form a secure connection between the cleaning material (sheet) and the working surface of the cleaning tool so that the cleaning material does not slip or remove from the working surface. In one embodiment, the cleaning material is secured to the working surface such that the cleaning material is securely placed under tension in the direction of intended wiping. For example, with reference to
The back of the sheet may include an adhesive layer for permanent or releasable attachment to a cleaning tool. Alternatively, the cleaning tool may include the adhesive for permanent or releasable attachment to a sheet of a cleaning material. The back of the sheet may include a hook or loop layer for attachment to hooks on the cleaning tool. For example, a knitted or nonwoven material may be used as a loop for connection to hooks on the cleaning tool. The attachment mechanism is located at least at the body first end and the body second end for secure attachment of the sheet so that during a wiping motion the cleaning material remains securely connected to the cleaning tool. In one embodiment the entire area of contact between the cleaning material and the working surface includes an attachment mechanism. In another embodiment, such as where the attachment mechanism is a hook on the cleaning tool, the hooks are slightly recessed from the perimeter of the working surface to avoid the hooks from snagging or damaging the surface to be cleaned. Alternatively, the sheet may be larger in size than the working surface such that the sheet wraps up and around the working surface. An attachment mechanism may be appropriately located to securely hold the sheet up and around the working surface.
To use the cleaning material, the user will contact the cleaning material over a surface to be cleaned. In particular, the user will wipe the second array of stems over the surface to pull out deeply embedded material, such as hair. This is particularly useful when the surface being cleaned is a lofty, fluffy, or very fibrous material such as carpet. Then the first array of stem is wiped over the surface to gather or capture debris, lint, or hair that is loose on the surface being cleaned. The gathered or captured debris, lint, or hair is removed from the surface being cleaning
In one embodiment, at least the first array of stems, which is more suited for gathering and capturing the material, is removable from the cleaning tool and is disposable. Therefore, following cleaning, at least the first array of stems, along with the captured debris, lint, or hair, is discarded.
In another embodiment, following capture of the debris, lint, or hair, the cleaning material itself may be cleaned to remove some or all of the debris, lint, or hair. Then, the cleaning material may be reused for further cleaning applications. In such an embodiment, the cleaning material may be continually reused or may be disposable after one or several uses.
Although specific embodiments of this invention have been shown and described herein, it is understood that these embodiments are merely illustrative of the many possible specific arrangements that can be devised in application of the principles of the invention. Numerous and varied other arrangements can be devised in accordance with these principles by those of ordinary skill in the art without departing from the spirit and scope of the invention. Thus, the scope of the present invention should not be limited to the structures described in this application, but only by the structures described by the language of the claims and the equivalents of those structures.
This application claims the benefit of U.S. Provisional Patent Application No. 61/116952, filed Nov. 21, 2008, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
840328 | Hickson | Jan 1907 | A |
1526267 | Dessau | Feb 1925 | A |
1885572 | Wood | Nov 1932 | A |
1946283 | Hoffman et al. | Feb 1934 | A |
2065584 | Hempel | Dec 1936 | A |
3654047 | Berkowitz | Apr 1972 | A |
4042995 | Varon | Aug 1977 | A |
4111666 | Kalbow | Sep 1978 | A |
4894060 | Nestegard | Jan 1990 | A |
4975999 | Levy | Dec 1990 | A |
5060337 | Van Niekerk | Oct 1991 | A |
5072479 | Van Niekerk | Dec 1991 | A |
5077870 | Melbye et al. | Jan 1992 | A |
5524575 | Lennon | Jun 1996 | A |
5607635 | Melbye et al. | Mar 1997 | A |
5676092 | Ortolivo | Oct 1997 | A |
5679302 | Miller et al. | Oct 1997 | A |
5682837 | Courtney et al. | Nov 1997 | A |
5845375 | Miller et al. | Dec 1998 | A |
5879604 | Melbye et al. | Mar 1999 | A |
5966771 | Stroud | Oct 1999 | A |
6054091 | Miller et al. | Apr 2000 | A |
6256830 | Jolly | Jul 2001 | B1 |
6372323 | Kobe et al. | Apr 2002 | B1 |
6393648 | Reynolds | May 2002 | B1 |
6553603 | Jolly | Apr 2003 | B1 |
6558602 | Melbye et al. | May 2003 | B1 |
6581236 | Jennings | Jun 2003 | B2 |
6610382 | Kobe et al. | Aug 2003 | B1 |
6635212 | Melbye et al. | Oct 2003 | B1 |
6854153 | Mueller | Feb 2005 | B1 |
6901622 | Thompson et al. | Jun 2005 | B2 |
6904615 | Kobe et al. | Jun 2005 | B2 |
6962635 | Tuman et al. | Nov 2005 | B2 |
7014906 | Tuman et al. | Mar 2006 | B2 |
7037457 | Seidel et al. | May 2006 | B2 |
7052636 | Ausen et al. | May 2006 | B2 |
7284293 | Holder et al. | Oct 2007 | B1 |
7309519 | Scholz et al. | Dec 2007 | B2 |
7350257 | McKay | Apr 2008 | B2 |
7428768 | Dingert | Sep 2008 | B2 |
7921500 | Linzell | Apr 2011 | B2 |
20010016245 | Tuman et al. | Aug 2001 | A1 |
20020115920 | Rich et al. | Aug 2002 | A1 |
20030049407 | Kacher et al. | Mar 2003 | A1 |
20030203155 | Kobe et al. | Oct 2003 | A1 |
20040016444 | Mitchell et al. | Jan 2004 | A1 |
20060130252 | Brunner | Jun 2006 | A1 |
20060200926 | Graham | Sep 2006 | A1 |
20060200927 | Kacher et al. | Sep 2006 | A1 |
20060230559 | Knopow et al. | Oct 2006 | A1 |
20060272115 | Kacher et al. | Dec 2006 | A1 |
20070056131 | Dingert | Mar 2007 | A1 |
20070107155 | Kacher et al. | May 2007 | A1 |
20070130710 | Chen et al. | Jun 2007 | A1 |
20070130713 | Chen et al. | Jun 2007 | A1 |
20080035173 | Tuman et al. | Feb 2008 | A1 |
20080244844 | Tung | Oct 2008 | A1 |
20090031509 | Vasilakes et al. | Feb 2009 | A1 |
20090032059 | Tuman et al. | Feb 2009 | A1 |
20090056048 | Sharifi | Mar 2009 | A1 |
20100192321 | Tuman et al. | Aug 2010 | A1 |
20100199450 | Linzell | Aug 2010 | A1 |
20110088186 | Hilmann | Apr 2011 | A1 |
20110302733 | Yuan | Dec 2011 | A1 |
20120036661 | Ross | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
2 300 556 | Nov 1996 | GB |
WO 2006110792 | Oct 2006 | WO |
WO 2009020749 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100125961 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61116952 | Nov 2008 | US |