1. Technical Field
The present invention relates to refrigerators and clear ice makers.
2. Description of the Related Art
Refrigerators and coolers for the cold storage of food and beverage items are well known. Typical residential ice makers form ice cubes by depositing water into a mold attached to an evaporator or the freezer compartment and allowing the water to freeze in a sedentary state. Such an approach results in clouded ice cubes as a result of the entrapped air and impurities in the water.
It is known that forming ice by flowing water over a freezing surface will eliminate the clouding associated with sedentary freezing. Such a flowing water process has typically been used in commercial ice cube makers. One example of the flowing water approach is shown in U.S. Pat. No. 5,586,439; this patent and all others mentioned herein are hereby incorporated by reference as though fully set forth herein. In this patent, water is flowed over a vertically disposed evaporator plate whose surface defines pockets. The water cascades over the surfaces of the pockets and an ice cube is formed in each pocket. The ice cubes are harvested by passing hot vaporous refrigerant through the evaporator in place of the cold refrigerant. The resulting ice cubes are nearly transparent and not cloudy due to the particulate contaminates in the water being heavier than the water and falling from the evaporator before freezing and forming part of the ice cube. U.S. Pat. Nos. 6,058,731 and 6,148,621 disclose compact clear ice maker units incorporating such cascading water evaporator plates.
These machines are separate from conventional full-size or compact refrigerators. It is well known for the freezer sections of some of these conventional refrigerators to include ice makers of the regular, non-clear, variety. U.S. Pat. No. 4,872,317 shows and describes a refrigeration unit having a built-in conventional type ice maker. As is conventional, this patented unit includes a molded tray type ice maker in the freezer section of the unit with a mechanical actuator to dispense and harvest the ice. Such ice makers are used in conventional refrigeration units because they are self contained, needing only a water supply line, and because they can produce ice in a unit having only one evaporator that cools both the freezer and refrigerator compartments.
The present invention is combination refrigerator and clear ice maker, preferably of the compact, under-counter type. The invention provides a single refrigeration unit having a divided cabinet with a refrigerator side and a clear ice making side incorporating a flowing water system for producing clear ice, wherein each side has a dedicated evaporator. “Clear ice” is a common and accepted term in the refrigeration industry which is generally used to refer to ice formed in layers without the entrapped air, mineral and other particulates common in tap water which have a tendency to cause odor and to cloud the water when frozen.
Specifically, the invention provides a refrigerator with clear ice making capability including a cabinet defining an interior refrigerator chamber and an interior ice maker chamber isolated from the refrigerator chamber by a partition wall. A clear ice maker mechanism is disposed in the ice maker chamber and includes an evaporator plate defining a plurality of pockets over which water cascades and in which clear ice pieces are formed. A refrigeration system includes an ice maker evaporator disposed in the ice maker chamber adjacent the evaporator plate and a refrigerator evaporator disposed in the refrigerator chamber. The evaporators are coupled to a compressor receiving return refrigerant from the evaporators and to a condenser coupled to the compressor.
In a preferred form, the cabinet has a front opening leading to the ice maker chamber and the refrigerator chamber that is closed by a door hinged to the cabinet along one side. The door has a special seal designed to extend along the front face of the cabinet, along the top, bottom, side and partition walls. An insulated body in the ice maker chamber defines an ice bin receiving harvested ice pieces from the ice maker mechanism. The seal has a small cross-piece that seals off an opening to the insulated body in the ice maker chamber when the door is closed. The seal thus isolates the ice from the ambient and the heat from the refrigeration system in the uninsulated compartment of the refrigerator by preventing hot air from passing between the door and an uninsulated lower panel in the front of the ice maker chamber (where the user control is mounted) and into the opening of the insulated body.
Preferably, the evaporator plate has a plurality of spaced vertical members and a plurality of spaced horizontal members intersecting the vertical members at right angles to define the pockets. The horizontal members extend downwardly from a rear edge to a front edge at an oblique angle to so that water flowing onto the evaporator plate can cascade down the evaporator plate and so that the ice cubes can drop under gravity from the evaporator plate when harvested. A water distributor is disposed above the evaporator plate for distributing water over the full width of the evaporator plate so as to run over all of the pockets therein. An end of a water tube is mounted to the center of the distributor by a tube retainer havening an opening and an inverted partial cup section mating with a centering section of the distributor.
The water tube provides fresh water supply and runs from a water sump mounted in the ice maker chamber beneath the evaporator plate in which is disposed a water pump circulating water from the sump through the water tube back to the ice maker evaporator plate. An overflow mechanism is also provided that is connected to a drain leading out of the cabinet. The overflow drain can be connected to an optional condensate or waste drain pump and overflow collector having two floats, one disposed vertically above the other. The lower float operates a switch to activate the drain pump to drain the overflow collector and the upper float can disrupt the ice maker capability and activate an indicator light in the event the drain line backs up. The indicator light preferably stays on until power to the refrigerator is disrupted, which is intended to provide the user or field technician indication of a prior or current error condition.
In an even more preferred form, the evaporators are connected in series, and the refrigerator evaporator receives refrigerant passing through the ice maker evaporator. A refrigerator valve controls flow of refrigerant from the ice maker evaporator to the refrigerator evaporator, and a bypass valve controls flow of refrigerant from the ice maker to the compressor when the refrigerant valve is closed. These valves are preferably solenoid operated and electronically controlled so that during operation of the refrigerator at least one of the valves is open while being interlocked so that both of the valves cannot be open or closed concurrently.
In other preferred forms, another bypass valve is disposed between an outlet side of the compressor and the inlet side of the ice maker evaporator so that when open it routes pre-condensed (hot) refrigerant from the compressor to the ice maker evaporator and bypasses the condenser. This hot gas bypass valve is closed during normal operation of the refrigerator and is opened during an ice harvest cycle so as to warm the evaporator plate slightly to melt the interface between the ice cubes and the evaporator plate so that they can be dispensed into the ice bin.
The refrigerator of the present invention has an electronically controlled refrigeration system operating automatically according to temperature readings taken from temperature sensors located at various locations in the cabinet, including at the ice bin, the refrigerator and a liquid refrigerant line, to operate in one of four primary modes in addition to an inactive state, water fill modes and a cleaning mode. In particular, if, based on the temperature readings, cooling is needed in the refrigerator section and more ice is needed in the ice bin, then the system operates in a dual cooling mode in which the circulation pump is energized to supply water to the ice maker evaporator plate and the refrigerator valve is opened (and the refrigerator bypass valve is closed) so that refrigerant is supplied to the ice maker evaporator and the refrigerator evaporator. When the ice maker bin temperature is within the set range, but the refrigerator section needs cooling, the system enters refrigeration only mode in which the refrigerator and refrigerator bypass valves stay the same as the dual cooling mode so that refrigerant is supplied to the ice maker evaporator and the refrigerator evaporator, however, the water pump is not energized so that water does not flow to the ice maker evaporator plate. No ice is formed then, but additional cooling will occur in the ice maker chamber as a result of the refrigerant flow through the ice maker evaporator, but this is acceptable given that only ice is stored or formed in this chamber. In an ice making only mode, the refrigerator valve is closed and the bypass valve is opened so that refrigerant is supplied to the ice maker evaporator, but not to the refrigerator evaporator. The water pump is also energized to run water over the ice maker evaporator plate, preferably for a time period determined according to the liquid refrigerant line temperature sensor. In an ice harvest mode, the hot bypass valve is opened to divert away from the condenser the hot pre-condensed refrigerant from the compressor to the ice maker evaporator. This warms the ice maker evaporator plate and causes melting at the interface of the ice cubes to allow them to drop down into the ice bin. As mentioned, the refrigeration system can also be in inactive in which the compressor and condenser are not operating so that no refrigerant is supplied to either the ice maker evaporator or the refrigerator evaporator. The unit can be switched to a cleaning mode in which the ice maker water pump and water fill valve are energized alternately to fill and pump water over the ice maker evaporator plate without condensed refrigerant in the ice maker evaporator.
These and still other advantages of the invention will be apparent from the detailed description and drawings. What follows is a preferred embodiment of the present invention. To assess the full scope of the invention the claims should be looked to as the preferred embodiment is not intended as the only embodiment within the scope of the invention.
Referring to
The cabinet opening 34 is closed by a door 48 that is hinged to the cabinet 32 (with self-closing cams) along one vertical side thereof. Both the cabinet 32 and door 48 are formed of inner molded plastic members and outer formed metal members with the space filled with an insulating layer of foam material, all of which is well known in the art. The door 48 has a full-width handle 50 along a top edge of a special construction to allow the door to accept an overlay panel (not shown) matching the cabinetry where the unit is installed. Details of such an overlay panel and a preferred handle construction can be found in co-owned pending application Ser. No. 10/076,746, filed on Feb. 14, 2002. As shown in
A rubber accordion type refrigerator gasket 54 is mounted to the inside of the door 48 to thermally isolate the refrigerator section 38 and the ice section 40 from each other and the ambient exterior to the combination unit 30 when the door 48 is closed against the cabinet 32. The gasket 54 is specially configured with a vertical segment 56 near the horizontal center of a rectangular frame 58 so as to seat against the front edge of the partition wall 36, in addition to the frame 58 seating against the front edges of the top, bottom and side walls of the cabinet 32, when the door 46 is closed. The gasket 54 also has a shorter horizontal cross segment 60 that seats against a front panel of the ice section behind which is the insulated insert 45 (and ice bin 64) containing clear ice pieces harvested from the clear ice maker assembly 46.
Referring now to FIGS. 5C and 7–8, the clear ice maker assembly 46 is riveted to the partition wall 36 in the upper part of the ice section 40 of the cabinet 32. The clear ice maker assembly 46 includes a metal evaporator grid 70 mounted in a plastic shroud 72. The evaporator grid 70 has a series of vertical and horizontal dividers 70a and 70b, respectively, which extend from a rear wall 74 and between lateral edges to divide the evaporator grid 70 into a series of pockets. As best shown in
The shroud 72 is formed of a plastic material such as a polypropylene or ABS and is molded about the evaporator grid 70. The shroud 72 has a continuous bulbous edge 75 (see
The shroud 72 also includes an inclined roof 86 disposed above the evaporator grid 70. A water distributor 88 is attached to the shroud wings 76 and 78 above the roof 86. As shown in
An icemaker evaporator 108 is attached to the rear wall 74 of the evaporator grid 70. The icemaker evaporator 108 is a part of the refrigeration system shown schematically in
Generally, the refrigerator evaporator 44 has an outlet line 110 which passes through an accumulator 112 to a compressor 114. The accumulator 112 functions in part as a reservoir for liquid refrigerant so that only gas is fed to the compressor 114. A discharge line 116 connected to the outlet of the compressor 114 is connected to the inlet of a condenser 118 having an outlet line 120 connected to a dryer 122. A capillary tube 124 leads from the dryer 122 to the inlet of the icemaker evaporator 108. A bypass line 126, having a hot gas bypass valve 128, runs between the compressor discharge line 116 and an inlet of the icemaker evaporator 108. The icemaker evaporator 108 has a branched outlet line 130 connected to an inlet of the refrigerator evaporator 44 and to the accumulator 112, such that the evaporators 44 and 108 are connected in series with the refrigerator evaporator 44 receiving refrigerant passing from the ice maker evaporator 108. A refrigerator valve 132 controls communication between the icemaker evaporator 108 outlet and the refrigerator evaporator 44 inlet and a refrigerator bypass valve 134 controls communication between the icemaker evaporator 108 outlet and the accumulator 112. All of the valves 128, 132 and 134 are electronically controlled, preferably solenoid type valves. Valves 132 and 134 are interlocked by a double throw relay which requires one of these valves 132 and 134 to always be open while preventing both from being concurrently open or closed.
As is known, the compressor 114 draws refrigerant from the refrigerator evaporator 44 (and ice maker evaporator 108) and accumulator 112 and discharges the refrigerant under increased pressure and temperature to the condenser 118. The hot, pre-condensed refrigerant gas entering the condenser 118 is cooled by air circulated by a fan 136. As the temperature of the refrigerant drops under substantially constant pressure, the refrigerant in the condenser 118 liquefies. The smaller diameter capillary tube 124 maintains the high pressure in the condenser 118 and at the compressor outlet while providing substantially reduced pressure in the ice maker evaporator 108. The substantially reduced pressure in the ice maker evaporator 108 results in a large temperature drop and subsequent absorption of heat by the ice maker evaporator 108 (and also possibly the refrigerator evaporator 44).
As mentioned, the refrigeration system includes a hot gas bypass valve 128 disposed in bypass line 126 between the outlet of the compressor 114 (via discharge line 116) and the inlet of the icemaker evaporator 108. When the hot gas bypass valve 128 is opened, hot pre-condensed refrigerant will enter the icemaker evaporator 108, thereby heating the evaporator grid 70. Such a hot gas bypass system is described in U.S. Pat. No. 5,065,584 issued Nov. 19, 1991, for “Hot Gas Bypass Defrosting System”.
The compressor 114, condenser 118, and fan 136 are located at the bottom of the cabinet 32 beneath the insulated portion, as shown in FIGS. 4 and 5A–5B.
Referring to
In general operation, water from the sump 138 is pumped by the pump 146 to the distributor 88 which delivers a cascade of water over the surfaces of the evaporator grid 70. When the icemaker evaporator 108 is connected to receive liquefied refrigerant from the condenser 118, the water cascading over the surface of the evaporator grid 70 will freeze forming cubes of clear ice in the pockets. The pure water freezes first and impurities and trapped air in the water will either escape or be left in suspension in the flowing water. Once the ice cubes are formed, the hot gas bypass valve 126 is opened and hot refrigerant is delivered to the icemaker evaporator 108, thereby warming the surface of the evaporator grid 70 until the ice cubes dislodge from the evaporator grid 70. The dislodged ice cubes will fall into the bin 64 and are directed away from the trough portion 140 of the sump 138 by the fins 82. As mentioned, not all water cascading over the surface of the evaporator grid 70 will freeze. The excess water is collected in the trough 140 and returned to the well 142 where it is recirculated to the distributor 88 by the pump 146. During ice harvest (after each freezing cycle), a charge of fresh water is delivered to the sump by the water fill valve 156 to dilute the water and flush impurities through the overflow pipe 148 and out the drain.
Although not shown, the combination refrigerator and clear ice maker 30 includes an electrical system for controlling the operation of the compressor 114, solenoids for valves 128, 132 and 134, the condenser fan 136, the water pump 146, and a solenoid that controls the fresh water inlet valve 156. The operation of the motors and solenoids are controlled by a microprocessor based control that operates by programmed logic and in response to sensor and user input. The programmed logic, for example, provides a timed shut down cycle (e.g., four minutes) following every operation of the compressor. The control circuitry is also designed with various built-in technician diagnostic capabilities to provide on board testing of electrical subsystems.
The electric system includes three sensors, or thermistors including a bin thermistor (not shown) disposed near the upper side of the ice bin 64, a refrigerator thermistor (not shown) disposed in the refrigerator section of the cabinet 32, and a liquid line thermistor (not shown) disposed in the outlet line 120 of the condenser 118. The thermistors are conventional parts commercially available, for example, from Royal Philips Electronics of Amsterdam, The Netherlands. An optional overflow circuit (described below) also provides feedback to the control as to the status of the drain. A user control 160 disposed in a front panel at the lower ice maker side of the cabinet 32 and a toggle switch 162 located at the cabinet front grille 161 provide input from the user. The toggle switch 162 is a three-position switch for turning the system to “on”, “off” or “clean” modes. The user control 160 (see
With reference to
Once the initial water fill cycle is complete, the unit will enter one of three modes: ice making and refrigeration mode (
After a certain predetermined period of time into this cycle, such as four minutes, a reading of the liquid refrigerant temperature sensed by the line thermistor is taken. This temperature reading will determine the remaining length of time for the ice making portion of the cycle and may also be used to set or adjust the duration of the ice harvest cycle. The higher the temperature of the liquid refrigerant, the longer the ice making cycle. For example, if the liquid refrigerant temperature is 80° F., the total freeze time will be about 14 minutes. If the sensed temperature is 100° F., the total freeze time will be about 22 minutes. At a temperature of 120° F., the freeze time will be about 30 minutes.
The control is preferably programmed so that once an ice making cycle has been initiated, the cycle will continue to completion through ice harvest regardless of thermistor readings. This prevents the ice making cycle from terminating prematurely thereby ensuring that full-sized ice cubes are formed. At initial startup the control is also preferably programmed to complete a first set of ice cubes without regard to the refrigerator thermistor reading. Once that initial ice is made, and following subsequent ice harvest cycles, the control will check the refrigerator thermistor reading to determine if the refrigerator section is above the higher of a predetermined refrigerator limit temperature, such as 42° F. or the set temperature. If so, the unit will enter refrigeration only mode, illustrated in
When the ice making cycle is completed, the unit enters ice harvest mode, as illustrated in
If the bin thermistor calls for additional ice at the conclusion of the ice harvest cycle, the control enters to a new ice cycle with the compressor, water pump, and condenser fan all energized and with the hot gas and water inlet solenoids de-energized. Once the bin thermistor opens, when the bin is full of ice, the ice making and harvesting cycle will stop until the ice level is decreased.
When both the refrigerator and bin thermistors have been satisfied, the unit enters the “all satisfied” mode illustrated in
The unit can also enter a clean mode, by moving the toggle switch 162 to a “clean” position, in which the control cycles through programmed wash, fill, and rinse cycles for cleaning the icemaker evaporator 108 and evaporator grid 70. As illustrated in
The refrigerator evaporator 44 remains frost free by clearing itself periodically. Since the refrigerator thermistor is not directly on the refrigerator evaporator, the control is programmed to run a thirty minute refrigerator off cycle for every twelve hours of clock time. In this case, the refrigerator section will not be cooled even if the refrigerator thermistor calls for cooling, however, the ice maker can operate as normal based on the bin thermistor reading.
Referring now to
The three dot-like LED indicator lights 166–168 shown in the display window as either off, solid or flashing depending on the indicator light and status of the unit. These indicator lights give the user and the service technician feedback of the current status of the unit as well as prior or current error conditions, as summarized in Table 1 below.
As mentioned, indicator light A will illuminate solid when the actual temperature of the refrigerator section is being displayed. This indicator light has no other function and does not flash. Indicator lights B and C illuminate solid when a service menu is activated. Depressing the cooler button 174 will illuminate indicator light B and the reading of the liquid line thermistor will be displayed. Keeping the cooler button 174 depressed will illuminate indicator light C and the bin thermistor reading will be displayed. By continuing to depress the cooler button 174, the display will alternate between the liquid line and bin temperature readings.
In the event that any one of the thermistor readings is out of the acceptable ranges, indicator light B will flash to indicate an error condition. If either the liquid line reading or the bin reading is out of range, the ice maker will shut down, but allow the refrigerator side to continue cooling, if necessary. If the refrigerator reading is out of range, the refrigerator side will shut down (by energizing refrigerator bypass valve 134) while allowing the ice maker side to continue operation. When the errant reading returns to an acceptable value, the unit will reinitiate operation of the affected system. The indicator light B will remain flashing, even after normal operation conditions have resumed, to provide the user and service technician with an indication that an error condition has occurred. This is to help for the technician diagnose the source of the problem, which in the case of a high liquid line temperature reading may be due to heavy loading, restricted airflow, or an unclean condenser, for example.
The indicator light C will flash when an error condition has occurred in the drain line when an optional drain pump 180 and overflow collector 182 (see
It should be appreciated that merely a preferred embodiment of the invention has been described above. However, many modifications and variations to the preferred embodiment will be apparent to those skilled in the art, which will be within the spirit and scope of the invention. Therefore, the invention should not be limited to the described embodiment. To ascertain the full scope of the invention, the following claims should be referenced.
Number | Name | Date | Kind |
---|---|---|---|
2866322 | Muffly | Dec 1958 | A |
3433030 | Jacobs | Mar 1969 | A |
4416119 | Wilson et al. | Nov 1983 | A |
4872317 | Reed | Oct 1989 | A |
4918936 | Sakamoto | Apr 1990 | A |
5125242 | von Blanquet | Jun 1992 | A |
5127236 | von Blanquet | Jul 1992 | A |
5375432 | Cur | Dec 1994 | A |
5406805 | Radermacher et al. | Apr 1995 | A |
5553457 | Reznikov | Sep 1996 | A |
5586439 | Schlosser et al. | Dec 1996 | A |
6058731 | Byczynski | May 2000 | A |
6148621 | Byczynski et al. | Nov 2000 | A |
6148633 | Yamada et al. | Nov 2000 | A |
6351959 | Hirota | Mar 2002 | B1 |
6438978 | Bessler | Aug 2002 | B1 |
6679073 | Hu | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050109056 A1 | May 2005 | US |