The embodiments disclosed herein relate to the field of printing and specifically to methods of compensating for pile height differentials in printed media.
Digital printing, including inkjet and electrostatic printing, is often used to produce a series of identical images on one or more substrates. Different colors of marking materials (e.g., ink or toner) typically have different pile heights that extend above the substrate. In addition, many images will have areas that include marking material and other areas that include no marking material. Therefore, pile height differentials are typically encountered across an image printed on the substrate. When an image is printed repeatedly, the pile height differentials add up as the printed images accumulate in an output area. The accumulated pile height differentials can lead to distortions in the output media (e.g., a roll or stack of media) and these distortions may cause disruptions in subsequent workflow operations.
One example of a situation where pile height differentials may cause disruptions is with roll-to-roll printing applications. The roll-to-roll format is commonly used for printing on flexible packaging substrates, such as films and foils, which are subsequently used downstream for food packaging and other packaging applications. With roll-to-roll printing, a length of media in the form of a print substrate is fed from an input roll to a printing device. The printing device prints images on the substrate and the substrate is then fed to an output roll. When the thickness of the layer of marking material printed on the substrate is substantial (e.g., the thickness of the ink layer approaches the thickness of the substrate), it can introduce distortion to the output roll which may disrupt normal operations. In particular, if the cumulative pile height of the marking material is not relatively consistent across the roll, one side or a portion of the output roll may become unbalanced. For example, if an image printed on the right side of a substrate contains substantial print content, while the image printed on the left side of the substrate contains only limited print content, the right side of the substrate will have a greater cumulative pile height over time, and the right side of the output roll will end up with a greater diameter than the left side of the output roll. In addition, the right side of the roll will tend to be taut while the left side of the roll will tend to be loose. When the same or similar image is repeatedly printed, as is typically the case with roll-to-roll printing, this repetition only magnifies the pile height problem at the output roll. Distortion in the output roll creates problems during both the printing process and downstream in the packaging process.
Another example of a situation where pile height differentials may cause disruptions is with sheet stacking applications. In sheet stacking applications, the same image may be printed repeatedly on sheet after sheet. If a regular and relatively large pile height differential is found on a specific part of each page, the stack of sheets output from the printing device may be distorted as the pages accumulate in the output stack. For example, if the pile height on the right side of each page is relatively high, while the pile height on the left side of each page is relatively low, the stack of pages will become unbalanced, with the right side of the output stack higher than the left side. This distorted output stack situation may be even more pronounced when the print substrate is relatively thin in a sheet stacking application, as is often the case with books or catalogues. Distortion in the output stack may eventually create problems with subsequent workflow, such as when the stack of pages needs to be handled or otherwise manipulated after printing. Binding the stack of pages into a book or catalogue can be particularly difficult if the height of the stack is higher on one side of the sheets than on the other, or if the height of the stack is generally uneven across the sheets.
In view of the foregoing, it would be advantageous to provide a method of printing images to compensate for pile height differentials.
A method of printing an image on a substrate comprises determining a pile height differential for the image. A clear marking material is added to the image when the image is printed on the substrate in response to the determined pile height differential. Adding the clear marking material substantially reduces the pile height differential between two areas of the printed image. The clear marking material may be, for example, a transparent ink or transparent toner particles. The substrate on which the image is printed may comprise a plurality of sheets of print media. Alternatively, the substrate may comprise a roll or other length of print media.
In at least one embodiment, the step of determining the pile height differential comprises estimating a pile height profile for the image and calculating a pile height differential between at least two areas of the image based on the estimated pile height profile for the image.
In at least one embodiment, the step of adding clear marking material to the image includes, for example, substantially leveling the printed image using the clear marking material such that pile height differentials are substantially removed from the printed image. Alternatively, the step of adding clear marking material to the image may include, for example, adding at least one patch of clear marking material to the printed image. The patch of clear marking material has a pile height configured to reduce pile height differentials between a first portion of the image and a second portion of the image. In this manner, the patch of clear marking material is configured to reduce distortions in the media at a media output location. The patch of clear marking material may be added in a periodic manner or a substantially constant manner on the media. Furthermore, the patch of clear marking material may be printed directly on the media or over colored existing material already printed on the media.
The above described features and advantages, as well as others, will become more readily apparent to those of ordinary skill in the art by reference to the following detailed description and accompanying drawings. While it would be desirable to provide a method of printing images that provides one or more of these or other advantageous features as may be apparent to those reviewing this disclosure, the teachings disclosed herein extend to those embodiments which fall within the scope of the appended claims, regardless of whether they include or accomplish one or more of the above-mentioned advantages or features.
With reference to
The printing system 10 includes a computer workstation 12, a printing device 14, input media 16 (or 16A), and output media 18 (or 18A). The input media 16 is fed from a media input location/station 17 to the printing device in a feed direction 22. After the printing device 14 prints images on the substrate 20, the substrate is fed to a media output location/station 19.
One or more images to be printed repeatedly using the printing system 10 are created and/or stored at the computer workstation 12. The computer workstation 12 also contains information about the intended layout of the images when printed on the media substrate 20. Digital packaging data, including image data and layout data, is delivered to the printing device 14 from the workstation.
The printing device 14 is a digital printer that includes a controller 24 and a marking system 30. The controller 24 comprises a processor 26 configured to process the digital packaging data received from the computer workstation 12 and instruct the marking system 30 when and where to print on the substrate 20. The marking system 30 includes the components configured to deliver marking material to the substrate. The marking material that may be delivered to the substrate includes both clear (substantially transparent) and colored marking material (including both black and white marking material, and other marking material with a substantial amount of colorant). The colored marking material is used to form the desired image on the substrate 20. The clear marking material is used to provide additional features on the substrate. One such feature provided by the clear marking material relates to compensating for pile height differentials, as described in further detail below. The marking system 30 may include, for example, a print head for delivering ink, a photosensitive imaging drum for delivering toner, or other device configured to deliver marking material to the substrate. The term “marking material” refers to material to be placed on a substrate, such as, for example, an ink, toner, or other material. The term “colorant” refers, for example, to pigments, dyes, mixtures thereof, such as mixtures of dyes, mixtures of pigments, mixtures of dyes and pigments, and the like.
As discussed previously, at various points on the printed image, the marking material delivered to the substrate 20 will have a certain pile height which rises above the surface of the substrate 20. However, when the pile height significantly varies across an image, this significant pile height differential can result in media distortions at the media output location 19, such as distortions in the output roll 18. The controller 24 is configured to monitor pile height differentials in the printed images and mitigate the effects of such pile height differentials in the media output location by adding clear marking material to the images printed to the substrate.
In order to keep the media in the output station 19 relatively uniform and free of substantial distortions, the images printed on the media should have a relatively uniform pile height along and/or across the media. In order to maintain a relatively uniform pile height, the controller first calculates a printed height profile for the one or more images to be printed. This may be accomplished by estimating the image pile height at any location on the image. Image pile height at any pixel location may be estimated by assuming that pile height is generally constant with respect to pixel values (i.e., a pixel value for each level of color separation). For example, given an image vector at each image pixel location and/or an image value for each color separation, and given a particular printing process or device, a proportionality constant for pile height may be empirically calculated. With this information, a pixel value to pile height transformation matrix may be determined. Alternatively, a simple look-up table may be created to determine the pile height at any particular pixel location. In either case, an estimation of the pile height at any pixel location can be provided for the images printed, thus providing a pile height profile for the image.
With an estimated pile height profile for an image, the controller 24 can determine a pile height differential for one or more images. The pile height differential is simply some determination that provides an indication of a difference in pile height (or cumulative pile height) at two or more different locations. A pile height differential may be determined for the one or more images in a lateral direction perpendicular to the feed direction or in a direction parallel to the feed direction. For example, as shown in
Σi(pij−−pij)2
where Pij is each pile height for each pixel in a row, and
where −pij is the average pile height for the row.
This summation value provides a pile height differential that indicates whether the pile height variance in a given row is relatively large or small. A relatively smooth row will result in a smaller summation value indicating a small pile height variance across the row. A relatively bumpy row will result in a larger summation value indicating a large pile height variance across the row. Accordingly, the controller 24 is configured to monitor whether a particular row has (or will have) a large pile height differential that could lead to output roll distortions or a small pile height differential that is less likely to lead to output roll distortions.
In addition to monitoring the pile height differential in each row, the controller 24 may also monitor the cumulative pile height differential along two or more lines parallel to the feed direction (i.e., along a plurality of columns of printed pixels). For example, if three columns of cumulative pile height are calculated, as shown in
H1=Σi1jpij
H2=Σi2jpij
H3=Σi3jpij
where Hi represents the cumulative pile height for a given column.
After calculating the cumulative pile heights, the controller then compares the cumulative pile heights to determine a cumulative pile height differential for the columns. In particular, the controller calculates a cumulative pile height differential according to the following equation:
Σi(Hi−−Hi)2
where −Hi represents the average cumulative pile height for all columns.
It will be recognized that, depending on the width of the roll, two or more points are selected for reducing the cumulative pile height. Two points (one on each edge) are selected for narrow webs and three or more points are selected if the film is thin and if the web width is large.
By calculating the pile height differential in rows and columns, the controller is able to identify portions of the printed images that include relatively large pile height differentials from other portions of the printed images. The controller then performs a minimization function on the calculated mean square differential values. This minimization function provides an indication of how clear marking material may be used on the printed images to minimize or otherwise reduce the cumulative pile height differentials and thus reduce distortions in the output roll 18 or output stack 18A. As set forth below, examples of how clear marking material may be used on the printed images include use of patches of clear marking material at various locations on the images or use of the clear marking material to substantially level the entire printed surface. The patches of clear marking material may be provided over desired images on the printed surface and/or adjacent to desired images on the printed surface.
With reference now to
The clear marking material 44 shown in
The embodiment of
The patches provided along the right side in
As set forth above, because the marking material added to an image in order to compensate for pile height differentials is clear, the clear marking material may be added anywhere on the image. This includes the addition of clear marking material directly on the substrate (e.g., next to colored portions as shown in
With reference now to
In the embodiment of
Each of the sensors 61-63 measures the cumulative pile height on the roll 18 at the sensor location and outputs a measurement value. The sensor measurement values are fed back to the controller 24 as negative feedback designed to change the image pile height. The controller 24 takes the sensor measurements and calculates a patch to be added to the printed images to compensate for the cumulative pile height differential at the output roll 18. As explained above, the patch may be provided in any necessary portion of the substrate, including over existing portions of images, since the patch is comprised of a clear marking material. By virtue of sensors that feedback pile height measurements to the controller 24, the embodiment of
In the foregoing embodiments, the image marking material and the clear marking material are the same type of material provided from the same print device. However, in at least one alternative embodiment, a different type of marking material is used to provide the clear marking material from what is used to provide the image on the substrate. For example, if toner particles are used with an electrostatic printing process to print the image on the substrate, ink may be used from a print head to provide patches of clear ink. As another example, if an ink-jet print head is used to provide the image, clear toner particles may be used during an electrostatic printing process to substantially level the pile height across the entire image.
Although the present invention has been described with respect to certain preferred embodiments, it will be appreciated by those of skill in the art that other implementations and adaptations are possible. Furthermore, aspects of the various embodiments described herein may be combined or substituted with aspects from other features to arrive at different embodiments from those described herein. Those of skill in the art will recognize numerous other variations and combinations possible between the described embodiments. Moreover, there are advantages to individual advancements described herein that may be obtained without incorporating other aspects described above. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.
Number | Name | Date | Kind |
---|---|---|---|
5754302 | Coleman | May 1998 | A |
6203953 | Dalal | Mar 2001 | B1 |
6539191 | Itaya | Mar 2003 | B2 |
7720421 | Snyder | May 2010 | B2 |
8075209 | Revankar | Dec 2011 | B2 |
20060132519 | Kovacs | Jun 2006 | A1 |
20060291930 | Moore | Dec 2006 | A1 |
20070059616 | Mishra et al. | Mar 2007 | A1 |
20090194926 | Mandel | Aug 2009 | A1 |
20090245911 | Revankar | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090263172 A1 | Oct 2009 | US |