Cleaning wipes with particular lotion retention and efficacy characteristics

Information

  • Patent Grant
  • 12152221
  • Patent Number
    12,152,221
  • Date Filed
    Friday, March 31, 2023
    a year ago
  • Date Issued
    Tuesday, November 26, 2024
    a month ago
Abstract
Pre-moistened wipes that include one or more characteristics correlated to desired properties, such as high durability, mileage, cleaning composition retention, efficacy, or the like are described. Pulp substrates typically include an anionic charge, which can result in binding or retention of a cationic biocide such as a quaternary ammonium compound while the remainder of the composition is released from the wipe (e.g., through squeezing, wiping or other compression). The present wipes are specifically tailored to release at least 20% of the quaternary ammonium compound to a target surface, and exhibit at least a 3-log reduction in Staphylococcus aureus population within about 10 seconds to 5 minutes. Such release and efficacy is achieved without the presence of any cationic biocide release agent (e.g., latex or a cationic salt) included in the cleaning composition or elsewhere within the pre-loaded disinfecting wipe.
Description
BACKGROUND OF THE INVENTION
1. The Field of the Invention

The present invention relates to cleaning wipes, more particularly to pre-moistened cleaning wipes that exhibit particular anti-microbial agent release characteristics so as to provide desired microefficacy, and which exhibit excellent absorbency and desorbency characteristics that provide the wipe with better mileage or other improved characteristics during use.


2. Description of Related Art

Numerous cleaning wipes are available, e.g., such as CLOROX DISINFECTING WIPES. While such wipes provide good overall cleaning and disinfection characteristics, versatility, and convenience, there is a continuing need for improved cleaning wipes.


BRIEF SUMMARY

The present invention relates to pre-moistened wipes that include one or more characteristics that Applicant has found to be associated with improved performance characteristics of the wipe. One such characteristic found to be associated with improved performance relates to particular retention and release characteristics of the wipe, with respect to the cleaning composition pre-loaded therein during manufacture. For example, the pre-loaded wipes may be free or substantially free of any biocide release agent (e.g., a cationic biocide release agent), while still releasing at least 20%, or at least 25% of a quaternary ammonium compound to a target surface during use. The wipes may exhibit at least a 3-log reduction in Staphylococcus aureus population within 5 minutes. By way of example, the wipes may include a substrate comprising greater than 70% (e.g., 95% or more) by weight of pulp fibers, and a cleaning composition. The cleaning composition may comprise from about 0.05% to about 5% by weight (e.g., 0.1% to 2%) of a quaternary ammonium compound, from about 0.1% to about 5% (e.g., 0.5% to 3%) by weight of a glycol ether, and from about 90% to 99% water.


In an embodiment, the substrate may comprise wood pulp, which may be comprised of generally ribbon-shaped fibers. The substrate may be void of or at least substantially void of synthetic fibers. For example, greater than 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the substrate may comprise pulp fibers. Of the fibers included in the substrate, all or substantially all such fibers may comprise pulp fibers.


Non-limiting examples of cationic biocide release agents that are specifically not included in the wipes include, but are not limited to cationic salts, latex, and other cationic binders. While such components may serve to increase release of the quaternary ammonium compound, they typically result in other problems with the wipe (e.g., streaking, filming, negative effects on hand feel, stiffness, etc.). For these reasons, the addition of such materials may be avoided, while still achieving sufficient quaternary ammonium compound release to meet a desired microefficacy threshold.


The cleaning composition may be pre-loaded into the substrate of the wipe during manufacture, at a loading ratio that is less than saturation, e.g., from 2:1 to 6:1, or from 2:1 to 4:1. Full saturation for such pulp substrates may typically be at a loading ratio of 8:1 or more (i.e., the substrate may be capable of holding at least 8 g of cleaning composition for each gram of substrate weight). As mentioned, the pulp substrate is typically not loaded to full saturation, but may be specifically loaded to a ratio that is less than full saturation, e.g., up to a loading ratio of 6:1, 5:1, 4:1, for example from 2:1 to 4:1, or from 2.5:1 to 3.75:1. The substrate may include a localized texture (e.g., where the pulp fibers are present at an increased density at the location of localized texture, creating such a texture).


The wipe may include other characteristics found by the present inventors to also provide improved performance. For example, the wipe may exhibit particular dosing profile or retention characteristics relative to the cleaning composition, where the substrate has less of a tendency to “dump” cleaning composition quickly upon first use as compared to existing wipes based on synthetic or blended fiber substrates. For example, the wipe may exhibit retention of at least 50% of the cleaning composition when squeezing (or centrifuging) the composition from the wipe under particular controlled conditions. As described, existing wipes based on synthetic or blended substrates tend to dump far more of the cleaning composition under the same conditions, while also retaining a large fraction of the quaternary ammonium compound bound to the substrate, particularly where cationic release agents are not present.


The substrate may exhibit particular pore size distribution characteristics that differ from typical synthetic or blended substrates, and which have been found by Applicant to provide particularly desired results. For example, the pulp substrates may be dominated by pores having a size greater than 200 μm, such as 300 μm to 400 μm. By dominated, it is meant that such pore sizes may account for at least a plurality (if not a majority) of the pores. Such determination may be made on a numerical, rather than a volumetric or other basis. Typical substrates used in the field are dominated by smaller sized pores, having a size of less than 200 μm. The substrates may also exhibit lower density as compared to existing wipe substrates. For example, density (e.g., dry density) of the pulp substrate may be less than 0.1 g/cm3.


The wipe may also exhibit improved “hand feel” as measured by the stiffness and tensile strength characteristics of the wipe. The wipe may exhibit particular wet bulk factor characteristics, where wet bulk factor is defined as the ratio of the profile height of the dry substrate, relative to the profile height of the substrate following wetting and redrying. The wipe may exhibit particular mileage absorbency/desorbency factor (MABDF) characteristics, where MABDF is defined as:







(

R
+
P
+
S

)


(

ρ
+
TS

)






where R is the percentage of composition retained upon squeezing (or centrifuging), P is the percentage of pulp in the substrate, S is the stiffness of the wipe (in mg·cm), ρ is the density of the wipe (in gm/cm3), and TS is the tensile strength of the substrate (in lbf, as measured in the machine direction). MABDF empirical values may be determined for both wet and dry conditions, and averaged. MABDF values for the present wipes are significantly higher than for existing wipes, particularly those based on synthetic fiber substrates or blended fiber substrates. MABDF is an empirical measure capturing many of the characteristics described herein. For example, calculation of MABDF can quickly predict how well the substrate will retain a cleaning composition, while delivering it in a relatively uniform manner over the useful life of the wipe, as opposed to quickly “dumping” the composition well before the durability characteristics of the substrate have been expended.


Further features and advantages of the present invention will become apparent to those of ordinary skill in the art in view of the detailed description of preferred embodiments below.





BRIEF DESCRIPTION OF THE DRAWINGS

To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the drawings located in the specification. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings.



FIGS. 1A-1B show photographs of an exemplary wipe, including a substrate having a localized texture, with localized regions of high fiber density.



FIG. 1C is an illustration representing the wipe and substrate seen in FIGS. 1A-1B.



FIGS. 2A-2B are SEM images of the wipe of FIG. 1A, showing the generally ribbon-shaped pulp fibers, the localized regions of high fiber density (where fibers appear “matted” together), and the porous structure of the substrate.



FIG. 2C is an SEM image of a comparative substrate, without localized regions of high fiber density.



FIG. 3A shows test results for retention of cleaning composition loaded within wipes based on various tested substrates, loaded at less than saturation.



FIG. 3B shows results for the same substrates as FIG. 3A, loaded to full saturation.



FIG. 3C shows retention of cleaning composition in the wipe for the same substrates as FIG. 3A, tested according to two different wiping regimes.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
I. Definitions

Before describing the present invention in detail, it is to be understood that this invention is not limited to particularly exemplified systems or process parameters that may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to limit the scope of the invention in any manner.


All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.


The term “comprising” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.


The term “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention.


The term “consisting of” as used herein, excludes any element, step, or ingredient not specified in the claim.


It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to a “surfactant” includes one, two or more surfactants.


Unless otherwise stated, all percentages, ratios, parts, and amounts used and described herein are by weight.


Numbers, percentages, ratios, or other values stated herein may include that value, and also other values that are about or approximately the stated value, as would be appreciated by one of ordinary skill in the art. As such, all values herein are understood to be modified by the term “about”. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result, and/or values that round to the stated value. The stated values include at least the variation to be expected in a typical manufacturing process, and may include values that are within 10%, within 5%, within 1%, etc. of a stated value. Furthermore, where used, the terms “substantially”, “similarly”, “about” or “approximately” represent an amount or state close to the stated amount or state that still performs a desired function or achieves a desired result. For example, the term “substantially” “about” or “approximately” may refer to an amount that is within 10% of, within 5% of, or within 1% of, a stated amount or value.


Some ranges may be disclosed herein. Additional ranges may be defined between any values disclosed herein as being exemplary of a particular parameter. All such ranges are contemplated and within the scope of the present disclosure.


In the application, effective amounts are generally those amounts listed as the ranges or levels of ingredients in the descriptions, which follow hereto. Unless otherwise stated, amounts listed in percentage (“Vs”) are in weight percent (based on 100% active) of any composition.


The phrase ‘free of’ or similar phrases if used herein means that the composition or article comprises 0% of the stated component, that is, the component has not been intentionally added. However, it will be appreciated that such components may incidentally form thereafter, under some circumstances, or such component may be incidentally present, e.g., as an incidental contaminant.


The phrase ‘substantially free of’ or similar phrases as used herein means that the composition or article preferably comprises 0% of the stated component, although it will be appreciated that very small concentrations may possibly be present, e.g., through incidental formation, contamination, or even by intentional addition. Such components may be present, if at all, in amounts of less than 1%, less than 0.5%, less than 0.25%, less than 0.1%, less than 0.05%, less than 0.01%, less than 0.005%, less than 0.001%, or less than 0.0001%. In some embodiments, the compositions or articles described herein may be free or substantially free from any specific components not mentioned within this specification.


As used herein, “disposable” is used in its ordinary sense to mean an article that is disposed or discarded after a limited number of usage events, preferably less than 25, more preferably less than about 10, and most preferably after a single usage event. The wipes disclosed herein are typically disposable.


As used herein, the term “substrate” is intended to include any material that is used to clean an article or a surface. Examples of cleaning substrates include, but are not limited to, wipes, mitts, pads, or a single sheet of material which is used to clean a surface by hand or a sheet of material which can be attached to a cleaning implement, such as a floor mop, handle, or a hand held cleaning tool, such as a toilet cleaning device. The term “substrate” is also intended to include any material that is used for personal cleansing applications. These substrates can be used for hard surface, soft surface, and personal care applications. Such substrates may typically be in the form of a wipe.


Such substrates may be formed of a structure of individual fibers which are interlaid, typically in a manner that is not identifiable, similar to a nonwoven. The pulp substrates may be formed by any suitable process, typically through wetlaying, although airlaying may also be possible. The basis weight of the pulp or tissue substrate may be expressed in grams per square meter (gsm). The fibers of the substrate may generally be ribbon-shaped, rather than the generally circular fiber geometry of synthetic fibers commonly used in synthetic nonwovens.


The terms “wipe”, “substrate” and the like may thus overlap in meaning, and while “wipe” may typically be used herein for convenience, it will be appreciated that this term may often be interchangeable with “substrate”.


As used herein, “wiping” refers to any shearing action that the wipe undergoes while in contact with a target surface. This includes hand or body motion, substrate-implement motion over a surface, or any perturbation of the substrate via energy sources such as ultrasound, mechanical vibration, electromagnetism, and so forth.


The cleaning compositions dosed onto the substrate as described herein may provide sanitization, disinfection, or sterilization. As used herein, the term “sanitize” shall mean the reduction of “target” contaminants in the inanimate environment to levels considered safe according to public health ordinance, or that reduces a “target” bacterial population by significant numbers where public health requirements have not been established. By way of example, an at least 99% reduction in bacterial population within a 24 hour time period is deemed “significant.” Greater levels of reduction (e.g., 99.9%, 99.99%, etc.) are possible, as are faster treatment times (e.g., within 10 minutes, within 5 minutes, within 3 minutes, within 2 minutes, or within 1 minute), when sanitizing. As used herein, the term “disinfect” shall mean the elimination of many or all “target” pathogenic microorganisms on surfaces with the exception of bacterial endospores. As used herein, the term “sterilize” shall mean the complete elimination or destruction of all forms of “target” microbial life and which is authorized under the applicable regulatory laws to make legal claims as a “sterilant” or to have sterilizing properties or qualities. Some embodiments may provide for at least a 2 or more log reduction in a bacterial population within a designated time period (e.g., 10 minutes, 5 minutes, 3 minutes, 1 minute, 30 seconds, 10 seconds or the like). A 2-log reduction is equivalent to a 99% reduction, a 3-log reduction is equivalent to at least a 99.9% reduction, a 4-log reduction is equivalent to at least a 99.99% reduction, a 5-log reduction is equivalent to at least a 99.999% reduction, etc. An example of a target microbe may be Staphylococcus aureus. It will be appreciated that microefficacy can also be achieved against other target microbes, numerous examples of which will be apparent to those of skill in the art.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.


II. Introduction

In an aspect, the present invention is directed to pre-moistened wipes that include one or more characteristics that Applicant has found to correlate to desired properties, such as high durability, mileage, cleaning composition retention, efficacy, or the like. By way of explanation, pulp substrates typically include an anionic charge, which causes a cationic biocide such as a quaternary ammonium compound to be attracted to, and preferentially bound or otherwise retained within the substrate, even while the remainder of the composition is released from the wipe (e.g., through squeezing, wiping or other compression). In one embodiment of the invention, the present wipes are tailored to release at least 20%, or at least 25% of the quaternary ammonium compound to a target surface, and exhibit at least a 3-log reduction in Staphylococcus aureus population within 5 minutes, or within 1 minute, or within 30 seconds, or within 10 seconds. Such release and efficacy is achieved without the presence of any cationic biocide release agent (e.g., latex or a cationic salt) included in the cleaning composition or elsewhere within the pre-loaded disinfecting wipe.


The present wipes may include various other beneficial characteristics. For example, many existing wipes have a tendency to “dump” the cleaning composition loaded therein, when first used to clean a desired surface. In other words, the bulk of the cleaning composition tends to be released very quickly, over a relatively small portion of an overall surface area to be cleaned, rather than exhibiting a more controlled, uniform dosing profile by which a more limited amount of the composition would be released over the portions of the surface area being first treated, leaving more composition for later treated portions of the surface area. For example, the dosing profile of existing cleaning wipes delivers most of the composition to the first area contacted, and delivers far less cleaning composition to areas contacted afterwards, as so little composition remains in the wipe after first contact. The present wipes may advantageously provide for increased mileage, meaning that they exhibit a tendency to deliver the cleaning composition in a more uniform dosing profile, so as to cover, treat, or clean a greater surface area with a more uniform distribution of the cleaning composition for a given wipe.


III. Exemplary Wipes


FIG. 1A illustrates an exemplary wipe including a substrate that may be dosed with a cleaning composition. The illustrated substrate 100 includes regions of localized high fiber density. Such regions create the appearance on a macro-scale of a texture, including raised ridges 102, as shown. Such texture may be permanent, e.g., having been introduced into the substrate structure as a result of the geometry used in the forming screen used when depositing the pulp fibers that make up the substrate, as opposed to an embossing procedure which merely embosses a raised texture into an already formed substrate after wet-laying or air-laying. Such post-formation embossed textures are typically not permanent, but are removed from the substrate upon wetting. The presently described permanent texture of raised ridges 102 as shown is permanent, meaning that this structural feature is retained even upon wetting (and any subsequent redrying).



FIGS. 2A-2B show SEM images of the substrate seen in FIG. 1A, clearly showing the generally ribbon shape of the individual pulp fibers 104 of the substrate 100, as well as the localized regions of high fiber density 102, where masses of the generally ribbon-shaped fibers 104 appear to be matted together. As noted above, such regions 102 of localized high fiber density providing the textured appearance seen in FIG. 1A are formed during depositing of the pulp fibers, through selection of an appropriate screen geometry, which allows such regions of localized high fiber density to be deposited during wet-laying or air-laying. Such a screen may include high and low regions, so that the lower recessed regions and higher protruding regions may receive differing densities or thicknesses of pulp fibers, resulting in the permanent texture that is retained even upon wetting.


a. Pulp Characteristics


The substrates employed in the present invention are formed predominantly, and preferably entirely, from pulp fibers, e.g., wood pulp or other plant fibers. While the substrate may generally comprise greater than 70% by weight of pulp fibers, such that other types of fibers or other components may be present, in an embodiment, far higher fractions of the substrate (or at least the fibers thereof) are comprised of pulp fibers, e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, or at least 99%. In an embodiment, the substrate consists of or consists essentially of pulp fibers.


Such pulp fibers may typically be obtained from wood, although other possible sources of pulp are also possible, e.g., from cotton, Esparto grass, bagasse, hemp, flax, jute or the like. Combinations of more than one material may be used. Various exemplary pulp fibers may include, but are not limited to, thermomechanical pulp fibers, chemimechanical pulp fibers, chemithermomechanical pulp fibers, refiner mechanical pulp fibers, stone ground wood pulp fibers, peroxide mechanical pulp fibers, and the like. The fibers of the pulp substrate may generally comprise cellulosic fibers, which are typically hydrophilic. Such hydrophilicity differs from many synthetic fibers, which are typically hydrophobic, absent special treatment.


In one embodiment, the pulp fibers are selected from softwood and hardwood varietals, including but not limited to, Maple, Ash, Hard Pine, Spruce, Hemlock, Fir, White Pine, Red Pine, Eucalyptus, Populus spp. Birch, Basswood, Beech, Redgum, Cherry, Hornbeam, Yellow-Poplar, Douglas-Fir, and other suitable varietals of wood. Typically the pulp substrates have a mixture of fibers selected from the group consisting of: hardwood, softwood, bleached fibers and kraft fibers and any combinations or mixtures thereof. Surprisingly, the type of fibers and mixture of the fibers within a substrate has a significant impact on its performance not just with respect to softness or absorbency, but also with respect to dosing and release of the quaternary ammonium compound from the substrate. Specifically, substrates with a high percentage of fibers, e.g., greater than 50% by weight, that come from bleached pulp fibers with a length weighted L(w) between about 1 mm to about 4 mm, more preferably between about 2 mm and 3 mm, correlate with substrates having superior performance for cleaning applications and quat release (e.g. greater than 25%, or greater than 30% release by weight, etc.). Conversely, pulp substrates comprising a high percentage of bleached pulp fibers, e.g., greater than 50% by weight, that come from bleached pulp fibers with a length weighted L(w) less than about 2 mm, or more specifically less than about 1 mm, correlate with substrates having poor performance for cleaning applications and inferior quat release (e.g., less than 20%, or less than 25% by weight). It was unexpected that the L(w) of fibers within a substrate would have a significant impact on the performance of the present wipes.


By way of further description, softwood fibers, such as various species of evergreens (e.g., spruce, hemlock, firs, pines, etc), may typically provide for the desirable longer fiber lengths (e.g., L(w) greater than 2 mm, such as values between 2.1 mm and 3 mm). Hardwood fibers, such as various species of maple, eucalyptus, ash, populous spp., birch, basswood, beech, redgum, cherry, hornbeam, yellow-poplar, and other hardwoods typically provide shorter fiber lengths, e.g., less than 2 mm, more typically less than 1 mm. While it may be desirable to include some shorter length and/or hardwood fibers in the blend of the pulp employed, the fraction of such shorter length fibers and/or hardwood fibers may be limited to less than 50%, less than 45%, less than 40%, or less than 35% by weight of the pulp blend. For example, Applicant has found that such shorter length fibers tend to exhibit greater anionic charge, so as to exhibit a greater tendency to interfere with the desired quat release. In addition, such shorter length fibers may close up the substrate, reducing air permeability, and/or negatively affect desirable pore characteristics as described herein. Similarly, the fraction of the longer length fibers and/or softwood fibers may be at least 50%, at least 55%, at least 60%, or at least 65%.


Another characteristic that may be used to characterize the pulp fibers is the number of fibers per gram, which is typically reported in millions of fibers per gram. For example, the softwood, longer length pulp fibers may have values that are less than 10 million fibers/g, less than 8 million fibers/g, less than 6 million fibers/g, or less than 5 million fibers/g. Such pulp fibers may also have fibers that are at least 1 million fibers/g, or at least 2 million fibers/g (e.g., from 1 to 6, or from 2 to 5 million fibers/g). In contrast, the hardwood, shorter length pulp fibers typically have values that are far higher, such as more than 10 million fibers/g, more than 12 million fibers/g. more than 15 million fibers/g. For example, exemplary softwood kraft pulp may have an L(w) value of about 2.2, and a population value of about 4.5 million fibers/g. Another exemplary softwood kraft pulp may have an L(w) value of about 2.5, and a population value of about 2.4 million fibers/g. In contrast, an exemplary maple hardwood pulp may have an L(w) value of about 0.6, and a population value of about 27.6 million fibers/g. An exemplary eucalyptus hardwood pulp may have an L(w) value of about 0.8, and a population value of about 19.8 million fibers/g.


Preferably, the substrate includes only limited amounts, or does not include any added synthetic fibers, e.g., such as various polyolefins or other fibers formed from synthetic polymers, e.g., polyethylene, polypropylene, PET, PVC, polyacrylics, polyvinyl acetates, polyvinyl alcohols, polyamides, polystyrenes, or the like. While such synthetic fibers are widely used in the manufacture of nonwoven substrates, Applicant has discovered that the use of a pulp substrate, in combination with the various other characteristics described herein, allows production of a wipe which can provide functional advantages over synthetic nonwoven wipes, and which may also be consumer preferred, or at least comparable, for consumer perceptions of durability, safe for use on all surfaces, ease and convenience, ability to clean and absorb light liquid spills, and ability to clean large areas effectively. Furthermore, the use of synthetic nonwoven substrates in existing pre-moistened wipes represents a significant expense, such that cost savings, renewability and sustainability benefits, and biodegradability benefits can be achieved using pulp substrates, as described herein.


The pulp substrate can be formed by a number of different techniques, e.g., such as any of those suitable for use in forming paper towels. Examples include, but are not limited to wet-laying and air-laying techniques. Methods of making such substrates will be apparent to those of skill in the art. Wet-laying processes are described in U.S. Pat. Nos. 5,246,772 and 5,238,534 to Manning. Air-laying processes are described in U.S. Patent Publication No. 2003/0036741 to Abba et al. and U.S. Patent Publication No. 2003/0118825 to Melius et al. Such processes will be familiar to those of skill in the art, in light of the present disclosure. The present pulp substrates preferably include localized regions of high texture, where the profile is raised (e.g., above or below the central generally planar surface otherwise defined by the substrate), and the density of fibers is increased in such localized high fiber density regions, as seen in FIG. 1A.


Such regions of high texture (i.e., high fiber density) are a characteristic of the substrate that is manifested on a micro-scale, rather than a macro-scale. By way of further explanation, the bulk or macro density of any given nonwoven substrate may be easily determined by dividing the basis weight (gsm) of the nonwoven material by its caliper thickness (e.g., measured using a caliper that measures thickness at a constant pressure, such as 0.1 psi).


The localized texture associated with high fiber density regions is an entirely different characteristic than the bulk or macro density. For example, such localized texture is a surface characteristic of the substrate and there may be little or no difference in the bulk or macro density within the high fiber density region (102 in FIGS. 1A-2B) as compared to the region surrounding such “islands” of high fiber density. As described herein, such high fiber density regions are visible from a surface image of the substrate and are characterized by the pulp fibers in that region being more closely matted, fused, joined, compacted, or otherwise combined into the region 102. Such characteristic is readily apparent in the SEM images of FIGS. 2A and 2B.


Such high fiber density regions may be characterized by lower air permeability as compared to the surrounding regions. That said, measurement of the mass of such tiny regions (e.g., typically length and/or width of less than 1 mm) is not practical, nor is measurement of air permeability of such small regions using a Frazier air permeability tester, or the like. SEM imaging of such substrates though is readily practical, and can be used to indirectly measure air permeability and/or fiber density characteristics. For example, such an image analysis technique may include analyzing a gray scale image with software such as ImageJ. ImageJ is a public domain image processing tool developed by National Institutes of Health (NIH).


Such a method of image analysis may include loading the gray scale image of the substrate into ImageJ, and selecting visibly differentiated high and low density regions using the selection tool. Using the rectangular selection tool, the size may be set to 250×250 pixels, for example. The ImageJ tool “Plot profile analysis” can be run on the selected regions, which reports a median gray value (between 0 and 255) for the particular selection. In such scale, the “0” value corresponds to full black, while the “255” value corresponds to full “white”, and all values in between correspond to various shades of gray within the 8-bit resolution. High fiber density regions exhibit gray scale values under such analysis that are lighter in color (i.e., towards “255”), while the surrounding lower fiber density regions exhibit gray scale values under such analysis that are darker in color (i.e., towards “0”).


By way of further example, analysis Figures such as 2A and 2B may produce a gray scale median value of “134” for the high fiber density regions, while the surrounding lower fiber density regions may produce a gray scale median value of “104”. In general, the high fiber density regions may be at least 20 value points greater, or at least 25 value points greater than the surrounding lower fiber density regions when compared by such an analysis on an 8-bit gray scale. Even if the SEM image were obtained under different conditions, while the absolute average gray scale values may differ, the high fiber density regions would still have a relatively higher gray scale value as compared to the surrounding lower fiber density regions, and the actual point value of such difference may still be, more than 20 points on an 8-bit scale. For comparison, FIG. 2C illustrates an SEM image of another substrate, which does not include such regions of relatively higher fiber density.


b. Multi-Ply Pulp Substrates


In an embodiment, the pulp substrate may be formed of only a single ply of pulp fibers. In another embodiment, the pulp substrate may comprise two or more plies that have been laminated or otherwise adhered together. Because the pulp substrate will be dosed during manufacture with a cleaning composition, and stored for long periods of time in such wetted condition, if a multi-ply configuration for the pulp substrate is employed, it may be important that the structure of the multi-ply configuration remain stable, without separating, for an extended period of time (e.g., 12 months or more). Such requirements differ from typical paper towel of other tissue materials (e.g., bath tissue) that may be formed of two or more plies. For example, typical methods for combining two tissue plies or layers together involve roll coating, in which the tissue layers, which typically include an embossed texture of peaks and valleys, are passed over a drum or cylinder that applies a low viscosity adhesive coating onto the peaks of the tissue layer, as the peaks contact the drum or cylinder. The tissue layers are then laminated together as they pass through a nip between two rollers, effectively gluing the two tissue layers together.


With such 2-ply paper towels, it is important that they meet the FDA or similar foreign regulatory requirements for food contact (e.g., GRAS ingredients only, as listed in 21 CFR § 184). The adhesive used must be easy to apply and widely available, and must be applied at very low levels to prevent the final product from feeling “stiff”, which is unacceptable in a paper towel product. A very dilute solution of water soluble polyvinyl alcohol (PVOH) is often used as the adhesive to adhere two such plies together.


Pulp substrate that may be formed as a multi-ply substrate according to the present invention include very different requirements. The present wipes are not required to meet FDA food contact approval, such that components that are not listed on the FDA GRAS listing may be used. In addition, because the substrate will be dosed during manufacture with a cleaning composition and remain wetted for an extended period of time (e.g., 12 months or more of storage), the stiffness of the dry substrate is not a primary concern. Furthermore, it is important that the adhesive employed must not delaminate when such a multi-ply substrate is loaded with the cleaning composition, and the substrate and wipe must be stable and remain efficacious (e.g., antimicrobial efficacy for a sanitizing or disinfecting wipe) in the dosed configuration for at least 12 months.


PVOH is available in a variety of grades, varying by degree of hydrolysis and the molecular weight of the polymer. Grades of PVOH known as “partially” hydrolyzed are often 87% to 89% hydrolyzed. “Fully” hydrolyzed PVOH may be 98% hydrolyzed, or greater (e.g., 98% to 100%). PVOH materials also differ widely in the degree of polymerization, and resulting molecular weight. PVOH molecular weights may range from 13,000 Daltons to 200,000 Daltons. For PVOH with an ultra-low degree of polymerization (e.g., n=150 to 300), the molecular weight may be from 13,000 Daltons to 23,000 Daltons. For a low degree of polymerization (e.g., n=350 to 650) the molecular weight may be from 31,000 Daltons to 50,000 Daltons. For a medium degree of polymerization (e.g., n=650 to 1500) the molecular weight may be from greater than 50,000 Daltons to 124,000 Daltons. For a high degree of polymerization (e.g., n=1600 to 2200) the molecular weight may be from greater than 124,000 Daltons to 200,000 Daltons.


Varying the degree of hydrolysis and the molecular weight impacts the properties of the polymer and has implications for manufacturing usage and final adhesive properties. PVOH with relatively lower molecular weight and a lower degree of hydrolysis is more soluble in water for both the initial processing and after being cast as an adhesive, creates less viscous solutions, and forms more flexible coatings. Additional details of PVOH adhesives are found in Provisional Application 62/560,027, already incorporated by reference. For reasons described above, existing processes for laminating together multiple plies of tissue (e.g., for use as dry paper towels) by necessity employ fully water-soluble, ultra-low or low molecular weight PVOH adhesives that are only partially hydrolyzed.


In contrast, in at least one embodiment of the present invention, it is important that any employed PVOH not be fully water soluble so that the multi-ply pulp substrate does not delaminate when it is loaded with the aqueous cleaning composition. In addition, a pre-loaded wipe according to the present invention can benefit from increased tensile strength and adhesive strength provided by a fully hydrolyzed PVOH with a medium to high molecular weight because multi-ply pulp substrates tend to lose a significant fraction of their tensile strength and stiffness upon loading with the cleaning composition. In existing multi-ply tissue products the additional stiffness, increased tensile strength and decreased absorbency would be undesirable. Conversely, in the context of the present invention the increased stiffness, tensile strength and decreased solubility may actually be beneficial. Such benefits are at least partially achieved due to selection of a highly hydrolyzed PVOH with a medium to high molecular weight. For example, the molecular weight of the PVOH may be at least 50,000 Daltons, at least 60,000 Daltons, at least 70,000 Daltons or at least 80,000 Daltons. The PVOH may be at least 90% hydrolyzed, at least 92% hydrolyzed, at least 94% hydrolyzed, at least 95% hydrolyzed, or at least 98% hydrolyzed.


In addition to such chemical differences in the PVOH employed, the solution or suspension of PVOH adhesive may include a far higher loading of PVOH. In other words, it is not a very dilute solution, as would be employed in existing processes. For example, the adhesive suspension or solution may include at least 20%, at least 30%, from 25% to 60%, from 30% to 50%, or about 40% PVOH solids content. In addition to using a more viscous, solids loaded adhesive suspension or solution in manufacture, the present invention may apply more of the adhesive onto the tissue layer(s) as compared to existing processes. For example, the weight fraction of adhesive added to permanently bond the two layers together may be greater than 2%, or greater than 3%, such as 3% to 6% relative to the total weight of the substrate (i.e., pulp plus adhesive).


As compared to typical paper towel manufacture, the present wipes do not need to be able to absorb large volumes of aqueous spills. Because of this, the present wipes can have much higher amounts of adhesive as compared to existing paper towel products. The present wipes are pre-dosed, during manufacture, and are not intended to be so absorbent, for cleaning-up spills. Any minor decrease in absorbency caused by the presence of the relatively large quantity of adhesive is acceptable within the present substrates, as massive absorbency is not critically important. An additional benefit of using such a higher level of adhesive and a more hydrolyzed variety of the adhesive is that this may reduce or minimizes exposure of binding sites on the anionic pulp substrate that might otherwise bind the cationic biocide (e.g. quaternary ammonium, biguanide) included in the cleaning composition. This may enable improved delivery of the cationic biocide to the surface being treated. An increased release rate for the quaternary ammonium or other cationic biocide from the wipe is desirable so that lower actives levels may be used while providing the same efficacy for cleaning, disinfecting or sanitizing applications.


In addition to high molecular weight, high hydrolyzed values, high solids content in the adhesive, and higher levels of adhesive application, the water solubility of the adhesive may be further reduced by cross-linking the adhesive. Such may be achieved by adding a cross-linking agent to the PVOH, or other suitable adhesive. Other suitable adhesives for an inventive 2-ply substrate include but are not limited to, polyvinyl acetate copolymers, vinyl acetate copolymers, ethylene vinyl acetate (EVA) copolymers or polyethylene vinyl acetate (PEVA) copolymers. EVA and PEVA are the copolymer of ethylene and vinyl acetate. EVA is an elastomeric polymer which is tough and waterproof which makes it a good adhesive for the inventive wet cleaning wipe. Examples of suitable cross-linking agents may include, but are not limited to polyamide-epichlorohydrin, glyoxal, ammonium zirconium carbonate, and combinations thereof. KYMENE, available from Hercules, Inc. of Wilmington, Delaware is an example of a polyamide-epichlorohydrin. SANTO RES, available from Monsanto Company of St. Louis, Missouri is another example of a polyamide-epichlorohydrin. These types of materials are generally described in U.S. Pat. Nos. 3,855,158; 3,899,388; 4,129,528; 4,147,586; and 4,222,921, each of which is incorporated herein by reference in its entirety.


Glyoxalated polyacrylamide resins may also be used to increase wet strength. Examples of such resins are described in U.S. Pat. Nos. 3,556,932 and 3,556,933, each of which is incorporated herein by reference in its entirety.


Such adhesives can be used to adhere any two or more layers together without them falling apart or otherwise delaminating, even when pre-dosed with the cleaning composition and stored for 12 months or more in such a wetted condition. While the present wipes are principally contemplated to be provided in stacks of such wipes, it may be possible to cast a film of PVOH having characteristics as described herein between adjacent pulp layers to create a stiffer and stronger structure that may even be sufficiently strong to accommodate conversion into a donut (e.g., the donut or roll configuration of CLOROX DISINFECTING WIPES in a cylindrical canister) so as to allow dispensing from a cylindrical canister. Increasing the stiffness and/or tensile strength of the pulp substrate allows for dispensing container options that would not otherwise be possible. Such characteristics of increased stiffness and strength may counteract the typical increased tendency for substrates to tear when packaged in such a donut configuration. In a similar manner, such increased stiffness and/or strength may also counteract the tendency of pulp substrates to collapse once wetted, if provided in a donut configuration. In addition, in dispensing a single wipe from a donut configuration, there is relatively high friction between the wipes, thus requiring a high degree of force to pull them apart. With typical pulp substrates, such forces are sufficient to result in undesirable tears. Increased stiffness and/or strength as provided by a PVOH adhesive may aid in overcoming such obstacles, so as to allow dispensing such pulp substrates from a donut configuration.


While PVOH is principally described as a suitable adhesive for laminating multiple plies together, other types of polymer adhesives can similarly be used. In addition, such adhesives could be included, even where the substrate is not multi-ply, e.g., simply to provide increased stiffness or other properties. Examples of adhesives other than PVOH that may be suitable for use include, but are not limited to, rubber latex emulsions, vinyl emulsions, acrylic resins, and any combinations or mixtures thereof. Additional information about suitable alternative adhesives is found in Provisional Application 62/560,027, already incorporated by reference. As noted previously, in at least some embodiments, the wipes may be free or substantially free of cationic latex.


c. Other Characteristics


The size and shape of the wipe can vary with respect to the intended application and/or end use of the same. The cleaning substrate can have a substantially rectangular shape of a size that allows it to readily engage standard cleaning equipment or tools such as, for example, mop heads, duster heads, brush heads, mitten shaped tools for wiping or cleaning, and so forth. In another embodiment, another shape, e.g., circular, oval, or the like) may be provided.


The wipes or other cleaning substrates may be provided pre-moistened with a cleaning composition. Such composition may include an antimicrobial agent (e.g., a quaternary ammonium compound), to provide sanitization or disinfection. The wet cleaning substrates can be maintained over time in a sealable container such as, for example, within a bucket or tub with an attachable lid, sealable plastic pouches or bags, canisters, jars, and so forth. Desirably the wet, stacked cleaning substrates are maintained in a resealable container. The use of a resealable container is particularly desirable when using aqueous volatile liquid compositions since substantial amounts of liquid can evaporate while using the first sheets thereby leaving the remaining sheets with little or no liquid. Exemplary resealable containers and dispensers include, but are not limited to, those described in U.S. Pat. No. 4,171,047 to Doyle et al., U.S. Pat. No. 4,353,480 to McFadyen, U.S. Pat. No. 4,778,048 to Kaspar et al., U.S. Pat. No. 4,741,944 to Jackson et al., U.S. Pat. No. 5,595,786 to McBride et al.; the entire contents of each of the aforesaid references are incorporated herein by reference.


With regard to pre-moistened substrates, a selected amount of liquid may be added to the container during manufacture such that the cleaning substrates contain the desired amount of liquid. As described herein, preferably the substrates are not loaded to their saturation point, but are loaded with the cleaning composition to some ratio less than full saturation. For example, many substrates are capable of holding about 8 to 14 times their weight in liquid. For reasons described herein, the substrates may be loaded at a loading ratio less, than saturation, e.g., less than 6:1, less than 5:1, less than 4:1, such as from 1:1 to 4:1, from 2:1 to 4:1, from 2.5:1 to 3.5:1, from 2.5:1 to 3:1 or from 2.5:1 to 3.75:1.


Typically, the cleaning substrates are stacked and placed in the container and the liquid subsequently added thereto, all during mass manufacturing. The substrate can subsequently be used to wipe a surface. The moistened cleaning substrates can be used to treat various surfaces. As used herein “treating” surfaces is used in the broad sense and includes, but is not limited to, wiping, polishing, swabbing, cleaning, washing, disinfecting, scrubbing, scouring, sanitizing, and/or applying active agents thereto.


As used herein the term “liquid” includes, but is not limited to, solutions, emulsions, suspensions and so forth. Thus, liquids may comprise and/or contain one or more of the following: disinfectants; antiseptics; diluents; surfactants, such as nonionic, anionic, cationic; waxes; antimicrobial agents; sterilants; sporicides; germicides; bactericides; fungicides; virucides; protozoacides; algicides; bacteriostats; fungistats; virustats; sanitizers; antibiotics; pesticides; and so forth. Examples of some such components are included in, but not limited to, U.S. Pat. Nos. 6,825,158; 8,648,027; 9,006,165; 9,234,165, and U.S. Publication No. 2008/003906 each of which is herein incorporated by reference in its entirety. In some embodiments, it may be possible to provide the substrates in dry form, where dosing with a selected cleaning composition may occur later (e.g., by the user).


The wipes or other cleaning substrates of the present invention can be provided in a kit form, wherein a plurality of cleaning substrates and a cleaning tool are provided in a single package.


In addition to material composition (e.g., pulp substrate, composition of the cleaning “lotion” and the like), wipe or other substrate dimensions can also be used to control dosing as well as provide ergonomic appeal. In one embodiment, substrate dimensions are from about 5½ inches to about 11 inches in length, and from about 5½ inches to about 11 inches in width to comfortably fit in a hand. The substrate can have dimensions such that the length and width differ by no more than about 2 inches. Larger substrates may be provided that can be used and then folded, either once or twice, so as to contain dirt within the inside of the fold and then the wipe can be re-used. Such larger substrates may have a length from about 5½ inches to about 13 inches and a width from about 10 inches to about 13 inches. Such substrates can be folded once or twice and still fit comfortably in the hand.


d. Cleaning Composition


Many cleaning composition components as known within the art may be suitable for use in the present pre-dosed wipes. In an embodiment, the cleaning composition is an aqueous composition, including at least 90% water by weight (e.g., 90 to 99% water). The composition may also include 0.05% to 5% by weight of a quaternary ammonium compound, and 0.1% to 5% by weight of a glycol ether solvent. For example, the quaternary ammonium compound may be included from 0.05%, from 0.1%, up to 5%, up to 4%, up to 3%, up to 2%, or up to 1% by weight of the cleaning composition. The glycol ether solvent may be included from 0.1%, from 0.25%, up to 5%, up to 4%, up to 3%, up to 2%, or up to 1% by weight of the cleaning composition. Other solvents, surfactants, and various other adjuvants often included in cleaning compositions may optionally be present.


Quaternary ammonium compounds have broad spectrum antimicrobial properties. A variety of different quaternary ammonium compounds can be used in the cleaning composition. Non-limiting examples of quaternary ammonium compounds are typically halides (e.g., a chloride) of alkyldimethylbenzylammonium, alkyldimethylethylbenzylammonium, alkyldimethylammonium, or the like. The alkyl groups of such quaternary ammonium compounds may typically range from C12 to C18. Quaternary ammonium compounds are described in more detail in U.S. Pat. No. 6,825,158, incorporated by reference herein, and will already be familiar to those of skill in the art.


The cleaning composition may include a glycol ether solvent. Exemplary glycol ether solvents include, but are not limited to, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol n-propyl ether, propylene glycol monobutyl ether, propylene glycol t-butyl ether, diethylene glycol monoethyl or monopropyl or monobutyl ether, di- or tri-polypropylene glycol methyl or ethyl or propyl or butyl ether, acetate and/or propionate esters of glycol ethers.


Those of skill in the art will appreciate that any among a wide variety of surfactants (e.g., anionic, cationic, non-ionic, zwitterionic, and/or amphoteric) may be included in the cleaning composition, as desired. Where included, a surfactant may be present from 0.05%, from 0.1%, up to 10%, up to 5%, up to 4%, up to 3%, up to 2%, or up to 1% by weight of the cleaning composition. Listings of exemplary surfactants are included within various of the patents and other publications already incorporated herein.


e. Stiffness and Strength Characteristics


In an embodiment, the present wipe substrates may include particular stiffness characteristics, tensile strength characteristics, and/or density of pulp fiber characteristics within the substrate. The pulp substrates may exhibit a dry stiffness value that is significantly greater than the stiffness value for the pulp substrate when wetted at a given loading ratio.


With synthetic substrates, tensile strength and stiffness values may not change dramatically as the substrate goes from wet to dry, but may remain substantially constant whether wetted or dry. For example, a substrate formed of 100% synthetic fibers may have a stiffness of about 63 mg·cm when dry, which decreases to about 40 mg·cm when wet. In a similar manner, the MD tensile strength of a 100% synthetic substrate is about 22 lbf when dry, and 16 lbf when wet. While there is a decrease in both property values, such a decrease is minor compared to what occurs upon wetting a substrate in which all or substantially all fibers therein are pulp fibers. For example, a pulp substrate may have a stiffness of about 200 mg·cm when dry, which decreases to about 48 mg·cm when wet. In a similar manner, tensile strength is about 2.7 lbf when dry, and about 0.85 lbf when wet.


By way of further explanation, stiffness may decrease by over 50%, over 60%, or over 70% upon wetting, with the present substrates. MD tensile strength may decrease by at least 40%, at least 50%, at least 60%, or at least 65% upon wetting, with the present substrates. By comparison, the decreases seen with synthetic, and even blended substrates, are not in the same category. For example, a typical synthetic substrate may show a stiffness decrease of less than 40%, and a MD tensile strength decrease of less than 30%. A blended substrate (e.g., 60% pulp fibers, 40% synthetic fibers) may show a stiffness decrease of less than 20%, and a MD tensile strength decrease of no more than 35%.


In addition, the actual values are quite different. For example, dry stiffness for the present pulp substrates may be greater than 100 mg·cm, such as from 150 mg·cm to 300 mg·cm. Such is far higher than the stiffness of dry synthetic and blended substrates (e.g., 63 mg·cm and 75 mg·cm, respectively). Wet stiffness for the present pulp substrates may be less than 70 mg·cm, or from 30 mg·cm to 60 mg·cm. The wet stiffness may actually be similar to the stiffness of wet synthetic and blended substrates (e.g., 40 mg·cm and 61 mg·cm, respectively). Dry tensile strength for the present pulp substrates may be less than 10 lbf, such as from 1 lbf to 5 lbf. Such is significantly lower than the tensile strength of dry synthetic and blended substrates (e.g., 22 lbf and 6 lbf, respectively). Wet tensile strength for the present pulp substrates may be less than 2 lbf, or less than 1 lbf (such as from 1 lbf to 2 lbf). Such is far lower than the tensile strength of wet synthetic and blended substrates (e.g., 16 lbf and 3.6 lbf, respectively).


The present pulp substrates may be provided with a relatively high density of pulp fibers (e.g., at least 70,000 per in2), and the substrate fibers may be made up principally, or even entirely of pulp fibers, rather than synthetic fibers. In addition to fibers present in the substrate, a small fraction of the substrate could also comprise an adhesive, as described herein, if desired. Even with such an adhesive or other components present, the substrate may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, or at least 99% pulp fibers.


Such pulp fibers derive their stiffness and tensile strength from hydrogen bonding between the fibers, such that hydrogen bonded fibers participate as strength bearing elements of the substrate. In an embodiment, the substrate may be loaded with the cleaning composition at a loading ratio such that at least 20% of the pulp fibers maintain hydrogen bonding between one another. No more than 80%, no more than 70%, no more than 60%, or no more than 50% of the pulp fibers may maintain hydrogen bonding between one another. Measurement of such hydrogen bonding characteristics may be determined by simply measuring tensile strength (e.g., MD, TD, or an average) of the substrate in a dry condition, as compared to the loaded condition.


If tensile strength is too high, the wipe becomes difficult to bunch up, and if the tensile strength is too low, the wipe feels too flimsy in the hand. Optimal hand feel may be provided with pulp substrates as described herein, at loading ratios ranging from 1:1 to 4:1, 1:1 to 3.75:1, from 2:1 to 3.75:1, from 2:1 to 3:1, or from 2.5:1 to 3:1. At the preferred loading ratios the wipe exhibits excellent flexibility for bunching in the hand of the user, but is not so weak as to easily tear or be frustrating during use.


The substrate may have a dry stiffness of at least 100 mg·cm, at least 125 mg·cm, at least 150 mg·cm, from 150 mg·cm to 200 mg·cm, or from 175 mg·cm to 200 mg·cm. Upon wetting the stiffness may be no more than 75 mg·cm, no more than 50 mg·cm, at least 5 mg·cm, at least 10 mg·cm, or from 10 mg·cm to 30 mg·cm. Such values may be for whatever loading ratio the substrate is loaded at (e.g., at least a 1:1 loading ratio, such as 1:1, 2:1, 2.5:1, 3:1 or 4:1).


The substrate may have a dry tensile strength of at least 1.5 lbf, at least 2 lbf, at least 2.5 lbf, e.g., from 2 lbf to 3 lbf. Upon wetting, the tensile strength decreases, e.g., to a value that may be no more than 1.25 lbf, no more than 1 lbf, at least 0.25 lbf, at least 0.3 lbf, at least 0.4 lbf at least 0.5 lbf, or from 0.5 lbf to 1 lbf. Such values may be for whatever loading ratio the substrate is loaded at (e.g., at least a 1:1 loading ratio, such as 1:1, 2:1, 2.5:1, 3:1, or the like).


The weight basis of the substrate may be no more than 100 g/cm2, no more than 75 g/cm2, no more than 60 g/cm2, at least 10 g/cm2, at least 20 g/cm2, at least 25 g/cm2, at least 30 g/cm2, from 30 g/cm2 to 60 g/cm2, from 35 g/cm2 to 55 g/cm2, or from 40 g/cm2 to 50 g/cm2. Units of g/cm2 are of course also routinely expressed as gsm.


Table 1A below shows numbers of pulp fibers within exemplary pulp substrates as compared to synthetic substrates and blended substrates that include both pulp fibers and synthetic fibers. Numbers of pulp fibers within a substrate may be determined by various methods. For example, one may count the fibers within a given area or volume of a SEM image, and then by extrapolating such number to the wipe as a whole (or per in2). Another method (which was used by Applicants to determine the values reported herein) may include making a calculation as described below.


The following formula was used to estimate the number of fibers in the substrates described herein. Number of fibers=(Mass of substrate in grams)/(Mass of fiber in grams). For blended substrates the mass was determined as a percentage of the blend contribution to the final mass.


Because the wood pulp fibers are ribbon shaped, fiber length (1), breadth (b) and width (w) were measured using an SEM microscope. The volume of the wood pulp fiber was calculated using the formula Volume=l·b·h (cm3). The density was obtained from the literature, in g/cm3. Such density values for various varietals typically range from 20 lb/ft3 (0.32 g/cm3) to 30 lb/ft3 (0.49 g/cm3). The mass in grams was calculated using the formula mass (g)=Density (g/cm3)×volume (cm3).


Because synthetic fibers of interest in this application are generally cylindrical, the diameter of the cylinder was measured using an SEM microscope. The volume of the synthetic fiber was calculated using the formula Volume=π·R2·L (where L=length of the fiber, and R=fiber radius). The density was obtained from the literature, in g/cm3. The mass in grams was calculated using the formula mass (g)=Density (g/cm3)×volume (cm3).













TABLE 1A








No. of



Sample
Basis Weight
No. of Pulp
Synthetic
No of Pulp


(7 in × 8 in)
(gsm)
Fibers
Fibers
Fibers per in2



















High Texture
41
4,135,065
0
73,840


100% Pulp


Low Texture
48
5,168,831
0
92,300


100% Pulp


Blend of 60%
52
3,116,883
38,647
55,659


Pulp/40%


Synthetic -


No Texture


100%
52
0
248,447
0


Synthetic -


No Texture









Table 1B shows percentage and number of pulp fibers that are participating as strength bearing elements for the two 100% pulp samples of Table 1A, at various loading ratios, as well as the number in each substrate (High texture versus Low texture) on a per square inch basis.














TABLE 1B










No. of





% Pulp
Pulp Fibers
No. of












Fibers
Participating
Pulp Fibers
No of



Participating
(High
Participating
Pulp Fibers



Based on
Localized
(Low
Participating


Loading
Tensile
Texture
Texture
per in2












Ratio
Strength
Substrate)
Substrate)
High T
Low T















0 (Dry)
100
4,135,065
5,168,831
73,840
92,300


1:1
36
1,488,623
1,860,779
26,582
33,228


2:1
30
1,240,519
1,550,649
22,152
27,690


2.5:1  
26
1,075,117
1,343,896
19,200
24,000


3:1
21
868,364
1,085,455
16,042
19,383


Saturation
18
744,312
930,390
13,291
16,614









It will be apparent that the substrates may thus rely on hydrogen bonding for strength, rather than stronger forces that may be present in synthetic fiber based substrates (e.g., covalent bonds present in cross-linked molecules or materials). Such hydrogen bonds significantly decrease in strength (or the number of such hydrogen bonds decreases) when water is added, such as would be present in the cleaning compositions contemplated herein.


The percentage of pulp fibers that maintain hydrogen bonding with one another may be at least 20%, e.g., from 20% to 30% of the pulp fibers, or 25% to 30%, such as 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, or 30%. Similarly, the density of pulp fibers participating in hydrogen bonding may be at least 15,000 per in2, such as 15,000 per in2 to 35,000 per in2, from 15,000 per in2 to 30,000 per in2, or from 15,000 per in2 to 25,000 per in2, such as 15,000 per in2, 16,000 per in2, 17,000 per in2, 18,000 per in2, 19,000 per in2, 20,000 per in2, 21,000 per in2, 22,000 per in2, 23,000 per in2, 24,000 per in2, 25,000 per in2, 26,000 per in2, 27,000 per in2, 28,000 per in2, 29,000 per in2, or 30,000 per in2.


f. Wet Bulk Factor


Wet bulk factor is defined as the ratio of the profile height of the dry substrate relative to the profile height of the substrate following wetting and redrying. In other words, the wet bulk factor is a measure of the degree of compression (or expansion) exhibited by the particular substrate following wetting, and subsequent redrying. Applicant has observed that synthetic substrates, and even substrates that include a blend of synthetic fibers and pulp fibers with a large fraction of synthetic fibers in the blend, tend to exhibit relatively low wet bulk factor values. Substrates according to the present invention may include relatively high wet bulk factor values, e.g., such as at least 1.5, at least 1.55, at least 1.6, from 1.5 to 2, or from 1.6 to 2. Examples of such may include 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8 1.85, 1.9, 1.95, or 2.0.


As explained above, the substrate has both a dry profile height (after wetting and redrying) and a wet profile height. Furthermore, as described herein, the substrate preferably has high localized texture, so that the bulk thickness of the substrate is far less than the profile heights (i.e., because of the textured characteristics). For example, when measured with calipers, the substrate may have a thickness of only about 0.2 mm (200 μm), although when measured not on a bulk scale, but using a profile-o-meter, e.g., which can be used to chart profile height for any given distance across the substrate, the dry profile height (before wetting) may be from 1000 μm to 1400 μm, or 1000 μm to 1200 μm. The profile height after wetting and redrying (i.e., wet profile height) may be 400 μm to 800 μm, or 500 μm to 700 μm. In other words, after wetting and redrying, the profile is compressed compared to what it was prior to wetting in the first place. Any profile-o-meter (e.g., such as those commercially available) may be used for such measurements.


The “rough” characteristics of the profile are apparent from FIGS. 1A and 1B, where the localized regions of higher pulp fiber density are apparent, resulting in not only regions of higher fiber density, but in a configuration where these same regions are also raised so as to protrude relative to the surrounding portions of the substrate. The reverse of the substrate (see FIG. 1B) may exhibit an inverse pattern, so that on the opposite face, those areas that are “raised” (in FIG. 1A) are “recessed” on the opposite face (in FIG. 1B). Similarly, those regions that on the first face surround the raised region (and are thus the lowest points of the substrate) are raised on the opposite face, where the surrounding raised regions surround the recessed region, on the opposite face.


Table 2 shows exemplary wet bulk factor characteristics for various tested substrates.












TABLE 2








Wet Bulk Factor (Dry/Wet



Substrate
Profile Height Ratio)



















100% Synthetic
1.19



Substrate - 1



100% Synthetic
1.14



Substrate - 2



100% Synthetic
1.00



Substrate - 3



60/40 Blend - 1
0.84



60/40 Blend - 2
0.91



60/40 Blend - 3
0.93



60/40 Blend - 4
1.00



60/40 Blend - 5
1.08



60/40 Blend - 6
1.26



100% Pulp substrate
1.30



with light overall



texture



100% Pulp substrate
1.45



with no texture



100% Pulp substrate
1.71



with high localized



texture & low LR



100% Pulp substrate
1.84



with high localized



texture










Both synthetic substrate-1 and synthetic substrate-2 were different wipe products including scrubbing zones. Synthetic substrate-3 was a synthetic wipe product without any texture. Each of the blended wipes include a 60/40 pulp/synthetic fiber blend. Blend-1 included a high localized texture, Blend-2 included the same texture, loaded at a low LR (LR=2.5:1). Blend-3 was another wipe with high localized texture, Blend-4 had no texture, Blend-5 had light texture, and Blend-6 also had no texture. The results show that even with different substrate textures and other characteristics, the synthetic and blended substrates consistently provide significantly lower wet bulk factor values than the pulp substrates.


g. Substrate Pore Size Distribution


The substrate may exhibit particular pore size distribution characteristics. For example, the pulp substrates may be dominated by pores having a size greater than 200 μm, such as 300 μm to 400 μm. By dominated, it is meant that such pore sizes may account for at least a plurality (if not a majority) of the pores. Such determination may be made on a numerical, rather than a volumetric basis. Synthetic substrates used in the field are typically dominated by smaller sized pores, having a size of less than 200 μm.


Table 3A below provides pore size distribution data for various substrates that were tested to determine their pore size distribution characteristics. Table 3B provides data relative to the number of pores for the same substrates as in Table 3A. Table 3C provides data on number of pores per square inch, for the various pore size ranges, for the same substrates.











TABLE 3A









Pore Size (μm)















Density



0-200 μm
200-300 μm
300-400 μm
(g/cm3)















100%
87%
8%
 4%
0.12


Synthetic


Substrate


60/40 Blend
87%
13% 
 0%
0.13


(w/o texture)


60/40 Blend
64%
7%
30%
0.1


(w/high


localized


texture)


100% Pulp
64%
21% 
15%
0.05


substrate


with light


overall


texture


100% Pulp
32%
7%
61%
0.06


substrate


with high


localized


texture


















TABLE 3B









Pore Size (μm)












0-200 μm
200-300 μm
300-400 μm
Total Pores















100%
20,010,000
1,840,000
920,000
23,000,000


Synthetic


Substrate


60/40 Blend
15,660,000
2,340,000
0
18,000,000


(w/o texture)


60/40 Blend
12,160,000
1,330,000
5,700,000
19,000,000


(w/high


localized


texture)


100% Pulp
10,240,000
3,360,000
2,400,000
16,000,000


substrate


with light


overall


texture


100% Pulp
4,480,000
980,000
8,540,000
14,000,000


substrate


with high


localized


texture


















TABLE 3C









Pore Size (μm)












0-200 μm
200-300 μm
300-400 μm
Total Pores



(per in2)
(per in2)
(per in2)
(per in2)















100%
357,000
32,900
16,400
411,000


Synthetic


Substrate


60/40 Blend
280,000
41,800
0
321,000


(w/o texture)


60/40 Blend
217,000
23,800
101,800
339,000


(w/high


localized


texture)


100% Pulp
183,000
60,000
42,900
286,000


substrate


with light


overall


texture


100% Pulp
80,000
17,500
153,000
250,000


substrate


with high


localized


texture









As shown, both synthetic, and even blended substrates (e.g., 40% synthetic, 60% pulp) are similar to one another in their pore distribution characteristics, where all such tested substrates are dominated by small pores, sized 200 μm or less. Addition of texturing to the blended substrate shows an increase in the fraction of larger pore sizes, but the blended substrate with high localized texture is still dominated by the small pore size, of 200 μm or less. The data further show that even 100% pulp substrates, if they do not include the high localized texture as seen in FIGS. 1A-1C also do not change this dominance by the small pore sizes. Specifically, the 100% pulp substrate with light overall texture is still dominated by pores sized 200 μm or less. The 100% pulp substrate with high localized texture includes significantly different pore distribution characteristics, where the pores are dominated by pores in the size range of 300-400 μm. There are still a significant number of smaller pores, sized 200 μm or less, but this is no longer the dominant size. This particular substrate has been shown by Applicant to exhibit particular advantageous characteristics relative to hand feel, retention of cleaning composition, and release profile characteristics, as well as desirable microefficacy characteristics. The dominance of the larger pore sizes is believed to play a role in at least some of these observed desirable characteristics. The combination of the pore size distribution and the 100% pulp fibers work together to create a desirable release profile for the lotion in the inventive examples. For example, because of the increased presence of the larger pore sizes, the cleaning composition is retained more readily within the matrix provided by the substrate, so as to be released in a more uniformly dosed profile during wiping. Thus, the wipe exhibits less of a tendency to “dump” the composition rapidly, but instead delivers a more uniformly dosed volume of cleaning composition throughout its use. Such improved uniformity in dosing also aids in ensuring consistent deposition of lotion active ingredients to the entire area of the target surface being cleaned by a real world user.


Furthermore, the increased size of the pores decreases the probability that any given molecule of the quaternary ammonium compound within the cleaning composition will be attracted and bound to an anionic binding site associated with the pulp substrate, given the increased volume provided within larger sized pores. In other words, the larger sized pores may decrease the density of such anionic binding sites within the substrate, which increases the percentage of the quaternary ammonium compound that is released to a target surface during wiping. As noted herein, the wipe may be configured to release at least 20% (e.g., 30% to 50%) of the quaternary ammonium compound to the target surface upon squeezing, wiping, or other use.


Table 3A further provides density data for the tested substrates. The pulp substrates may also exhibit lower density as compared to existing substrates used in existing wipes. For example, density (e.g., dry density) of the pulp substrate may be less than 0.1 g/cm3 (e.g., from 0.03 g/cm3 to 0.08 g/cm3, or from 0.04 g/cm3 to 0.07 g/cm3). The measured decreased density may also correspond to the presence of larger pore sizes, as also shown in Tables 3A-3B.


Table 3B further shows how the pulp substrate with high localized texture includes less overall pores, with larger pore sizes (as shown in Table 3A), as compared to the other tested substrates. The number of pores may be estimated by generating pore volume distribution data using a TRI Liquid Extrusion Porosimeter, or the like. Such porosimeters may calculate the number of pores based on an assumption that all pores are cylindrical, and by using the Young-LaPlace equation. It will be appreciated that other tools or calculations may also be suitable for estimating or calculating the number of pores.


h. Other Lotion Retention Characteristics


Applicant has observed other unique and advantageous characteristics with the particular substrate selection, in terms of how a cleaning composition loaded into the substrates is released during use. As noted above, many existing wipes have a tendency to “dump” their cleaning composition quickly, rather providing a relatively uniform dosing of the cleaning composition during wiping, which would increase mileage of the wipe. For example, when squeezing or centrifuging a typical synthetic or blended wipe under controlled conditions, more than 50% of the cleaning composition is released, leaving only a small fraction retained within the wipe. Such compression (e.g., using a conventional lemon press, or a centrifuge) is indicative of the tendency of conventional wipes to “dump” their composition quickly during wiping or other normal use. The present wipes include a far higher fraction of pulp, and preferably a localized, high degree of texture. Significantly more of the cleaning composition is retained under compression test conditions. For example, when tested in the same way (e.g., compressed in a lemon press or centrifuged) the wipe may exhibit retention of at least 50% of the cleaning composition. This ability to better retain the composition when the wipe is compressed advantageously increases the mileage of the wipe, allowing greater cleaning, disinfection, or sanitization of a given surface area with a given wipe.



FIG. 3A shows test results for such retention versus release for synthetic, blended, and 100% pulp substrates, where the substrates are loaded with 6 grams of cleaning composition. When loaded with 6 g of cleaning composition, each of the tested substrates had a loading ratio of 5:1. Each tested substrate measured 7 inches×7 inches.



FIG. 3B shows results for the same substrates loaded to full saturation. As noted herein, loading to full saturation is not preferred for various reasons. Full saturation for the synthetic substrate was at loading ratio of 7:1, full saturation for the pulp substrate was at a loading ratio of 7:1, and full saturation for the 60/40 blended substrate was at a loading ratio of 6:1. For FIGS. 3A and 3B, the wipes were simply compressed using a lemon press. Other methods of simply squeezing (or centrifuging) the composition from the wipe could similarly be used, and would provide similar results.



FIG. 3C shows retention of cleaning composition in the wipe for the same substrates, but tested by a different methodology, intended to simulate retention and release characteristics during wiping. Two different wiping regimes (with and without overlap) were tested. Specifically, according to one regime, the wipe was wiped across a target surface being treated, with no overlap in wiping. According to the other regime, the wipe was wiped across the target surface, and there was overlap (e.g., a back and forth wiping regime). The wiping regime including overlap may closely approximate actual usage conditions of many consumers, as many consumers will often wipe a surface in a way that they wipe again over a surface that has already been wiped by the cleaning wipe.


The results shown in FIG. 3C show that the 100% pulp substrate retains the most cleaning composition under the no overlap wiping regime. Specifically, the pulp substrate retains approximately 50% of the cleaning composition, as compared to retention of less than 40%, and less than 35% for the blended, and synthetic substrates, respectively. Such increased retention of the cleaning composition results in increased useable life (i.e., increased mileage) for the 100% pulp wipe, as compared to the others.


The results shown in FIG. 3C also show that under the wiping regime with overlap, the 100% pulp substrate actually retains the least amount cleaning composition. Specifically the pulp substrate retains about 35%, while the blended and synthetic wipes retain about 45% and about 48%, respectively. The results under such a wiping regime show that the pulp substrates have the greatest usefulness of the 3 tested substrates, in that more of the cleaning composition is actually being delivered, where it is needed for sanitization or disinfection. A possible explanation of the observed phenomenon is that the synthetic and blended substrates tend to quickly “dump” their composition from the wipe onto the surface being treated. As the wipe is wiped over this soaked area again (during the overlap portion of the wiping regime), the wipe actually reabsorbs a portion of the cleaning composition, increasing the percentage it then retains. Such results are further evidence of the less controlled release and delivery of cleaning compositions from existing synthetic and blended substrates, which tend to “dump”, and then to reabsorb, if overlap wiped.


The 100% pulp substrates on the other hand tend to deliver a more uniform dosage of the cleaning composition across all portions of the surface area being treated, no matter the wiping regime. Such uniformity of dosage increases the reliability and effectiveness of sanitization and/or disinfection over the entire treated surface. For example, while areas in which the composition is “dumped” by a synthetic or blended wipe may exhibit good sanitization and/or disinfection (if not overlap wiped), other regions of the treated surface area may not receive sufficient cleaning composition. The cleaning results may thus be “spotty” as some areas will not be uniformly dosed with the cleaning composition. The pulp substrates as described herein will exhibit more uniform dosing of the cleaning composition over the surface area being treated, so as to provide sufficient cleaning composition over all regions of the surface area, providing more effective sanitization or disinfection over the entire treated surface.


Another characteristic apparent from an analysis of FIG. 3C is that the pulp substrate exhibits higher retention for an overlap application method as compared to the retention when applied with a no-overlap wiping method, which is exactly opposite that seen with synthetic and blended substrates (which exhibit higher retention with overlap, as compared to without). This unique characteristic of the pulp substrates as compared to the blended and synthetic substrates is believed to be indicative of the blended and synthetic wipe's tendency to “dump”, whereas the pulp substrate does not exhibit this characteristic, but delivers a more uniform, dosed quantity of the lotion throughout the wiping motion, no matter if the wiping is in an overlap or no overlap regime.


Another characteristic related to absorbency that has been observed by Applicant is that existing pre-loaded wipe products are not particularly good at absorbing light spills. For example, the synthetic or blended substrates are typically loaded at relatively high loading ratios in order to ensure sufficient antimicrobial agent is delivered to the surface being treated, and also in an attempt to partially compensate for the tendency of the composition to be “dumped” when the user first compresses the wipe, either by squeezing or wiping a surface. The present wipes including a pulp substrate, on the other hand exhibit far greater absorbency, which allows such wipes to be used to clean up (i.e., absorb) light spills from the target surface, while at the same time delivering a antimicrobial agent to the target surface. Such a combination of features is simply not possible with current wipes based on synthetic and blended substrates. It was unexpected that the present wipes are able to achieve desired microefficacy results at relatively low loading ratios, while at the same time providing absorptive capacity for absorbing liquid spills from the same target surface to which the cleaning composition is being delivered.


i. MABDF


Many of the characteristics described herein relative to the pulp substrates may be represented in an empirical measurement, defined as mileage absorbency/desorbency factor (MABDF), where MABDF is defined as:







(

R
+
P
+
S

)


(

ρ
+
TS

)






where R is the percentage of composition retained upon squeezing, P is the percentage of pulp in the substrate, S is the stiffness of the wipe (in mg·cm), p is the density of the wipe (in gm/cm3), and TS is the tensile strength of the substrate (in lbf). MABDF empirical values may be determined for both wet and dry conditions, as values such as stiffness and tensile strength may change depending on whether the wipe is wet or dry. An average MABDF may also be determined, as an average of the wet and dry values.


The MABDF empirical value is indicative of how well the substrate retains the cleaning composition so as to deliver it in a relatively uniformly dosed way, over the useful life of the wipe, as opposed to “dumping” the composition very quickly, well before the durability characteristics of the substrate have been expended. MABDF may also be indicative of other advantageous characteristics as described herein.


Such MABDF values for the present wipes may be significantly higher than for existing commercially available wipes, which are based on synthetic or blended substrates. Tables 4A-4B below show various values that go into the MABDF determination, as well as MABDF values for various tested wipes. Table 4C shows average MABDF values.









TABLE 4A







Dry MABDF












100% Pulp
100% Pulp
60/40
100% Synthetic



substrate - 1
substrate - 2
Blend
Substrate















Wet Density
0.05
0.07
0.13
0.12


(g/cm3)


Saturation
14
8
8
11


Capacity (g)


Percent Retained
31
41
35
20


Percent Released
69
59
65
80


MD Dry Tensile
2.68
2.68
5.58
21.93


Strength (lbf)


Percentage Pulp
99.5
99.5
60
0


Dry Stiffness
200
200
75
63


(mg · cm)


MABDF - Dry
126
127
31
4
















TABLE 3B







Wet MABDF












100% Pulp
100% Pulp
60/40
100% Synthetic



substrate - 2
substrate - 1
Blend
Substrate















Wet Density
0.05
0.07
0.13
0.12


(g/cm3)


Saturation
14
8
8
11


Capacity (g)


Percent Retained
31
41
35
20


Percent Released
69
59
65
80


MD Wet Tensile
0.84
0.84
3.62
15.61


Strength (lbf)


Percentage Pulp
99.5
99.5
60
0


Wet Stiffness
48
48
61
40


(mg · cm)


MABDF - Wet
217
216
44
5
















TABLE 4C







Average MABDF












100% Pulp
100% Pulp
60/40
100% Synthetic



substrate - 2
substrate - 1
Blend
Substrate















MABDF - Avg
172
172
37
4









As seen, wet, dry, and average MABDF values may be greater than 50, at least 60, at least 70, at least 80, at least 90, or at least 100, from 80 to 400, from 80 to 300, from 100 to 300, or from 100 to 250.


j. Antimicrobial Efficacy


Various types of pulp substrates were tested for their ability to effectively deliver an antimicrobial quaternary ammonium compound to a surface during simulated cleaning. Applicant noted that the generally anionic characteristics of typical pulp substrates leads to a tendency of the substrate to bind or otherwise retain the cationic quaternary ammonium compound, even when squeezing an aqueous cleaning composition from the pulp substrate. In other words, typically, the concentration of quaternary ammonium compound in the “squeezate” (the cleaning composition as squeezed from the pre-loaded wipe) is less than the concentration of quaternary ammonium compound in the cleaning composition before it was loaded into the wipe. Since quaternary ammonium compounds are known to bind to pulp substrates, it was unexpected that the present wipes were able to release a significant portion of the quaternary ammonium compound to achieve disinfectancy and/or sanitization on a treated surface without the inclusion of a biocide release agent and substantially free of latex binders in the substrate. Because of this characteristic, it can be important to ensure that sufficient quaternary ammonium compound is included in the composition as loaded to ensure there is sufficient in the squeezate to provide a desired degree of antimicrobial efficacy. For example, in an embodiment, the wipes release at least 20% of the quaternary ammonium compound (i.e., quaternary ammonium compound in the squeezate as compared to the cleaning composition before loading). By way of further example, the wipes may exhibit at least a 3-log reduction in a target microbe, such as Staphylococcus aureus, within a given time frame (e.g., such as 5 minutes, 1 minute, 30 seconds, 10 seconds, etc.).












TABLE 5






% Quat in Cleaning
% Quat in
% Quat


Substrate
Composition
Squeezate
Released


















60/40 synthetic
0.363
0.160
44.11%


blend with


high localized


texture


100% pulp
0.363
0.235
64.90%


with latex


binder


100% pulp
0.363
0.085
23.39%


with light


texture


100% pulp
0.363
0.161
44.27%


with high


localized


texture









Table 5 shows the results of testing in which a cleaning composition including 0.363% of a quaternary ammonium compound was loaded into several different types of substrates. The cleaning composition was squeezed therefrom, and the squeezate was analyzed to determine the concentration of the quaternary ammonium compound therein.


While inclusion of a latex binder in the substrate increases the percentage of the quaternary ammonium compound (quat) being released, in an embodiment, no latex binders are added to the substrate, as such inclusion increases costs, and reduces the strength of the substrate when wet, which is particularly problematic. Such latex binders may be characterized as cationic biocide release agents, for purposes of the present application. In an embodiment, the present wipes are preferably free of such cationic biocide release agents, as while they may increase release of the cationic biocide, such cationic agents introduce other problems. For example, while cationic latex may block some of the anionic binding sites of the pulp substrate so as to increase quat release, the latex decreases strength and otherwise negatively affects the hand feel characteristics of the wipe. Similarly, cationic salts might be added to the composition or otherwise provided within the wipe for a similar purpose, but such salts lead to undesirable streaking and film formation characteristics associated with the wipe. Thus, in an embodiment, the wipe is free of or at least substantially free of such cationic biocide release agents. Materials that have applicability both as binders and processing aids may be used in small amounts as a processing aid for wet strength in pulp substrate processing. Examples of such materials include KYMENE, cellulose gum, sodium carboxymethylcellulose (CMC) or the like. Such materials may be present at low levels (e.g. less than 1% by weight, less than 0.5% by weight, less than 0.2% by weight, less than 0.1% by weight, less than 0.05%, or the like) in the inventive wipes, not as binders, but simply because they are commonly used in the manufacture of pulp substrate materials.


Without the aid of such release agents, the wipe may release at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, up to 100%, up to 90%, up to 80%, up to 70%, up to 60%, up to 50%, from 20% to 60%, or from 30% to 50% of the quaternary ammonium compound upon squeezing (e.g., use or simulated use).


From the data of Table 5, it is apparent that the high localized texture (as illustrated in FIGS. 1A-1C) contributes to the ability to improve release, as compared to other textures (e.g., no texture, or a light texture). For example, the 100% pulp substrate with light texture was only able to release about 23% of the quaternary amine, while the same 100% pulp substrate with high texture was able to release more than 44% of the quaternary amine, on a par with the blended substrate (60% pulp, 40% synthetic). Such increased release due to high texture may be associated with the pore distribution characteristics as described herein. For example, the high texture substrates were dominated by larger sized pores, which will reduce the density of anionic binding sites available in the substrate for retaining the quaternary ammonium compound. The result is that the high texture substrate dominated by larger pore sizes is able to release a higher percentage of the quaternary ammonium compound, even without the use of any cationic biocide release agents.


Further testing was conducted to analyze microefficacy of the present wipes against Staphylococcus aureus. Two cleaning compositions were tested, as shown in Table 6 below. The percentages are for the cleaning composition prior to loading (i.e., the squeezate will have less quat).













TABLE 6







Formula 1
Formula 2
Formula 3



















Quat %
0.367
0.27
0.367


Lower Control Limit
0.33
0.22
0.33


(LCL)


Target Quat Level
0.367
0.27
0.367


Upper Control Limit
0.42
0.32
0.42


(UCL)


Nonionic Surfactant %
0.44
0.3
0.11


Na-bicarbonate %
0.006
0.006
0


Citric Acid %
0.005
0.005
0


Glycol Ether solvent %
1.83
1
1.00


IPA %
0.45
0.39
0.45


Fragrance %
0.1
0.1
0.12


Water
Balance
Balance
Balance









Both formulas were tested using 100% pulp substrates, having a high localized texture, such as seen in FIGS. 1A-1C. Various different loading ratios and contact times were tested for disinfection and/or sanitization ability. Table 7 shows the results of such testing.












TABLE 7






Loading
Contact Time



Sample
Ratio
(min)
Result







Formula 1 with
3.75:1
4:45
Pass


100% pulp with high


localized texture


Formula 1 with
3.75:1
9:45
Pass


100% pulp with high


localized texture


Formula 2 with
3.75:1
4:45
Potential


100% pulp with high


to Pass


localized texture


Formula 2 with
3.75:1
9:45
Pass


100% pulp with high


localized texture









Testing was conducted against Staphylococcus aureus according to ATCC [6358], using 10 carrier wipes for each test. In each “Pass” result, no growth of the Staphylococcus aureus target organism was detected (0/10 plates). Growth was detected in 2 out of 10 plates at the 4:45 min contact time, for Formula 2, indicating that upon retesting, there is the potential for a passing result. A “Pass” is achieved so long as there are no more than 1 failure (growth) out of 10 assays. The results are sufficient to support a disinfection claim (e.g., a log 6 reduction) against Staphylococcus aureus for about 5 and 10 minute contact times.


In addition to testing a loading ratio of 3.75:1 at 5 and 10 minute contact times, loading ratios of 2, 2.5 and 3 were also tested, using the same 100% pulp high texture substrates as described above in conjunction with Table 7. In a similar manner as described above, 10 carrier wipes were each tested against Staphylococcus aureus under ATCC [6538]. All examples passed, supporting a sanitization claim against Staphylococcus aureus at a 5 minute contact time. In all such microefficacy testing procedures, the tested 100% pulp substrates were each 11 inches by 10.25 inches. The substrates were each individually folded in half along the 11 inch side, and stacked on each other (alternate the folded edge), and then loaded with the cleaning composition. The resulting stacks of 10 folded substrates were folded in half again to result in a substantially square geometry (5.5×5.125 inches). The neutralizer employed in such testing was Letheen broth, with 0.28% lecithin and 2% tween 80. Exposure temperature was 21° C. Soil load was 5% fetal bovine serum. The wiping procedure for each wipe was over and back two times (4 single passes total). Unmatted petri dishes were used in testing.


At a loading ratio of 2:1, all 10 wipes were dry at the end of the 4:45 exposure period. At a loading ratio of 2.5:1, four of the 10 wipes were dry at the end of the 4:45 exposure period. At a loading ratio of 3:1, one wipe was dry, and another wipe was only partially wet after the exposure period. All samples, at loading ratios of 2:1, 2:5:1, and 3:1 passed the 4:45 sanitization test (i.e., at least a 3-log reduction in Staphylococcus aureus). The controls for each test had Staphylococcus aureus populations of 6.06 average Log10, 6.03 average Log10, and 6.04 average Log10 for LRs of 2:1, 2.5:1, and 3:1, respectively.













TABLE 8






Load-
Contact

Staphylococcus


Klebsiella




ing
Time

aureus


pneumoniae



Sample
Ratio
(seconds)
[ATCC 6538]
[ATCC 4352]







Formula 3 with
3:1
10 seconds
Fail
Pass


1 Ply low


texture substrate


Formula 3 with
3:1
10 seconds
Pass
Pass


2 Ply low


texture substrate


Formula 3 with
3:1
30 seconds
Pass
Pass


1 Ply low


texture substrate









Testing was conducted against Staphylococcus aureus according to ATCC [6538] and Klebsiella pneumoniae according to ATCC 4352, using 5 carrier wipes for each test. In each “Pass” result, greater than 99.9% of Staphylococcus aureus target organism was killed on all five carriers. Similarly, each “Pass” result, greater than 99.9% of Klebsiella pneumoniae target organism was killed on all five carriers. The single ply low textured substrate with formula 3 was a “fail” because less than 99.9% of target organism Staphylococcus aureus were killed at 10 seconds contact time. This indicated that a two ply material at the 10 second contact time is superior for sanitization with respect to having at least a log 3 reduction in Staphylococcus aureus. A “Pass” is achieved so long as there are no more than 1 failure (growth) out of 10 assays. The results are sufficient to support a disinfection claim (e.g., a log 6 reduction) against Staphylococcus aureus for 10 second for a two ply substrate and 30 second contact times for either the single ply or two ply substrates. The single ply substrate is a commercial paper tissue with a basis weight of about 30 gsm that comprises a blend of hardwood and soft wood fibers. The two ply substrate is a commercial paper tissue with a basis weight of about 42 for the substrate only and about 48 gsm for the substrate plys and adhesive together. The two ply substrate comprises a blend of hardwood and softwood fibers where the two plys are held together with a water insoluble, polymeric glue formulation.


Without departing from the spirit and scope of this invention, one of ordinary skill can make various changes and modifications to the invention to adapt it to various usages and conditions. As such, these changes and modifications are properly, equitably, and intended to be, within the full range of equivalence of the following claims.

Claims
  • 1. A pre-loaded wipe comprising: (a) a substrate comprising greater than 90% by weight of pulp fibers, wherein the substrate includes an increased density of pulp fibers at a location of a localized texture;(b) a cleaning composition comprising: (i) about 0.1-about 2% by weight of a C12 to C18 quaternary ammonium compound comprising one or more halides of alkyldimethylbenzyl ammonium, alkyldimethylethylbenzyl ammonium, or alkyldimethylammonium;(ii) about 0.5-about 3% by weight of a glycol ether comprising one or more of: diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, dipropylene glycol methyl ether or dipropylene glycol propyl ether; and(iii) about 90-99% water; andwherein the pre-loaded wipes release said quaternary ammonium compound to a target surface and exhibit at least a 6-log reduction in a Staphylococcus aureus population within 10 minutes.
  • 2. The wipe of claim 1, wherein the substrate having a pore size distribution wherein less than 60% of a total percentage of pores of the substrate fall within a pore size range of 0 to 200 μm.
  • 3. The wipe of claim 1, wherein the substrate is formed from ribbon-shaped pulp fibers.
  • 4. The wipe of claim 1, wherein the substrate does not contain synthetic fibers.
  • 5. The wipe of claim 4, wherein fibers of the substrate consist essentially of wood pulp.
  • 6. The wipe of claim 1, wherein the cleaning composition comprises about 0.1% to less than 1% by weight of said C12 to C18 quaternary ammonium compound.
  • 7. The wipe of claim 1, wherein the substrate is pre-loaded with the cleaning composition at a loading ratio from 2:1 to 6:1.
  • 8. The wipe of claim 1, wherein the substrate is pre-loaded with the cleaning composition at a loading ratio from 2.5:1 to 4:1.
  • 9. The wipe of claim 3, wherein the substrate is a single ply material.
  • 10. The wipe of claim 3, wherein the substrate comprises at least two plys of material comprising an adhesive to hold the plys together.
  • 11. A pre-loaded wipe comprising: (a) a pulp substrate formed from ribbon-shaped fibers, wherein the substrate is substantially void of synthetic fibers, the substrate comprises at least two plys of material, and the substrate includes a localized texture;(b) a cleaning composition comprising: (i) about 0.05-about 1% by weight of a C12 to C18 quaternary ammonium compound comprising one or more halides of alkyldimethylbenzyl ammonium, alkyldimethylethylbenzyl ammonium, or alkyldimethylammonium;(ii) about 0.1-about 5% by weight of a glycol comprising one or more of: diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, dipropylene glycol methyl ether or dipropylene glycol propyl ether; and(iii) about 90-99% water; andwherein the pre-loaded wipes release said quaternary ammonium compound to a target surface and exhibit at least a 6-log reduction in a Staphylococcus aureus population within 10 minutes.
  • 12. The wipe of claim 11, wherein the pulp substrate has a pore size distribution where the majority of the pores have a size between 200 to 400 μm.
  • 13. The wipe of claim 12, wherein the cleaning composition comprises less than about 0.1% to 1% by weight of said C12 to C18 quaternary ammonium compound.
  • 14. The wipe of claim 13, wherein the substrate is pre-loaded with the cleaning composition at a loading ratio from 2:1 to 6:1.
  • 15. The wipe of claim 11, wherein the substrate comprises an adhesive to hold the at least two plys together.
  • 16. The wipe of claim 11, wherein the substrate does not contain a latex binder.
  • 17. The wipe of claim 11, wherein the substrate includes an increased density of pulp fibers at a location of the localized texture.
  • 18. The wipe of claim 11, wherein the substrate has a pore size distribution wherein less than 60% fall within a pore size range of 0 to 200 μm.
  • 19. The wipe of claim 11, wherein the substrate has a dry density of less than 0.1 g/cm3.
  • 20. A pre-loaded wipe comprising: (a) a pulp substrate wherein the substrate is substantially void of synthetic fibers and wherein the substrate comprises at least two plys of material and the substrate includes an increased density of pulp fibers at a location of a localized texture;(b) a cleaning composition comprising: (i) about 0.05-about 1% by weight of a C12 to C18 quaternary ammonium compound comprising one or more halides of: alkyldimethylbenzyl ammonium, alkyldimethylethylbenzyl ammonium, or alkyldimethylammonium;(ii) about 0.1-about 5% by weight of a glycol comprising one or more of: diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, dipropylene glycol methyl ether or dipropylene glycol propyl ether; and(iii) about 90-99% water; and(c) wherein the wipes do not contain a latex binder;wherein the pre-loaded wipes release said quaternary ammonium compound to a target surface and exhibit at least a 6-log reduction in a Staphylococcus aureus population within 10 minutes.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 17/200,476, filed Mar. 12, 2021, now U.S. Pat. No. 11,643,621, which is a continuation of U.S. patent application Ser. No. 15/961,663, filed Apr. 24, 2018, now U.S. Pat. No. 10,982,177, which claims the benefit of U.S. Provisional Patent Application No. 62/560,027 filed Sep. 18, 2017, the disclosure of said applications is hereby incorporated by reference in their entirety.

US Referenced Citations (124)
Number Name Date Kind
2684924 Leslie et al. Jul 1954 A
2990425 Senior Jun 1961 A
3468898 Cutler et al. Sep 1969 A
3749672 Golton et al. Jul 1973 A
4022834 Gundersen May 1977 A
4053636 Eustis et al. Oct 1977 A
4171047 Doyle et al. Oct 1979 A
4198392 Juneja Apr 1980 A
4353480 McFadyen Oct 1982 A
4463045 Ahr et al. Jul 1984 A
4540505 Frazier Sep 1985 A
4741944 Jackson et al. May 1988 A
4778048 Kaspar et al. Oct 1988 A
5145604 Neumiller Sep 1992 A
5292581 Viazmensky et al. Mar 1994 A
5342534 Skrobala et al. Aug 1994 A
5444094 Malik et al. Aug 1995 A
5454984 Graubart et al. Oct 1995 A
5522942 Graubart et al. Jun 1996 A
5595786 McBride et al. Jan 1997 A
5686015 Willey et al. Nov 1997 A
5798329 Taylor et al. Aug 1998 A
5814591 Mills et al. Sep 1998 A
5908854 McCue et al. Jun 1999 A
5922665 Liu Jul 1999 A
5948743 Fonsny et al. Sep 1999 A
6017869 Lu et al. Jan 2000 A
6080706 Blanvalet et al. Jun 2000 A
6090768 Delaney et al. Jul 2000 A
6110295 Lu et al. Aug 2000 A
6121224 Fonsny et al. Sep 2000 A
6130197 Bedford et al. Oct 2000 A
6143244 Xia et al. Nov 2000 A
6143281 Alexander et al. Nov 2000 A
6153568 McCanna et al. Nov 2000 A
6187737 Geke et al. Feb 2001 B1
6277805 Kupneski Aug 2001 B1
6323171 Fonsny et al. Nov 2001 B1
6339057 Knox et al. Jan 2002 B1
6342474 Kerobo et al. Jan 2002 B1
6358900 Wigley et al. Mar 2002 B1
6376455 Friedli et al. Apr 2002 B1
6387855 De La Mettrie May 2002 B1
6387866 Mondin et al. May 2002 B1
6387871 Faber May 2002 B2
6429183 Leonard et al. Aug 2002 B1
6462014 Johnson et al. Oct 2002 B1
6471974 Rees et al. Oct 2002 B1
6583104 Christensen et al. Jun 2003 B1
6596681 Mahieu et al. Jul 2003 B1
6680264 Julemont Jan 2004 B2
6693070 Cheung et al. Feb 2004 B1
6737068 Durden May 2004 B2
6814088 Barnabas et al. Nov 2004 B2
6825158 Mitra et al. Nov 2004 B2
6831050 Murch et al. Dec 2004 B2
6844308 Dastbaz et al. Jan 2005 B1
6849589 Liu Feb 2005 B2
6936580 Sherry et al. Aug 2005 B2
7071155 Griese et al. Jul 2006 B2
7214651 Mohr et al. May 2007 B2
7345015 Kong et al. Mar 2008 B1
7348303 Gallotti et al. Mar 2008 B2
7396808 Hood et al. Jul 2008 B1
7511006 Shimmin et al. Mar 2009 B2
7530361 Killeen et al. May 2009 B2
7550416 Woo et al. Jun 2009 B2
7884037 Sirovatka et al. Feb 2011 B2
8173146 Leroy May 2012 B2
8252819 Felder et al. Aug 2012 B2
8278260 Saint Victor Oct 2012 B2
8283304 Saint Victor Oct 2012 B2
8648027 Mitchell et al. Feb 2014 B2
9006165 Mitchell et al. Apr 2015 B2
9096821 Hope et al. Aug 2015 B1
9234165 Hope et al. Jan 2016 B2
9826736 Napolitano et al. Nov 2017 B2
9988594 Hope et al. Jun 2018 B2
10358623 Mitchell et al. Jul 2019 B1
10358624 Mitchell et al. Jul 2019 B1
10973385 Dani Apr 2021 B2
10973386 Dani Apr 2021 B2
10975341 Dani Apr 2021 B2
10982177 Dani Apr 2021 B2
11643621 Dani May 2023 B2
20030073600 Avery et al. Apr 2003 A1
20030100465 Kilkenny et al. May 2003 A1
20030228991 Johnson et al. Dec 2003 A1
20040209792 Mitra et al. Oct 2004 A1
20040224857 John Nov 2004 A1
20040224867 Colurciello et al. Nov 2004 A1
20050026802 Kilkenny et al. Feb 2005 A1
20050148264 Varona et al. Jul 2005 A1
20050148655 Manzer Jul 2005 A1
20050215458 Lalum et al. Sep 2005 A1
20050227898 Leskowicz et al. Oct 2005 A1
20060016785 Egbe et al. Jan 2006 A1
20060052264 Lu Mar 2006 A1
20060172912 Burt et al. Aug 2006 A1
20060234899 Nekmard et al. Oct 2006 A1
20070185004 Kilkenny et al. Aug 2007 A1
20080003906 Hill et al. Jan 2008 A1
20080014818 Privitera et al. Jan 2008 A1
20080261856 Nakagawa et al. Oct 2008 A1
20080287331 Lin et al. Nov 2008 A1
20100101605 Saint Victor Apr 2010 A1
20100249245 Whiteley et al. Sep 2010 A1
20100323895 Garner Dec 2010 A1
20110098206 Lynch et al. Apr 2011 A1
20110211600 Dantus et al. Sep 2011 A1
20110219312 Kim et al. Sep 2011 A1
20110311600 Polzin et al. Dec 2011 A1
20120034287 Napolitano Feb 2012 A1
20120227203 Ouellette Sep 2012 A1
20140011725 Marsh et al. Jan 2014 A1
20140011726 Mitchell et al. Jan 2014 A1
20150125502 Colurciello et al. May 2015 A1
20160128523 Shwartz May 2016 A1
20160295859 Chan et al. Oct 2016 A1
20170211234 Baer Jul 2017 A1
20180216044 Ojha et al. Aug 2018 A1
20180251925 Knowlson Sep 2018 A1
20200080031 Dani et al. Mar 2020 A1
20210207068 Dani Jul 2021 A1
Foreign Referenced Citations (17)
Number Date Country
2132274 May 1995 CA
2212259 Oct 1972 DE
2627548 Jan 1977 DE
1964196 Feb 1977 DE
0024031 Feb 1981 EP
2256182 Dec 2010 EP
1344042 Jan 1974 GB
1544977 Apr 1979 GB
0300225 Jan 2003 WO
0350225 Jun 2003 WO
2005103223 Nov 2005 WO
2007073877 Jul 2007 WO
2008008063 Jan 2008 WO
2010046142 Apr 2010 WO
2010101864 Sep 2010 WO
2011064554 Jun 2011 WO
2014134224 Sep 2014 WO
Non-Patent Literature Citations (22)
Entry
Lopez et al. Evaluation of a Disinfectant Wipe Intervention on Fomite-to-Finger Microbial Transfer. Appl Environ Microbiol. May 2014; 80(10): 3113-3118.
PCT Search Report, International Application PCT/US18/48908, dated Nov. 14, 2018.
Final Office Action received for U.S. Appl. No. 15/961,663, mailed Apr. 9, 2020, 11 pages.
Final Office Action received for U.S. Appl. No. 16/036,095, mailed Apr. 9, 2020, 10 pages.
Final Office Action received for U.S. Appl. No. 16/042,690, mailed Apr. 15, 2020, 10 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US18/48908, mailed on Apr. 2, 2020, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US18/48908, mailed on Nov. 14, 2018, 8 pages.
International Search Report, mailed Jul. 29, 2013, from counterpart PCT/US13/48586; Jun. 28, 2013.
Non-Final Office Action received for U.S. Appl. No. 17/200,476, mailed on Sep. 14, 2022, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 15/961,663, mailed Nov. 7, 2019, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 15/961,663, mailed Sep. 11, 2020, 13 pages.
Non-Final Office Action received for U.S. Appl. No. 16/036,095, mailed Nov. 7, 2019, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 16/036,095, mailed Sep. 11, 2020, 10 pages.
Non-Final Office Action received for U.S. Appl. No. 16/036,688, mailed Nov. 7, 2019, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 16/042,690, mailed Nov. 7, 2019, 8 pages.
Non-Final Office Action received for U.S. Appl. No. 16/042,690, mailed Sep. 11, 2020, 10 pages.
Notice of Allowance received for U.S. Appl. No. 17/200,476, mailed on Jan. 18, 2023, 10 pages.
Notice of Allowance received for U.S. Appl. No. 15/961,663, mailed Mar. 3, 2021, 9 pages.
Notice of Allowance received for U.S. Appl. No. 16/036,095, mailed Mar. 4, 2021, 9 pages.
Notice of Allowance received for U.S. Appl. No. 16/036,688, mailed Mar. 3, 2021, 11 pages.
Notice of Allowance received for U.S. Appl. No. 16/042,690, mailed Mar. 3, 2021, 9 pages.
Supplementary European Search Report, EP18856450; PCT/US2018/048908; dated Apr. 26, 2021.
Related Publications (1)
Number Date Country
20230250372 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
62560027 Sep 2017 US
Continuations (2)
Number Date Country
Parent 17200476 Mar 2021 US
Child 18194466 US
Parent 15961663 Apr 2018 US
Child 17200476 US