The present invention generally relates to an ice maker for making substantially clear ice pieces, and methods for the production of clear ice pieces. More specifically, the present invention generally relates to an ice maker and methods which are capable of making substantially clear ice without the use of a drain.
During the ice making process when water is frozen to form ice cubes, trapped air tends to make the resulting ice cubes cloudy in appearance. The trapped air results in an ice cube which, when used in drinks, can provide an undesirable taste and appearance which distracts from the enjoyment of a beverage. Clear ice requires processing techniques and structure which can be costly to include in consumer refrigerators and other appliances. There have been several attempts to manufacture clear ice by agitating the ice cube trays during the freezing process to allow entrapped gases in the water to escape.
One aspect of the present disclosure, an ice maker assembly includes an ice tray having an ice forming plate with a top surface, a bottom surface and upstanding edges around a perimeter of the ice forming plate. A containment wall extends upwardly around the perimeter of the ice forming plate. The containment wall has a slot extending along a lower portion of the containment wall. The slot receives the upstanding edges of the ice forming plate to form the ice tray. A fluid line is configured to dispense water onto the top surface of the ice forming plate. A mechanical oscillating mechanism is coupled to the ice tray. The oscillating mechanism begins to rotate the tray in a rocking cycle about a transverse axis of the ice forming plate after ice has started to form along the top surface.
According to another aspect of the present disclosure, a method of forming ice in an ice maker includes the steps of: dispensing water onto a top surface of an ice forming plate of an ice tray which has a top surface, a bottom surface and upstanding edges around the perimeter of the ice forming plate; positioning a containment wall around the perimeter of the ice forming plate; positioning a slot extending along a lower portion of the containment wall; positioning the upstanding edges of the ice forming plate in the slot to form the ice tray; cooling a bottom surface of the ice forming plate; forming a layer of ice on the top surface of the ice forming plate from the water; and actuating a mechanical oscillator after the layer of ice has formed on the top surface of the ice forming plate.
According to another aspect of the present disclosure, a method of forming ice in an ice maker, includes the steps of: dispensing water onto a top surface of an ice forming plate, the ice forming plate having a top surface, a bottom surface and upstanding edges around a perimeter of the ice forming plate; positioning a containment wall extending upwardly around the perimeter of the ice forming plate, the containment wall having a slot; positioning the upstanding edges of the ice forming plate into the slot to form an ice tray; cooling the ice forming plate until the water on the top surface of the ice forming plate forms a layer of ice on the top surface of the ice forming plate; actuating a microprocessor controlled mechanical oscillation mechanism; and rotating the tray in a rocking cycle until substantially all of the water dispensed onto the top surface of the ice forming plate has frozen.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivates thereof shall relate to the ice maker assembly 52, 210 as oriented in
Referring initially to
The ice maker housing 54 communicates with an ice cube storage container 64, which, in turn, communicates with an ice dispenser 66 such that ice 98 can be dispensed or otherwise removed from the appliance with the door 56 in the closed position. The dispenser 66 is typically user activated.
In one aspect, the ice maker 52 of the present invention employs varied thermal input to produce clear ice pieces 98 for dispensing. In another aspect the ice maker of the present invention employs a rocking motion to produce clear ice pieces 98 for dispensing. In another, the ice maker 52 uses materials of construction with varying conductivities to produce clear ice pieces for dispensing. In another aspect, the icemaker 52 of the present invention is a twist-harvest ice maker 52. Any one of the above aspects, or any combination thereof, as described herein may be used to promote the formation of clear ice. Moreover, any aspect of the elements of the present invention described herein may be used with other embodiments of the present invention described, unless clearly indicated otherwise.
In general, as shown in
In certain embodiments, multiple steps may occur simultaneously. For example, the ice forming plate 76 may be cooled and rocked while the water is being dispensed onto the ice forming plate 76. However, in other embodiments, the ice forming plate 76 may be held stationary while water is dispensed, and rocked only after an initial layer of ice 98 has formed on the ice forming plate 76. Allowing an initial layer of ice to form prior to initiating a rocking movement prevents flash freezing of the ice or formation of a slurry, which improves ice clarity.
In one aspect of the invention, as shown in
In the embodiment depicted in
A grid 100 is provided, as shown in
As shown in
As shown in
The rocker frame 110 is operably coupled to an oscillating motor 112, which rocks the frame 110 in a back and forth motion, as illustrated in
Having briefly described the overall components and their orientation in the embodiment depicted in
The rocker frame 110 in the embodiment depicted in
As shown in
The ice tray 70 includes an integral axle 134 which is coupled to a drive shaft 136 of the oscillating motor 112 for supporting a first end of the ice tray 138. The ice tray 70 also includes a second pivot axle 140 at an opposing end 142 of the ice tray 70, which is rotatably coupled to the rocker frame 110.
The grid 100, which is removable from the ice forming plate 76 and containment wall 82, includes a first end 144 and a second end 146, opposite the first end 144. Where the containment wall 82 diverges from the ice freezing plate 76 and then extends vertically upward, the grid 100 may have a height which corresponds to the portion of the containment wall 82 which diverges from the ice freezing plate 76. As shown in
The containment wall 82 includes a socket 152 at its upper edge for receiving the pivot axle 148 of the grid 100. An arm 154 is coupled to a drive shaft 126 of the harvest motor 114, and includes a slot 158 for receiving the cam pin 150 formed on the grid 100.
A torsion spring 128 typically surrounds the internal axle 134 of the containment wall 82, and extends between the arm 154 and the containment wall 82 to bias the containment wall 82 and ice forming plate 76 in a horizontal position, such that the cam pin 150 of the grid 100 is biased in a position of the slot 158 of the arm 154 toward the ice forming plate 76. In this position, the grid 100 mates with the top surface 78 of the ice forming plate 76 in a closely adjacent relationship to form individual compartments 96 that have the ice forming plate defining the bottom and the grid defining the sides of the individual ice forming compartments 96, as seen in
The grid 100 includes an array of individual compartments 96, defined by the median wall 84, the edge walls 95 and the dividing walls 94. The compartments 96 are generally square in the embodiment depicted in
As shown in
The ice maker 52 is positioned over an ice storage bin 64. Typically, an ice bin level detecting arm 164 extends over the top of the ice storage bin 64, such that when the ice storage bin 64 is full, the arm 164 is engaged and will turn off the ice maker 52 until such time as additional ice 98 is needed to fill the ice storage bin 64.
As the water cascades over the median wall 84, air in the water is released, reducing the number of bubbles in the clear ice piece 98 formed. The rocking may also be configured to expose at least a portion of the top layer of the clear ice pieces 98 as the liquid water cascades to one side and then the other over the median wall 84, exposing the top surface of the ice pieces 98 to air above the ice tray. The water is also frozen in layers from the bottom (beginning adjacent the top surface 78 of the ice forming plate 76, which is cooled by the thermoelectric device 102) to the top, which permits air bubbles to escape as the ice is formed layer by layer, resulting in a clear ice piece 98.
As shown in
As shown in
Alternatively, the heat may be applied by a heating element (not shown) configured to supply heat to the interior volume 168 of the housing 54 above the ice tray 70. Applying heat from the top also encourages the formation of clear ice pieces 98 from the bottom up. The heat application may be deactivated when ice begins to form proximate the upper portion of the grid 100, so that the top portion of the clear ice pieces 98 freezes.
Additionally, as shown in
As shown in
As shown in
Once the clear ice pieces 98 have been dumped into the ice storage bin 64, the harvest motor 114 is reversed in direction, returning the ice tray 7 to a horizontal position within the rocker frame 110, which has remained in the neutral position throughout the turning of the harvest motor 114. Once returned to the horizontal starting position, an additional amount of water can be dispensed into the ice tray 70 to form an additional batch of clear ice pieces.
The control circuit 198 includes a microprocessor 204 which receives temperature signals from the ice maker 52 in a conventional manner by one or more thermal sensors (not shown) positioned within the ice maker 52 and operably coupled to the control circuit 198. The microprocessor 204 is programmed to control the water dispensing valve 200, the oscillating motor 112, and the thermoelectric device 114 such that the arc of rotation of the ice tray 70 and the frequency of rotation is controlled to assure that water is transferred from one individual compartment 96 to an adjacent compartment 96 throughout the freezing process at a speed which is harmonically related to the motion of the water in the freezer compartments 96.
The water dispensing valve 200 is actuated by the control circuit 198 to add a predetermined amount of water to the ice tray 70, such that the ice tray 70 is filled to a specified level. This can be accomplished by controlling either the period of time that the valve 200 is opened to a predetermined flow rate or by providing a flow meter to measure the amount of water dispensed.
The controller 198 directs the frequency of oscillation ω to a frequency which is harmonically related to the motion of the water in the compartments 96, and preferably which is substantially equal to the natural frequency of the motion of the water in the trays 70, which in one embodiment was about 0.4 to 0.5 cycles per second. The rotational speed of the oscillating motor 112 is inversely related to the width of the individual compartments 96, as the width of the compartments 96 influences the motion of the water from one compartment to the adjacent compartment. Therefore, adjustments to the width of the ice tray 70 or the number or size of compartments 96 may require an adjustment of the oscillating motor 112 to a new frequency of oscillation ω.
The waveform diagram of
After the freezing process, the voltage supplied to the thermoelectric device 102 may optionally be reversed, to heat the ice forming plate 76 to a temperature above freezing, freeing the clear ice pieces 98 from the top surface 78 of the ice forming plate 76 by melting a portion of the clear ice piece 98 immediately adjacent the top surface 78 of the ice forming plate 76. This allows for easier harvesting of the clear ice pieces 98. In the embodiment described herein and depicted in
In another aspect of the ice maker 210, as shown in
The ice maker 210 depicted in
As shown in
The ice tray 218 and thermoelectric device 238 are typically disposed within a shroud member 250 having a generally cylindrical shape aligned with the transverse axis of the ice tray 218. The shroud member 250 is typically an incomplete cylinder, and is open over the top of the ice tray 218. The shroud 250 includes at least partially closed end walls 252 surrounding the first end 246 of the ice tray 218 and a second end 248 of the ice tray 218. The shroud member 250 typically abuts the periphery of the containment wall 226 to separate a first air chamber 254 above the ice tray 218 and a second air chamber 256 below the ice tray 218. The housing 212 further defines the first air chamber 254 above the ice tray 218.
As illustrated in
As shown in
Also as shown in
During ice freezing, the harvest motor 244 is maintained in a locked position, such that the keyed drive shaft 274 of the harvest motor 244, which is linked to the ice tray 218, rotates the ice tray 218 in the same arc that the frame member 292 is rotated by the oscillation motor 242. As described above, an arc from about 20° to about 40°, and preferably about 30°, is preferred for the oscillation of the ice tray 218 during the ice freezing step. During the harvest step, as further described below, the oscillating motor 242 is stationary, as is the frame member 292. The harvest motor 244 rotates its keyed drive shaft 274, which causes the ice tray 218 to be inverted and the ice 236 to be expelled.
It is believed that a single motor could be used in place of the oscillating motor 242 and harvest motor 244 with appropriate gearing and/or actuating mechanisms.
An ice bin level sensor 30 is also provided, which detects the level of ice 236 in the ice storage bin (not shown in
To facilitate air movement, as shown in
As shown in
The ice tray 218 is also shown in detail in
The arrangement of the grid 232, and the materials of construction for the grid 232 as described herein facilitate the “twist release” capability of the ice tray 218. The features described below allow the grid 232 to be rotated at least partially out of the containment wall 226, and to be twisted, thereby causing the clear ice pieces 236 to be expelled from the grid 232. As shown in
The thermoelectric device 102, as depicted in the embodiment shown in
The second end 248 of the containment wall 226 and shroud 250 (the side away from the motors 242, 244) are shown in
As shown in
When installed in the housing 212, the shroud member 250 is configured to maintain contact with the barrier 354 as the ice tray 218 is oscillated during ice formation. An air intake duct member 356 having a duct inlet 358 and a duct outlet 360, with the duct outlet 360 adapted to fit over the surface of the shroud 250 and maintain contact with the shroud 250 as the shroud 250 rotates, is also fitted into the housing 212. The shaped opening of the duct outlet 260 is sufficiently sized to allow a fluid connection between the duct outlet 260 and the first rectangular slot 312 even as the ice tray 218 and shroud 250 are reciprocally rotated during the freezing cycle. The rectangular slot 312 restricts the amount of air 356 entering the shroud 250, such that the amount of air 370 remains constant even as the ice tray 218 is rotated. An exhaust duct 362 is optionally provided adjacent the second rectangular opening 314, to allow air 370 to escape the housing 212. The exhaust duct 362 has a duct intake 364 which is arranged to allow continuous fluid contact with the second rectangular slot 314 as the ice tray 218 and shroud 250 are rocked during the ice formation stage. The exhaust duct 362 also has a duct outlet 366 which is sufficiently sized to allow the clear ice pieces 236 to fall through the duct outlet 366 and into the ice bin 64 during the harvesting step.
An air flow path 368 is created that permits cold air 370 to travel from the duct inlet 358, to the duct outlet 360, into the first rectangular slot 312 in the shroud, across the heat sink fins 344, which are preferably a conductive metallic material, and out of the second rectangular slot 314 in the shroud 250 into the exhaust duct 362. As shown in
One example of an air flow path 368 enabled by the air intake duct 356 and exhaust duct 362 is shown in
In general, the ice makers 52, 210 described herein create clear ice pieces 98, 236 through the formation of ice in a bottom-up manner, and by preventing the capture of air bubbles or facilitating their release from the water. The clear ice pieces 98, 236 are formed in a bottom-up manner by cooling the ice tray 70, 218 from the bottom, with or without the additional benefit of cold air flow to remove heat from the heat sink 104, 318. The use of insulative materials to form the grid 100, 232 and containment walls 82, 226, such that the cold temperature of the ice forming plate 76, 220 is not transmitted upward through the individual compartments 96, 234 for forming ice also aids in freezing the bottom layer of ice first. A warm air flow over the top of the clear ice pieces 98, 236 as they are forming can also facilitate the unidirectional freezing. Rocking aids in the formation of clear ice pieces 98, 236 in that it causes the release of air bubbles from the liquid as the liquid cascades over the median wall 84, 228, and also in that it encourages the formation of ice in successive thin layers, and, when used in connection with warm air flow, allows exposure of the surface of the clear ice piece 98, 236 to the warmer temperature.
The ice makers described herein also include features permitting the harvest of clear ice pieces 98, 236, including the harvest motor 114, 244, which at least partially inverts the ice tray 70, 218, and then causes the release and twisting of the grid 100, 232 at least partially out of the containment wall 84, 226 to expel clear ice pieces 98, 236. The ice forming plate 76, 220 and associated thermoelectric device 102, 238 can also be used to further facilitate harvest of clear ice pieces 98, 236 by reversing polarity to heat the ice forming plate 76, 220 and, therefore, heat the very bottom portion of the clear ice pieces 98, 236 such that the clear ice pieces 98, 236 are easily released from the ice forming plate 76, 220 and removed from contacting the ice forming plate 76, 220.
As shown in
As shown in
The ice forming plate 404 is preferably formed of a thermally conductive material such as a metallic material, and the insulating layer 418 is preferably an insulator such as a polymeric material. One non-limiting example of a polymeric material suitable for use as an insulator is a polypropylene material. The insulating layer 418 may be adhered to the ice forming plate 404, molded onto the ice forming plate 404, mechanically engaged with the ice forming plate 404, overlayed over the plate 404 without attaching, or secured in other removable or non-removable ways to the ice forming plate 404. The insulating layer 418 may also be an integral portion of the ice forming plate 76 material. This construction, using an insulating layer 418 proximate the top of the ice wells 406, facilitates freezing of the clear ice piece 98 from the top surface 78 of the ice forming plate 76 upward.
An evaporator element 420 is thermally coupled with the ice forming plate 404, typically along the outside of the ice wells 406, opposite the ice forming compartments 416, and the evaporator element 420 extends along a transverse axis 422 of the ice forming plate 404. The evaporator element 420 includes a first coil 424 proximate a first end 426 of the ice forming plate 404 and a second coil 428 proximate the second end 403 of the ice forming plate 404.
The ice forming plate 404 and insulating layer 418 as shown in
In addition to the multiple configurations described above, as shown in
The sensor 444 may detect, for example, the level of ice 98 in an ice bin 64, the change in the level of ice 98 in the bin 64 over time, the amount of time that a dispenser 66 has been actuated by a user, and/or when the dispenser has been actuated to determine high and low ice usage time periods. This information 442 is typically transmitted to the controller 440, which uses the information 442 to determine whether and when to operate the ice maker 52 in a high energy mode or a low energy mode based upon usage parameters or timer periods of usage. This allows the ice maker 52 to dynamically adjust its output based on usage patterns over time, and if certain data are collected, such as the time of day when the most ice 98 is used, the ice maker 52 could operate predictively, producing more ice 98 prior to the heavy usage period. Operating the ice maker 52 in a high energy mode would result in the faster production of ice 98, but would generally be less efficient than the low energy mode. Operating in the high energy mode would typically be done during peak ice usage times, while low energy mode would be used during low usage time periods. An ice maker 52 having three or more energy modes of varying efficiencies may also be provided, with the controller 440 able to select an energy mode from among the three or more energy modes.
One example of an ice maker 52 which could be operated by such a controller 440 would be an ice maker 52 having a plurality of systems 452 which operate to aid in the formation of clear ice pieces 98, including an oscillating system as described above, a thermoelectric cooling system as described above, a forced air system to circulate warm air as described above, a forced air system to circulate cold air as described above, a forced air system to circulate warm air as described above, a housing 54 which is split into a first air chamber 254 and a second air chamber 256 with a temperature gradient therebetween as described above, and a thermoelectric heating system (to aid in harvesting clear ice pieces) as described above.
Operating an ice maker 52 in a high energy mode could include, for example, the use of a particular oscillation setting, a thermoelectric device setting, one or more air circulator settings for use during the ice freezing process, wherein the settings in the high energy mode require more energy, and result in the faster formation of clear ice pieces 98. The high energy mode could also include using the thermoelectric device 102 to provide a higher temperature to the ice forming plate 76 to cause a faster release of ice pieces 98 during the harvest process and to shorten cycle time for filling and making the ice pieces.
The low energy mode could also include a delay in dispensing water into the ice tray, or a delay in harvesting the clear ice pieces 98 from the ice tray 70 as well as lower electronic power (energy) use by the motors 112, 114 and thermoelectric devices 102 than the normal mode or high energy mode. Such lower energy use may include no forced air, no requirement to drop the temperature of the second air chamber or ice forming plate, and harvesting can be done with minimal heating to the ice forming plate over a longer period of time, if needed.
Additionally, in certain embodiments the controller 440 is able to individually control the different systems, allowing at least one system 452 to be directed to operate in a low energy mode while at least one other system 452 is directed to operate in a high energy mode.
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein. In this specification and the amended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/713,218, filed Dec. 13, 2012, entitled CLEAR ICE MAKER AND METHOD FOR FORMING CLEAR ICE, issued as U.S. Pat. No. 9,476,629. The aforementioned related application is hereby incorporated herein by reference in its entirety. The present application is related to, and hereby incorporates by reference herein the entire disclosures of, the following applications for United States patents: U.S. patent application Ser. No. 13/713,283, entitled ICE MAKER WITH ROCKING COLD PLATE, filed Dec. 13, 2012, U.S. patent application Ser. No. 13/713,199, entitled CLEAR ICE MAKER WITH WARM AIR FLOW, filed on Dec. 13, 2012; U.S. patent application Ser. No. 13/713,296, entitled CLEAR ICE MAKER WITH VARIED THERMAL CONDUCTIVITY, filed on Dec. 13, 2012; U.S. patent application Ser. No. 13/713,244, entitled CLEAR ICE MAKER, filed on Dec. 13, 2012; U.S. patent application Ser. No. 13/713,206, entitled LAYERING OF LOW THERMAL CONDUCTIVE MATERIAL ON METAL TRAY, filed on Dec. 13, 2012; U.S. patent application Ser. No. 13/713,233, entitled CLEAR ICE MAKER, filed on Dec. 13, 2012; U.S. patent application Ser. No. 13/713,228, entitled TWIST HARVEST ICE GEOMETRY, filed; U.S. patent application Ser. No. 13/713,262, entitled COOLING SYSTEM FOR ICE MAKER, filed on Dec. 13, 2012; and U.S. patent application Ser. No. 13/713,253, entitled CLEAR ICE MAKER AND METHOD FOR FORMING CLEAR ICE, filed on Dec. 13, 2012.
Number | Name | Date | Kind |
---|---|---|---|
275192 | Goodell | Apr 1883 | A |
286604 | Goodell | Oct 1883 | A |
301539 | Vezin | Jul 1884 | A |
1407614 | Wicks | Feb 1922 | A |
1616492 | Lado | Feb 1927 | A |
1889481 | Kennedy, Jr. | Nov 1932 | A |
1932731 | Hathorne | Oct 1933 | A |
2027754 | Smith | Jan 1936 | A |
2244081 | Reeves | Mar 1938 | A |
2617269 | Smith-Johannsen | Jun 1949 | A |
2481525 | Mott | Sep 1949 | A |
2757519 | Sampson | Feb 1954 | A |
2846854 | Galin | Feb 1954 | A |
2683356 | Green, Jr. | Jul 1954 | A |
2878659 | Prance et al. | Jul 1955 | A |
2969654 | Harle | Jan 1961 | A |
3009336 | Bayston et al. | Nov 1961 | A |
3016719 | Reindl | Jan 1962 | A |
3033008 | Davis | May 1962 | A |
3046753 | Carapico, Jr. | Jul 1962 | A |
3071933 | Shoemaker | Jan 1963 | A |
3075360 | Elfving et al. | Jan 1963 | A |
3075364 | Kniffin | Jan 1963 | A |
3084678 | Lindsay | Apr 1963 | A |
3084878 | Helming et al. | Apr 1963 | A |
3093980 | Frei | Jun 1963 | A |
3144755 | Kattis | Aug 1964 | A |
3159985 | Keighley | Dec 1964 | A |
3172269 | Cole | Mar 1965 | A |
3192726 | Newton | Jul 1965 | A |
3200600 | Elfving | Aug 1965 | A |
3214128 | Beck et al. | Oct 1965 | A |
3217510 | Knithn et al. | Nov 1965 | A |
3217511 | Keighley | Nov 1965 | A |
3222902 | Brejcha et al. | Dec 1965 | A |
3228222 | Maier | Jan 1966 | A |
3255603 | Johnson et al. | Jun 1966 | A |
3306064 | Poolos | Feb 1967 | A |
3308631 | Kniffin | Mar 1967 | A |
3318105 | Burroughs et al. | May 1967 | A |
3321932 | Orphey, Jr. | May 1967 | A |
3383876 | Frohbieter | May 1968 | A |
3412572 | Kesling | Nov 1968 | A |
3426564 | Jansen et al. | Feb 1969 | A |
3451237 | Baringer et al. | Jun 1969 | A |
3638451 | Brandt | Feb 1972 | A |
3646792 | Hertel et al. | Mar 1972 | A |
3677030 | Nicholas | Jul 1972 | A |
3684235 | Schupbach | Aug 1972 | A |
3775992 | Bright | Dec 1973 | A |
3806077 | Pietrzak et al. | Apr 1974 | A |
3864933 | Bright | Feb 1975 | A |
3892105 | Bernard | Jul 1975 | A |
3908395 | Hobbs | Sep 1975 | A |
3952539 | Hanson et al. | Apr 1976 | A |
4006605 | Dickson et al. | Feb 1977 | A |
D244275 | Gurbin | May 1977 | S |
4024744 | Trakhtenberg et al. | May 1977 | A |
4059970 | Loeb | Nov 1977 | A |
4062201 | Schumacher et al. | Dec 1977 | A |
4078450 | Vallejos | Mar 1978 | A |
D249269 | Pitts | Sep 1978 | S |
4142378 | Bright et al. | Mar 1979 | A |
4148457 | Gurbin | Apr 1979 | A |
4184339 | Wessa | Jan 1980 | A |
4222547 | Lalonde | Sep 1980 | A |
4261182 | Elliott | Apr 1981 | A |
4288497 | Tanaka et al. | Sep 1981 | A |
4402185 | Perchak | Sep 1983 | A |
4402194 | Kuwako et al. | Sep 1983 | A |
4412429 | Kohl | Nov 1983 | A |
4462345 | Routery | Jul 1984 | A |
4483153 | Wallace | Nov 1984 | A |
4487024 | Fletcher et al. | Dec 1984 | A |
4550575 | DeGaynor | Nov 1985 | A |
4562991 | Wu | Jan 1986 | A |
4587810 | Fletcher | May 1986 | A |
4627946 | Crabtree | Dec 1986 | A |
4669271 | Noel | Jun 1987 | A |
4680943 | Mawby et al. | Jul 1987 | A |
4685304 | Essig | Aug 1987 | A |
4688386 | Lane et al. | Aug 1987 | A |
4727720 | Wernicki | Mar 1988 | A |
4843827 | Peppers | Jul 1989 | A |
4852359 | Manzotti | Aug 1989 | A |
4856463 | Johnston | Aug 1989 | A |
4910974 | Hara | Mar 1990 | A |
4942742 | Burruel | Jul 1990 | A |
4970877 | Dimijian | Nov 1990 | A |
4971737 | Infanti | Nov 1990 | A |
5025756 | Nyc | Jun 1991 | A |
D318281 | McKinlay | Jul 1991 | S |
5044600 | Shannon | Sep 1991 | A |
5129237 | Day et al. | Jul 1992 | A |
5157929 | Hotaling | Oct 1992 | A |
5177980 | Kawamoto et al. | Jan 1993 | A |
5196127 | Solell | Mar 1993 | A |
5253487 | Oike | Oct 1993 | A |
5257601 | Coffin | Nov 1993 | A |
5372492 | Yamauchi | Dec 1994 | A |
5378521 | Ogawa et al. | Jan 1995 | A |
5400605 | Jeong | Mar 1995 | A |
5408844 | Stokes | Apr 1995 | A |
5425243 | Sanuki et al. | Jun 1995 | A |
5483929 | Kuhn et al. | Jan 1996 | A |
5586439 | Schlosser et al. | Dec 1996 | A |
5617728 | Kim et al. | Apr 1997 | A |
5632936 | Su et al. | May 1997 | A |
5618463 | Rindler et al. | Aug 1997 | A |
5675975 | Lee | Oct 1997 | A |
5761920 | Wilson et al. | Jun 1998 | A |
5768900 | Lee | Jun 1998 | A |
5826320 | Rathke et al. | Oct 1998 | A |
5884487 | Davis et al. | Mar 1999 | A |
5884490 | Whidden | Mar 1999 | A |
D415505 | Myers | Oct 1999 | S |
5970725 | Lee | Oct 1999 | A |
5970735 | Hobelsberger | Oct 1999 | A |
6058720 | Ryu | May 2000 | A |
6062036 | Hobelsberger | May 2000 | A |
6101817 | Watt | Aug 2000 | A |
6145320 | Kim | Nov 2000 | A |
6148620 | Kumagai et al. | Nov 2000 | A |
6148621 | Byczynski et al. | Nov 2000 | A |
6161390 | Kim | Dec 2000 | A |
6179045 | Lilleaas | Jan 2001 | B1 |
6209849 | Dickmeyer | Apr 2001 | B1 |
6282909 | Newman et al. | Sep 2001 | B1 |
6289683 | Daukas et al. | Sep 2001 | B1 |
6357720 | Shapiro et al. | Mar 2002 | B1 |
6427463 | James | Aug 2002 | B1 |
6467146 | Herman | Oct 2002 | B1 |
6481235 | Kwon | Nov 2002 | B2 |
6647739 | Kim et al. | Nov 2003 | B1 |
6688130 | Kim | Feb 2004 | B1 |
6688131 | Kim et al. | Feb 2004 | B1 |
6735959 | Najewicz | May 2004 | B1 |
6742351 | Kim et al. | Jun 2004 | B2 |
6763787 | Hallenstvedt et al. | Jul 2004 | B2 |
6782706 | Holmes et al. | Aug 2004 | B2 |
D496374 | Zimmerman | Sep 2004 | S |
6817200 | Willamor et al. | Nov 2004 | B2 |
6820433 | Hwang | Nov 2004 | B2 |
6857277 | Somura | Feb 2005 | B2 |
6935124 | Takahashi et al. | Aug 2005 | B2 |
6951113 | Adamski | Oct 2005 | B1 |
D513019 | Lion et al. | Dec 2005 | S |
7010934 | Choi et al. | Mar 2006 | B2 |
7010937 | Wilkinson et al. | Mar 2006 | B2 |
7013654 | Tremblay et al. | Mar 2006 | B2 |
7051541 | Chung et al. | May 2006 | B2 |
7059140 | Zevlakis | Jun 2006 | B2 |
7062925 | Tsuchikawa et al. | Jun 2006 | B2 |
7062936 | Rand et al. | Jun 2006 | B2 |
7082782 | Schlosser et al. | Aug 2006 | B2 |
7131280 | Voglewede et al. | Nov 2006 | B2 |
7185508 | Voglewede et al. | Mar 2007 | B2 |
7188479 | Anselmino et al. | Mar 2007 | B2 |
7201014 | Hornung | Apr 2007 | B2 |
7204092 | Castrellón et al. | Apr 2007 | B2 |
7210298 | Lin | May 2007 | B2 |
7216490 | Joshi | May 2007 | B2 |
7216491 | Cole et al. | May 2007 | B2 |
7234423 | Lindsay | Jun 2007 | B2 |
7297516 | Chapman et al. | Nov 2007 | B2 |
7318323 | Tatsui et al. | Jan 2008 | B2 |
7386993 | Castrellón et al. | Jun 2008 | B2 |
7415833 | Leaver et al. | Aug 2008 | B2 |
7448863 | Yang | Nov 2008 | B2 |
7487645 | Sasaki et al. | Feb 2009 | B2 |
7568359 | Wetekamp et al. | Aug 2009 | B2 |
7587905 | Kopf | Sep 2009 | B2 |
7669435 | Joshi | Mar 2010 | B2 |
7681406 | Cushman et al. | Mar 2010 | B2 |
7703292 | Cook et al. | Apr 2010 | B2 |
7752859 | Lee et al. | Jul 2010 | B2 |
7802457 | Golovashchenko et al. | Sep 2010 | B2 |
7866167 | Kopf | Jan 2011 | B2 |
7918105 | Kim | Apr 2011 | B2 |
8015849 | Jones et al. | Sep 2011 | B2 |
8037697 | LeClear et al. | Oct 2011 | B2 |
8074464 | Venkatakrishnan et al. | Dec 2011 | B2 |
8099989 | Bradley et al. | Jan 2012 | B2 |
8117863 | Van Meter et al. | Feb 2012 | B2 |
8171744 | Watson et al. | May 2012 | B2 |
8281613 | An et al. | Oct 2012 | B2 |
8322148 | Kim et al. | Dec 2012 | B2 |
8336327 | Cole et al. | Dec 2012 | B2 |
8371133 | Kim et al. | Feb 2013 | B2 |
8371136 | Venkatakrishnan et al. | Feb 2013 | B2 |
8375919 | Cook et al. | Feb 2013 | B2 |
8413619 | Cleeves | Apr 2013 | B2 |
8424334 | Kang et al. | Apr 2013 | B2 |
8429926 | Shaha et al. | Apr 2013 | B2 |
8474279 | Besore et al. | Jul 2013 | B2 |
8516835 | Holler | Aug 2013 | B2 |
8516846 | Lee et al. | Aug 2013 | B2 |
8555658 | Kim et al. | Oct 2013 | B2 |
8646283 | Kuratani et al. | Feb 2014 | B2 |
8677774 | Yamaguchi et al. | Mar 2014 | B2 |
8746204 | Hofbauer | Jun 2014 | B2 |
8769981 | Hong et al. | Jul 2014 | B2 |
8820108 | Oh et al. | Sep 2014 | B2 |
8925335 | Gooden et al. | Jan 2015 | B2 |
8943852 | Lee et al. | Feb 2015 | B2 |
9217595 | Kim et al. | Dec 2015 | B2 |
9217596 | Hall | Dec 2015 | B2 |
9476631 | Park et al. | Oct 2016 | B2 |
20020014087 | Kwon | Feb 2002 | A1 |
20030111028 | Hallenstvedt | Jun 2003 | A1 |
20040099004 | Somura | May 2004 | A1 |
20040144100 | Hwang | Jul 2004 | A1 |
20040206250 | Kondou et al. | Oct 2004 | A1 |
20040237566 | Hwang | Dec 2004 | A1 |
20040261427 | Tsuchikawa et al. | Dec 2004 | A1 |
20050067406 | Rajarajan et al. | Mar 2005 | A1 |
20050126185 | Joshi | Jun 2005 | A1 |
20050126202 | Shoukyuu et al. | Jun 2005 | A1 |
20050151050 | Godfrey | Jul 2005 | A1 |
20050160741 | Park | Jul 2005 | A1 |
20050160757 | Choi et al. | Jul 2005 | A1 |
20060016209 | Cole et al. | Jan 2006 | A1 |
20060032262 | Sec et al. | Feb 2006 | A1 |
20060053805 | Flinner et al. | Mar 2006 | A1 |
20060086107 | Voglewede et al. | Apr 2006 | A1 |
20060086134 | Voglewede et al. | Apr 2006 | A1 |
20060150645 | Leaver | Jul 2006 | A1 |
20060168983 | Tatsui et al. | Aug 2006 | A1 |
20060207282 | Visin et al. | Sep 2006 | A1 |
20060233925 | Kawamura | Oct 2006 | A1 |
20060242971 | Cole et al. | Nov 2006 | A1 |
20060288726 | Mori et al. | Dec 2006 | A1 |
20070028866 | Lindsay | Feb 2007 | A1 |
20070107447 | Langlotz | May 2007 | A1 |
20070119202 | Kadowaki et al. | May 2007 | A1 |
20070130983 | Broadbent et al. | Jun 2007 | A1 |
20070137241 | Lee et al. | Jun 2007 | A1 |
20070193278 | Polacek et al. | Aug 2007 | A1 |
20070227162 | Wang | Oct 2007 | A1 |
20070227164 | Ito et al. | Oct 2007 | A1 |
20070262230 | McDermott | Nov 2007 | A1 |
20080034780 | Lim et al. | Feb 2008 | A1 |
20080104991 | Hoehne et al. | May 2008 | A1 |
20080145631 | Bhate et al. | Jun 2008 | A1 |
20080236187 | Kim | Oct 2008 | A1 |
20080264082 | Tikhonov et al. | Oct 2008 | A1 |
20090049858 | Lee et al. | Feb 2009 | A1 |
20090120306 | DeCarlo et al. | May 2009 | A1 |
20090165492 | Wilson et al. | Jul 2009 | A1 |
20090173089 | LeClear et al. | Jul 2009 | A1 |
20090178430 | Jendrusch et al. | Jul 2009 | A1 |
20090187280 | Hsu et al. | Jul 2009 | A1 |
20090199569 | Petrenko | Aug 2009 | A1 |
20090211266 | Kim et al. | Aug 2009 | A1 |
20090211271 | Kim et al. | Aug 2009 | A1 |
20090223230 | Kim et al. | Sep 2009 | A1 |
20090235674 | Kern et al. | Sep 2009 | A1 |
20090272259 | Cook et al. | Nov 2009 | A1 |
20090308085 | DeVos | Dec 2009 | A1 |
20100011827 | Stoeger et al. | Jan 2010 | A1 |
20100018226 | Kim et al. | Jan 2010 | A1 |
20100031675 | Kim et al. | Feb 2010 | A1 |
20100043455 | Kuehl et al. | Feb 2010 | A1 |
20100050663 | Venkatakrishnan et al. | Mar 2010 | A1 |
20100050680 | Venkatakrishnan et al. | Mar 2010 | A1 |
20100055223 | Kondou et al. | Mar 2010 | A1 |
20100095692 | Jendrusch et al. | Apr 2010 | A1 |
20100101254 | Besore et al. | Apr 2010 | A1 |
20100126185 | Cho et al. | May 2010 | A1 |
20100139295 | Zuccolo et al. | Jun 2010 | A1 |
20100163707 | Kim | Jul 2010 | A1 |
20100180608 | Shaha et al. | Jul 2010 | A1 |
20100197849 | Momose et al. | Aug 2010 | A1 |
20100218518 | Ducharme et al. | Sep 2010 | A1 |
20100218540 | McCollough et al. | Sep 2010 | A1 |
20100218542 | McCollough et al. | Sep 2010 | A1 |
20100251730 | Whillock, Sr. | Oct 2010 | A1 |
20100257888 | Kang et al. | Oct 2010 | A1 |
20100293969 | Braithwaite et al. | Nov 2010 | A1 |
20100313594 | Lee et al. | Dec 2010 | A1 |
20100319367 | Kim et al. | Dec 2010 | A1 |
20100326093 | Watson et al. | Dec 2010 | A1 |
20110005263 | Yamaguchi et al. | Jan 2011 | A1 |
20110023502 | Ito et al. | Feb 2011 | A1 |
20110062308 | Hammond et al. | Mar 2011 | A1 |
20110146312 | Hong et al. | Jun 2011 | A1 |
20110192175 | Kuratani et al. | Aug 2011 | A1 |
20110214447 | Bortoletto et al. | Sep 2011 | A1 |
20110239686 | Zhang et al. | Oct 2011 | A1 |
20110265498 | Hall | Nov 2011 | A1 |
20120007264 | Kondou et al. | Jan 2012 | A1 |
20120011868 | Kim et al. | Jan 2012 | A1 |
20120023996 | Herrera et al. | Feb 2012 | A1 |
20120047918 | Herrera et al. | Mar 2012 | A1 |
20120073538 | Hofbauer | Mar 2012 | A1 |
20120085302 | Cleeves | Apr 2012 | A1 |
20120174613 | Park et al. | Jul 2012 | A1 |
20120240613 | Saito et al. | Sep 2012 | A1 |
20160370078 | Koo | Dec 2016 | A1 |
20170074527 | Visin | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2006201786 | Nov 2007 | AU |
1989379 | Jun 2007 | CN |
102353193 | Sep 2011 | CN |
202006012499 | Oct 2006 | DE |
102008042910 | Apr 2010 | DE |
102009046030 | Apr 2011 | DE |
1653171 | May 2006 | EP |
1821051 | Aug 2007 | EP |
2078907 | Jul 2009 | EP |
2660541 | Nov 2013 | EP |
2743608 | Jun 2014 | EP |
2771159 | May 1999 | FR |
657353 | Sep 1951 | GB |
2139337 | Nov 1984 | GB |
S60141239 | Jul 1985 | JP |
S6171877 | May 1986 | JP |
6435375 | Mar 1989 | JP |
H01196478 | Aug 1989 | JP |
H01210778 | Aug 1989 | JP |
H01310277 | Dec 1989 | JP |
H024185 | Jan 1990 | JP |
H0231649 | Feb 1990 | JP |
H02143070 | Jun 1990 | JP |
H03158670 | Jul 1991 | JP |
H03158673 | Jul 1991 | JP |
H0415069 | Jan 1992 | JP |
H04161774 | Jun 1992 | JP |
H4260764 | Sep 1992 | JP |
H051870 | Jan 1993 | JP |
H05248746 | Sep 1993 | JP |
H05332562 | Dec 1993 | JP |
H063005 | Jan 1994 | JP |
H0611219 | Jan 1994 | JP |
H06323704 | Nov 1994 | JP |
H10227547 | Aug 1998 | JP |
H10253212 | Sep 1998 | JP |
H11223434 | Aug 1999 | JP |
2000039240 | Feb 2000 | JP |
2000346506 | Dec 2000 | JP |
2001041620 | Feb 2001 | JP |
2001041624 | Feb 2001 | JP |
2001221545 | Aug 2001 | JP |
2001355946 | Dec 2001 | JP |
2002139268 | May 2002 | JP |
2002295934 | Oct 2002 | JP |
2002350019 | Dec 2002 | JP |
2003042612 | Feb 2003 | JP |
2003042621 | Feb 2003 | JP |
2003172564 | Jun 2003 | JP |
2003232587 | Aug 2003 | JP |
2003269830 | Sep 2003 | JP |
2003279214 | Oct 2003 | JP |
2003336947 | Nov 2003 | JP |
2004053036 | Feb 2004 | JP |
2004278894 | Oct 2004 | JP |
2004278990 | Oct 2004 | JP |
2005164145 | Jun 2005 | JP |
2005180825 | Jul 2005 | JP |
2005195315 | Jul 2005 | JP |
2005331200 | Dec 2005 | JP |
2006022980 | Jan 2006 | JP |
2006323704 | Nov 2006 | JP |
2007232336 | Sep 2007 | JP |
20010109256 | Dec 2001 | KR |
20060013721 | Feb 2006 | KR |
20060126156 | Dec 2006 | KR |
100845860 | Jul 2008 | KR |
20100123089 | Nov 2010 | KR |
20110037609 | Apr 2011 | KR |
1747821 | Jul 1992 | SU |
424878 | Mar 2001 | TW |
8808946 | Nov 1988 | WO |
2008052736 | May 2008 | WO |
2008056957 | May 2008 | WO |
2008061179 | May 2008 | WO |
2008143451 | Nov 2008 | WO |
2012002761 | Jan 2012 | WO |
Entry |
---|
“Manufacturing Processes—Explosive Sheetmetal Forming,” Engineer's Handbook, 2006, web archive, last accessed Jan. 19, 2016, at http://www.engineershandbook.com/MfgMethods/exforming.htm, pp. 1-3. |
“Nickel Alloys for Electronics,” A Nickel Development Institute Reference Book, 1988, 131 pages, Series N 11 002, NiDI Nickel Development Institute. |
Daehn, “High-Velocity Metal Forming,” ASM Handbook, 2006, pp. 405-418, vol. 14B, ASM International. |
Daehn, et al., “Hyperplacstic Forming: Process Potential and Factors Affecting Formability,” MRS Proceedings, 1999, at p. 147, vol. 601. |
Jimbert et al., “Flanging and Hemming of Auto Body Panels using the Electra Magnetic Forming technology,” 3rd International Conference on High Speed Forming, 2008, pp. 163-172. |
Shang et al., “Electromagnetically assisted sheet metal stamping,” Journal of Materials Processing Technology, 2010, pp. 868-874, 211. |
Number | Date | Country | |
---|---|---|---|
20170023283 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13713218 | Dec 2012 | US |
Child | 15286767 | US |