The technical field relates generally to panel systems for use in cleanroom constructions.
A cleanroom can be generally defined as a closed sealable space that prevents contaminants from getting in or out. Some cleanrooms are provided so as to keep a workplace substantially free of contaminants, such as dust, airborne microbes, aerosol particles, chemical vapors, etc. These contaminants might otherwise interfere with the precision work undertaken there and/or alter the quality of the products being made. Others cleanrooms are provided to prevent chemical and/or biological contaminants from being released in the surrounding environment. These cleanrooms can often be found in research facilities or the like, but a cleanroom can also be used as a quarantine zone, for example a quarantine zone for living animals. Animal biosecurity is increasingly a concern and many diseases can spread very fast in the air over vast distances, sometimes many kilometers from a source. An example is the porcine reproductive and respiratory syndrome (PRRS) virus. This virus is highly infectious and can spread in the air up to 8 kilometers from a source. It has a substantial economic burden on the industry in affected areas. Some are even considering having cleanrooms on trucks for transporting healthy animals across some areas as part of their biosecurity protocols.
The term “cleanroom” refers primarily to the closed sealable space but it also refers the surrounding structural parts required to create it. Generally, a cleanroom minimally includes walls, a ceiling, a floor and anything that is required to access the space therein, for instance a door. A cleanroom often requires using a dedicated air filtering system to prevent the contaminants from leaving or entering, depending on the situation. The interior of the cleanroom is maintained either at a negative pressure relative to the surrounding outside environment when the contaminants are considered to be inside, or either at a positive pressure relative to the surrounding outside environment when the contaminants are considered to be outside.
The size of a cleanroom can vary immensely from one implementation to another. Some cleanrooms can be made very small while others can be large enough to have several persons working simultaneously therein. One approach to simplify the design and the construction of cleanrooms is to use modular panels as basic elements. Cleanrooms of various sizes and configurations are then built using a number of these panels for at least a part of their structure. Modular panels can be used for walls, ceilings and/or floors. They can also lower costs. They are generally attached to an external supporting structure that will hold them in place. The external supporting structure can be structural elements of an existing room or compartment, and/or be a dedicated framework or armature installed together with the panels.
U.S. Pat. No. 9,169,641 to Wickstrom discloses a cleanroom wall panel system. The system includes retainer elements to secure the wall panels. The wall panels are lifted prior to move them into position and then lowered to secure them to the retainer elements. However, this requires a clearance space between the top edge of the wall panels and the ceiling. Once the wall panels are in position, the clearance space must be closed and sealed. This arrangement is also not suitable for ceiling and floor panels.
Although various arrangements have been proposed in the past for creating cleanrooms, the design and the construction of cleanrooms often remain challenging for various reasons. Room for improvements always exists in this technical area.
In one aspect, there is provided a cleanroom panel system including: a plurality of panels, each panel having opposite inboard and outboard major surfaces that are made of a thermoplastic material; a plurality of first thermoplastic welded junctions, each first thermoplastic welded junction providing an hermetically-sealed connection between adjacently-disposed lateral side edges of a corresponding pair formed by two juxtaposed ones of the panels; a plurality of elongated snap-in panel anchoring units, at least one for each panel, each snap-in anchoring unit including complementary first and second members to be latched together through an interfering engagement, at least the first member of each snap-in anchoring unit being made of a thermoplastic material; and a plurality of second thermoplastic welded junctions, each second thermoplastic welded junction being provided between a corresponding one of the first members of the snap-in panel anchoring units and the outboard major surface of a corresponding one of the panels.
Further details on the various aspects of the proposed concept will be apparent from the following detailed description and the appended figures.
The external supporting structure 106 can be, for instance, existing structural elements of a room or compartment 108 and/or a framework or armature, for instance one added inside the room or compartment 108. The framework or armature can include parts made of wood, metal, concrete and/or other materials that are attached to the existing structural elements. Examples of such structural elements include walls, ceilings, floors, columns, etc. In some implementations, the external supporting structure 106 can be self-supporting and/or be located outdoors instead of being provided inside a room or compartment 108. Other variants are possible as well.
The cleanroom panel system 104 can be used to build cleanrooms almost anywhere. This includes locations that are not necessarily buildings. For instance, a cleanroom can be constructed inside the box of a truck or a trailer, thereby allowing the cleanroom to be transported by road. Other similar locations include railroad cars, airplanes, ships and many others. Yet, a cleanroom can be constructed, using the cleanroom panel system 104, inside a decommissioned maritime container. Such container includes a rigid metallic outer structure and a relatively large space therein. This metallic outer structure could then correspond to item 108 shown in
The cleanroom 100 shown in
In
In most implementations, various support equipment are used with the cleanroom 100. They can be mounted inside and/or outside the space 102. The exact list of equipment will depend on the specific implementation. Equipment can include, in the example shown in
It should be noted that the cleanroom panel system 104 minimally includes wall panels 140 since in some implementations, the ceiling panels 142 and/or the floor panels 144 can be unnecessary. This may be because there is an existing ceiling and/or floor suitable for use inside the cleanroom 100. The proposed concept also applies to these implementations. However, for the sake of simplicity, the present detailed description mainly refers to an implementation where wall panels 140 are used together with ceiling panels 142 and floor panels 144. Each panel 140, 142, 144 has opposite inboard and outboard major surfaces.
The panels 140, 142, 144 of the example illustrated in
If desired, one or more windows can be added. Window openings can be made through the wall panels 140. They can also be made through the ceiling panels 142 and/or the floor panels 144 in some implementations.
Depending on the requirements, the panels 140, 142, 144 can be single-layered panels or multi-layered panels. A same cleanroom 100 can include both single-layered panels and multi-layered panels. An example of a single-layered panel is a flat monolithic sheet panel made of a same material. Multi-layered panels are sometimes referred to as composite or sandwich panels. A multi-layered panel is generally having at least two juxtaposed flat sheet panels with or without an intervening space between them. The intervening space can simply be an air space or be filled, at least in part, with a layer of another material, such as a thermal and/or acoustic insulation material. This material can be in the form of a rigid panel, be a hardened material injected inside the intervening space, or be a filling bulk material added inside the intervening space. Many other variants are possible as well.
In the proposed concept, at least the inboard major surfaces and the outboard major surfaces of the panels 140, 142, 144 of the cleanroom panel system 104 are made of a thermoplastic material. A thermoplastic material can be broadly defined as a polymeric material having the property of softening or fusing when heated and of hardening and becoming rigid again when cooled. It is thus not a thermoset material since the latter is relatively incapable of softening or fusing when heated. Examples of thermoplastics include high-density polyethylene (HDPE), Polyvinyl chloride (PVC), and many others.
The composition of the thermoplastic material can include only a single kind of thermoplastic, a blend of two or more kinds of thermoplastics, or a blend of one or more kinds of thermoplastics with one or more materials that are not thermoplastics or even polymers. The resulting composition, however, must still exhibit the main characteristics of a thermoplastic material wherever thermoplastic welding junctions will be provided. Generally, a thermoplastic material includes at least 50% vol. of thermoplastics but variants are possible.
It should be noted that while panels in the cleanroom panel system 104 are said to be made of thermoplastic material, they may still include added elements that are not made of a thermoplastic material. For instance, in the multi-layered wall panel 140 shown in
The various panels in the cleanroom panel system 104 are assembled together by thermoplastic welding, namely a process by which the two parts are rigidly attached by melting and then cooling some of the thermoplastic materials on the panels themselves to create thermoplastic welded junctions. Only adding a molten material between adjacent parts and cooling this added material until it solidifies is merely adhesion and it does not create a thermoplastic welded junction because the adjacent parts are not also molten and fused with the added material. A thermoplastic welded junction is created when heat is applied directly at the site using a corresponding tool and the heat locally melts the thermoplastic welding rod as well as a thin layer of the material on the two parts. The thermoplastic welding rod is usually fed by the welding tool. It is generally made of the same material as the surrounding parts.
Also, for the record, the expression “thermoplastic welded junction” refers to a physical element (i.e. seam) that will be present on the final installed product itself, even long after the welding work is completed. This physical element will be visually recognizable by someone skilled in the art.
Welding the panels 140, 142 and/or 144 of the cleanroom panel system 104 creates a plurality of thermoplastic welded junctions 154. Each thermoplastic welded junction 154 creates a strong and hermetically-sealed connection between adjacently-disposed lateral side edges of a corresponding pair formed by two juxtaposed ones of the panels 140, 142, 144.
Unlike prior arrangements where the junctions are sealed using elements such as gaskets and/or sealant beads, the seams of the thermoplastic welded junctions 154 are very durable. They will not dry or otherwise fail. They can also be made virtually invisible, for instance using a grinder or sand paper, if this is required. As can be seen in the example of
The cleanroom 100 constructed using the cleanroom panel system 104 can be used in a wide variety of applications. Some of them includes holding living animals for a given time period. Some animals are known to react differently from others to details in their surrounding environment and this must often be taken into account in the design of the panels that will be around these animals. For example, when the cleanroom 100 is intended for pigs, using horizontally-disposed wall panels 140, such as shown in
Welding thermoplastic panels together in order to seal all junctions in an airtight manner is not necessarily an easy task to accomplish. The thermoplastic welding is done on a commercial basis by specialized thermoplastic welders using an appropriate equipment, such as a welding gun having a nozzle expelling a plume of hot air in a controlled manner. Other thermoplastic welding techniques may be used as well, including sonic welding and others.
Regardless of the welding technique carried out by the specialized thermoplastic welder, the adjacent panels 140, 142 and/or 144 must be properly positioned before the welding begins and they must remain stationary during welding. However, holding the panels using conventional clamps or the like is often difficult and inefficient. The ceiling panels 142 can be particularly challenging to hold in position.
Moreover, it is also often highly undesirable to affix the panels 140, 142, 144 to the external supporting structure 106 using fasteners, such as nails or screws, extending across the thickness of the panels 140, 142, 144 from the inside, namely from the inboard side towards the outboard side. The screw heads and the resulting holes to accommodate them will create highly-undesirable discontinuities on the inboard side surfaces. Using fasteners going into the panels from the outside is often even more difficult because the fasteners must not protrude out on the inboard side. The fasteners must thus extend only partially into the panels. However, when the panel is a relatively-thin sheet of thermoplastic, the holding force of each fastener will be greatly reduced because of the depth limitations. The resistance to vibrations will also be very low in such situation and this could be a concern, for instance if the cleanroom is intended to be transported once assembled.
Each snap-in panel anchoring unit 160 includes complementary first and second members 162, 164 to be press-fitted and this will make them latch together through an interfering engagement, for instance including opposite oblique surfaces forcing the side flanges of the second member 164 to bend outwards until corresponding flat surfaces are facing one another. The flanges of the first member 162 will then be trapped inside the second member 164, as shown in the example illustrated in
At least the first member 162 of each snap-in panel anchoring unit 160 is made of a thermoplastic material. The second member 164 can be made of a thermoplastic material or be made of a material that is not a thermoplastic material. Thus, for instance, the second member 164 can be made of a metallic material. The first member 162, since it is made of a thermoplastic material, can be welded directly onto the outboard side of the panels 140, 142, 144. This will create a plurality of second thermoplastic welded junctions 170. Each second thermoplastic welded junction 170 is located between a corresponding one of the first members 162 of the snap-in panel anchoring units 160 and the outboard major surface of a corresponding one of the panels 140, 142, 144.
In
Also in the example shown in
Furthermore, in
It should be noted that
The repair was made by cutting a larger clean opening around the damaged area 300. A square-shaped opening was made but other shapes are possible as well, including for instance a round shape. A patch 310, made of an identical or very similar thermoplastic material, was cut to fit perfectly inside the perimeter of the opening cut around the damaged area. This patch 310 should match with the rest of the wall panel 140 to make the repair as unnoticeable as possible.
Prior to the insertion of the patch 310, a snap-in anchoring unit segment 320 was cut from a longer snap-in panel anchoring unit 160. The first member of this snap-in anchoring unit segment 320 was then attached at the back of the patch 310 by thermoplastic welding. The length of the first member matches the height of the patch 310 or is made smaller but the second member is longer in the illustrated example. This second member is depicted by the stippled lines. It was inserted through the opening beforehand and attached to the external supporting structure 106. The second member extends across the opening so as to receive the first member that will be attached on the back of the patch 310. The first and second members will be in a latching engagement upon insertion of the patch 310 in the opening. Then, the periphery of the patch 310 was grooved and the thermoplastic welding was made. This created a thermoplastic welded junction 330 securing the patch 310 to the wall panel 140.
The present detailed description and the appended figures are meant to be exemplary only, and a skilled person will recognize that many changes can be made while still remaining within the proposed concept. The invention is thus not limited to the described examples and encompasses any alternative embodiments within the limits defined by the claims. For instance, the exact shape of the various components can differ from what is shown and described, depending on the needs. Still, many other variants of the proposed concept will be apparent to a skilled person, in light of a review of the present disclosure.
The present case is a continuation of PCT Application No. PCT/CA2016/051468 filed on 13 Dec. 2016. PCT/CA2016/051468 claims the benefits of U.S. patent application No. 62/272,037 filed on 28 Dec. 2015. The contents of these two prior patent applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2388297 | Slaughter | Nov 1945 | A |
3022869 | Radek | Feb 1962 | A |
3279971 | Gardener | Oct 1966 | A |
3621635 | De Lange | Nov 1971 | A |
3641723 | Delcroix | Feb 1972 | A |
3671061 | Dawdy | Jun 1972 | A |
4580385 | Field | Apr 1986 | A |
4854094 | Clark | Aug 1989 | A |
4909013 | Daw | Mar 1990 | A |
5247901 | Landon et al. | Sep 1993 | A |
5256105 | Austin | Oct 1993 | A |
D344596 | McArthur | Feb 1994 | S |
5297370 | Greenstreet et al. | Mar 1994 | A |
5645480 | Spengler | Jul 1997 | A |
5941040 | McAnallen et al. | Aug 1999 | A |
5996299 | Hsueh | Dec 1999 | A |
6070377 | Guevara Guzman | Jun 2000 | A |
6164024 | Konstantin | Dec 2000 | A |
6430885 | Ito | Aug 2002 | B1 |
6715239 | Passalacqua et al. | Apr 2004 | B2 |
6993875 | Rudduck | Feb 2006 | B2 |
7127865 | Douglas | Oct 2006 | B2 |
7921893 | Beehag et al. | Apr 2011 | B2 |
8910439 | Ingjaldsdottir et al. | Dec 2014 | B2 |
9003737 | Solomon et al. | Apr 2015 | B2 |
9051741 | Bilge | Jun 2015 | B2 |
9169641 | Wickstrom | Oct 2015 | B2 |
9169653 | Porter | Oct 2015 | B2 |
9328518 | Bilge | May 2016 | B2 |
9708817 | Gestetner | Jul 2017 | B2 |
20030110726 | Rudduck | Jun 2003 | A1 |
20050095977 | Hatz | May 2005 | A1 |
20050193643 | Pettus | Sep 2005 | A1 |
20050257461 | Daly, IV | Nov 2005 | A1 |
20100304658 | Grcevic | Dec 2010 | A1 |
20120077429 | Wernimont et al. | Mar 2012 | A1 |
20130206616 | Allen et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
0506502 | Mar 1996 | EP |
1219168 | Feb 2004 | EP |
2041234 | Jan 1971 | FR |
2745045 | Apr 1998 | FR |
2826386 | Jul 2004 | FR |
2346627 | Aug 2000 | GB |
2008099 | Jul 2013 | NL |
9726459 | Jul 1997 | WO |
2011140665 | Nov 2011 | WO |
2017113007 | Jul 2017 | WO |
Entry |
---|
Machine translation in English of EP0506502. |
Machine translation in English of FR2041234. |
Machine translation in English of FR2745045. |
Machine translation in English of FR2826386. |
Position Statement: Every pig barn should have a minimum of a Danish Entrance, Ontario Pork Industry Council, Nov. 2007. |
International Search Report and the Written Opinion from ISA/CA for PCT/CA2016/051468 dated Feb. 7, 2017. |
Number | Date | Country | |
---|---|---|---|
20180283002 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62272037 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CA2016/051468 | Dec 2016 | US |
Child | 16001028 | US |