Clear semi-crystalline articles with improved heat resistance

Information

  • Patent Grant
  • 9982125
  • Patent Number
    9,982,125
  • Date Filed
    Thursday, April 20, 2017
    7 years ago
  • Date Issued
    Tuesday, May 29, 2018
    6 years ago
Abstract
A clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises: (a) a dicarboxylic acid component comprising: i) 95 to 99.99 mole % of terephthalic acid residues; and ii) 0.01 to 5 mole % of isophthalic acid; and (b) a glycol component comprising: i) 4.9 to 10.2 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and ii) 89.8 to 95.1 mole % of 1,4-cyclohexanedimethanol residues, wherein the polyester is solid stated and has an inherent viscosity from 0.76 to 1.1 dL/g and a glass transition temperature (Tg) of 90 to 110° C. The article has strain induced crystallinity from 15% to 35% when stretched at a draw ratio of 3 to 4 times at a temperature 10° C. above the Tg or from 23.2% to 35% when stretched at a draw ratio of 3.5 to 4.5 times at a temperature 20° C. above the Tg.
Description
FIELD OF THE INVENTION

The present invention generally relates to clear semi-crystalline articles made from polyesters comprising terephthalic acid, or an ester thereof, or mixtures thereof; 1 to 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 85 to 99 mole % 1,4-cyclohexanedimethanol residues. These polyesters have a surprising combination of a certain crystallization rate along with a certain melting temperatures (Tm) and certain glass transition temperatures (Tg). These polyesters are useful in preparing clear semi-crystalline articles with improved heat resistance by strain induced crystallization processes known in the art.


BACKGROUND OF THE INVENTION

To date, copolyester compositions comprising terephthalic acid or an ester thereof or mixtures thereof, 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) residues and 1,4-cyclohexanedimethanol (CHDM) residues have been focused primarily for use in the injection molding and extrusion of amorphous articles even in relatively thick parts due to slow crystallization rates. These slow crystallization rates are achieved by modifying the polyester (PCT), which is based on terephthalic acid (TPA) or ester thereof such as dimethyl terephthalate (DMT), or mixture thereof, and CHDM (70/30 trans/cis) with TMCD at levels greater than 20 mole percent of the diol fraction.


On the other hand, unmodified PCT is known to crystallize extremely fast making it extremely difficult to mold or extrude even thin parts without thermal crystallization. Thermal crystallization of PCT and other polyesters typically leads to opacity in parts.


In order to slow down the crystallization rate of PCT, additional dicarboxylic acids or glycols can be used to modify PCT in order to slow down the crystallization rate. In particular, ethylene glycol or isophthalic acid-modified PCTs are known in the art and are commercially available. Polyethylene terephthalate (PET) or slightly modified PET's have been proven useful in clear semi-crystalline articles such as soft drink bottles, oriented films, and oriented fibers. These articles from PET are prepared by processes that take advantage of PET's ability to strain induce crystallize above Tg from an amorphous state. These PETs have slower thermal crystallization rates than unmodified PCT allowing them to be used in such processes.


In order to achieve similar crystallization rates to PET, PCT has to be modified with certain levels, approximately 15 to 30 mole % of the diol fraction coming from ethylene glycol or 15 to 30 mole % of the acid fraction coming from isophthalic acid. This results in modified PCT materials with melting temperatures (Tm) and glass transition temperatures (Tg) similar to PET (Tm=˜240° C., Tg=˜80° C.). Given the similar Tm and Tg to PET, these modified PCT materials provide little benefit in terms of heat resistance compared to PET and are typically more costly to produce.


Thus, there is a need in the art for a modification of PCT that slows down the thermal crystallization rate enough, similar to PET, to permit the molding of amorphous articles and extrusion of amorphous films that can be subsequently strain induced crystallized by orientation processes known in the art such as fiber drawing, film stretching, stretch blow molding, injection stretch blow molding and the like, to produce clear semi-crystalline articles with superior heat resistance (higher Tg and higher Tm) to clear semi-crystalline articles from PCT modified by ethylene glycol or isophthalic acid or PET.


SUMMARY OF THE INVENTION

We have surprisingly found a range of TMCD modification of PCT that slows down the crystallization rate enough to permit the molding of articles and extrusion of films without thermal crystallization occurring yet still allows for strain induced crystallinity to occur above Tg in various orientation based processes allowing for production of clear semi-crystalline articles with improved heat resistance compared to PCT modified by ethylene glycol or isophthalic acid and PET.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds. In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:
  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.


In one aspect, the invention relates to a clear semi-crystalline, strain induced crystallized, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear semi-crystalline, strain induced crystallized, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline, oriented, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline, oriented, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of greater than zero when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of greater than zero to 50 when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of from 5% to 50% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of from 5% to 45% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of from 5% to 40% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.;
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.;
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes;
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues,
    • wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;
    • wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and
    • wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, strain induced crystallized, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C.; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized, oriented article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, strain induced crystallized, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 1 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 99 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear, semi-crystalline, oriented, strain induced crystallized article comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect, the invention relates to a clear semi-crystalline, oriented article produced by strain induced crystallization processes comprising at least one polyester which comprises:

  • (a) a dicarboxylic acid component comprising:
    • i) 70 to 100 mole % of terephthalic acid residues;
  • (b) a glycol component comprising:
    • i) 5 to 15 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; and
    • ii) 85 to 95 mole % of 1,4-cyclohexanedimethanol residues, wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.35 to 1.0 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.; and wherein the polyester has a Tg of 90° C. to 115° C. and a crystallization half-time of less than 10 minutes but greater than about 30 seconds; and


      wherein said article has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of greater than zero when stretched at a temperature above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 50% when stretched at a temperature above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 45% when stretched at a temperature above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 40% when stretched at a temperature above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 35% when stretched at a temperature above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of greater than zero when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 50% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 45% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 40% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 35% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of greater than zero when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 50% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 45% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 40% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 5% to 35% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the articles of the invention have a strain induced crystallinity of from 8% to 35% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the article of the invention has a strain induced crystallinity of from 8% to 35% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the article of the invention has a strain induced crystallinity of from 10% to 35% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the article of the invention has a strain induced crystallinity of from 10% to 35% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect of the invention, the article of the invention has a strain induced crystallinity of from 10% to 30% when stretched at a temperature 10° C. above the Tg of the polyester.


In one aspect of the invention, the article of the invention has a strain induced crystallinity of from 10% to 30% when stretched at a temperature 20° C. above the Tg of the polyester.


In one aspect, the clear semi-crystalline article can comprise the polyester of the invention having a crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In another aspect, the clear semi-crystalline article of the invention can comprise the polyester of the invention having a melting temperature (Tm) from 260° C. to 300° C.


In another aspect, the clear semi-crystalline article of the invention can comprise the polyester of the invention having a glass transition temperature (Tg) from 90° C. to 115° C.


In another aspect, the clear semi-crystalline article of the invention can comprise the polyester of the invention having a fastest crystallization half-time of less than 10 minutes but greater than about 30 seconds.


In another aspect, the clear semi-crystalline article of the invention can comprise the polyester of the invention having a fastest crystallization half-time of less than 10 minutes but greater than about 30 seconds and a melting temperature from 260° C. to 300° C.


In another aspect, the clear semi-crystalline article of the invention can comprise the polyester of the invention having a fastest crystallization half-time of less than 10 minutes but greater than about 30 seconds and a glass transition temperature from 90° C. to 115° C.


In another aspect, the clear semi-crystalline article of the invention can comprise the polyester of the invention having a fastest crystallization half-time of less than 10 minutes but greater than about 30 seconds, a glass transition temperature from 90° C. to 115° C., and a melting temperature from 260° C. to 300° C.


In one aspect, the polyesters useful in the invention contain no branching agent or, alternatively, at least one branching agent is added either prior to or during polymerization of the polyester.


In one aspect, the polyesters useful in the invention contain at least one branching agent without regard to the method or sequence in which it is added.


In one aspect, the polyester compositions are useful in clear semi-crystalline articles of manufacture, prepared by orientation processes known in the industry, including but not limited to, blown bottles, oriented films and oriented fibers.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts the effect of comonomer on the fastest crystallization half-times of copolyesters containing terephthalic acid, cyclohexanedimethanol and another monomer (modified PCT copolyesters)





DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of certain embodiments of the invention and the working examples. In accordance with the purpose(s) of this invention, certain embodiments of the invention are described in the Summary of the Invention and are further described herein below. Also, other embodiments of the invention are described herein.


The term “polyester”, as used herein, is intended to include “copolyesters” and is understood to mean a synthetic polymer prepared by the reaction of one or more difunctional carboxylic acids and/or multifunctional carboxylic acids with one or more difunctional hydroxyl compounds and/or multifunctional hydroxyl compounds. Typically the difunctional carboxylic acid can be a dicarboxylic acid and the difunctional hydroxyl compound can be a dihydric alcohol such as, for example, glycols and diols. The term “glycol” as used in this application includes, but is not limited to, diols, glycols, and/or multifunctional hydroxyl compounds, for example, branching agents. Alternatively, the difunctional carboxylic acid may be a hydroxy carboxylic acid such as, for example, p-hydroxybenzoic acid, and the difunctional hydroxyl compound may be an aromatic nucleus bearing 2 hydroxyl substituents such as, for example, hydroquinone. The term “residue”, as used herein, means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer. The term “repeating unit”, as used herein, means an organic structure having a dicarboxylic acid residue and a diol residue bonded through a carbonyloxy group. Thus, for example, the dicarboxylic acid residues may be derived from a dicarboxylic acid monomer or its associated acid halides, esters, salts, anhydrides, or mixtures thereof. As used herein, therefore, the term dicarboxylic acid is intended to include dicarboxylic acids and any derivative of a dicarboxylic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof, useful in a reaction process with a diol to make polyester. Furthermore, as used in this application, the term “diacid” includes multifunctional acids, for example, branching agents. As used herein, the term “terephthalic acid” is intended to include terephthalic acid itself and residues thereof as well as any derivative of terephthalic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof or residues thereof useful in a reaction process with a diol to make polyester.


In one embodiment, terephthalic acid may be used as the starting material. In another embodiment, dimethyl terephthalate may be used as the starting material. In yet another embodiment, mixtures of terephthalic acid and dimethyl terephthalate may be used as the starting material and/or as an intermediate material.


The polyesters used in the present invention typically can be prepared from dicarboxylic acids and diols which react in substantially equal proportions and are incorporated into the polyester polymer as their corresponding residues. The polyesters of the present invention, therefore, can contain substantially equal molar proportions of acid residues (100 mole %) and diol (and/or multifunctional hydroxyl compounds) residues (100 mole %) such that the total moles of repeating units is equal to 100 mole %. The mole percentages provided in the present disclosure, therefore, may be based on the total moles of acid residues, the total moles of diol residues, or the total moles of repeating units. For example, a polyester containing 30 mole % isophthalic acid, based on the total acid residues, means the polyester contains 30 mole % isophthalic acid residues out of a total of 100 mole % acid residues. Thus, there are 30 moles of isophthalic acid residues among every 100 moles of acid residues. In another example, a polyester containing 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol, based on the total diol residues, means the polyester contains 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues out of a total of 100 mole % diol residues. Thus, there are 15 moles of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues among every 100 moles of diol residues.


In other aspects of the invention, the Tg of the polyesters useful in the invention can be at least one of the following ranges: 90 to 115° C.; 90 to 110° C.; 90 to 105° C.; 90 to 100° C.; 90 to 95° C.; 95 to 115° C.; 95 to 110° C.; 95 to 105° C.; 95 to 100° C.; 100 to 115° C.; 100 to 110° C.; 100 to 105° C.; 105 to 115° C.; 105 to 110° C.; and 110 to 115° C.


In other aspects of the invention, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following combinations of ranges: 1 to 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 85 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 14 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 86 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 13 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 87 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 12 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 88 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 11 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 89 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 10 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 90 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 9 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 91 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 8 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 92 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 7 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 93 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 6 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 94 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 5 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 95 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 4 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 96 to 99 mole % 1,4-cyclohexanedimethanol; 1 to 3 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 97 to 99 mole % 1,4-cyclohexanedimethanol; and 1 to 2 mole % 2,2,4,4-tetramethyl -1,3-cyclobutanediol and 98 to 99 mole % 1,4-cyclohexanedimethanol.


In other aspects of the invention, the glycol component for the polyesters useful in the film or sheet of the invention include but are not limited to at least one of the following combinations of ranges: 5 to 15 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 85 to 95 mole % 1,4-cyclohexanedimethanol; and 5 to 10 mole % 2,2,4,4-tetramethyl -1,3-cyclobutanediol and 90 to 95 mole % 1,4-cyclohexanedimethanol.


For certain embodiments of the invention, the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.: 0.10 to 1.2 dL/g; 0.10 to 1.1 dL/g; 0.10 to 1 dL/g; 0.10 to less than 1 dL/g; 0.10 to 0.98 dL/g; 0.10 to 0.95 dL/g; 0.10 to 0.90 dL/g; 0.10 to 0.85 dL/g; 0.10 to 0.80 dL/g; 0.10 to 0.75 dL/g; 0.10 to less than 0.75 dL/g; 0.10 to 0.72 dL/g; 0.10 to 0.70 dL/g; 0.10 to less than 0.70 dL/g; 0.10 to 0.68 dL/g; 0.10 to less than 0.68 dL/g; 0.10 to 0.65 dL/g; 0.20 to 1.2 dL/g; 0.20 to 1.1 dL/g; 0.20 to 1 dL/g; 0.20 to less than 1 dL/g; 0.20 to 0.98 dL/g; 0.20 to 0.95 dL/g; 0.20 to 0.90 dL/g; 0.20 to 0.85 dL/g; 0.20 to 0.80 dL/g; 0.20 to 0.75 dL/g; 0.20 to less than 0.75 dL/g; 0.20 to 0.72 dL/g; 0.20 to 0.70 dL/g; 0.20 to less than 0.70 dL/g; 0.20 to 0.68 dL/g; 0.20 to less than 0.68 dL/g; 0.20 to 0.65 dL/g; 0.35 to 1.2 dL/g; 0.35 to 1.1 dL/g; 0.35 to 1 dL/g; 0.35 to less than 1 dL/g; 0.35 to 0.98 dL/g; 0.35 to 0.95 dL/g; 0.35 to 0.90 dL/g; 0.35 to 0.85 dL/g; 0.35 to 0.80 dL/g; 0.35 to 0.75 dL/g; 0.35 to less than 0.75 dL/g; 0.35 to 0.72 dL/g; 0.35 to 0.70 dL/g; 0.35 to less than 0.70 dL/g; 0.35 to 0.68 dL/g; 0.35 to less than 0.68 dL/g; 0.35 to 0.65 dL/g; 0.40 to 1.2 dL/g; 0.40 to 1.1 dL/g; 0.40 to 1 dL/g; 0.40 to less than 1 dL/g; 0.40 to 0.98 dL/g; 0.40 to 0.95 dL/g; 0.40 to 0.90 dL/g; 0.40 to 0.85 dL/g; 0.40 to 0.80 dL/g; 0.40 to 0.75 dL/g; 0.40 to less than 0.75 dL/g; 0.40 to 0.72 dL/g; 0.40 to 0.70 dL/g; 0.40 to less than 0.70 dL/g; 0.40 to 0.68 dL/g; 0.40 to less than 0.68 dL/g; 0.40 to 0.65 dL/g; greater than 0.42 to 1.2 dL/g; greater than 0.42 to 1.1 dL/g; greater than 0.42 to 1 dL/g; greater than 0.42 to less than 1 dL/g; greater than 0.42 to 0.98 dL/g; greater than 0.42 to 0.95 dL/g; greater than 0.42 to 0.90 dL/g; greater than 0.42 to 0.85 dL/g; greater than 0.42 to 0.80 dL/g; greater than 0.42 to 0.75 dL/g; greater than 0.42 to less than 0.75 dL/g; greater than 0.42 to 0.72 dL/g; greater than 0.42 to less than 0.70 dL/g; greater than 0.42 to 0.68 dL/g; greater than 0.42 to less than 0.68 dL/g; and greater than 0.42 to 0.65 dL/g.


For certain embodiments of the invention, the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.: 0.45 to 1.2 dL/g; 0.45 to 1.1 dL/g; 0.45 to 1 dL/g; 0.45 to 0.98 dL/g; 0.45 to 0.95 dL/g; 0.45 to 0.90 dL/g; 0.45 to 0.85 dL/g; 0.45 to 0.80 dL/g; 0.45 to 0.75 dL/g; 0.45 to less than 0.75 dL/g; 0.45 to 0.72 dL/g; 0.45 to 0.70 dL/g; 0.45 to less than 0.70 dL/g; 0.45 to 0.68 dL/g; 0.45 to less than 0.68 dL/g; 0.45 to 0.65 dL/g; 0.50 to 1.2 dL/g; 0.50 to 1.1 dL/g; 0.50 to 1 dL/g; 0.50 to less than 1 dL/g; 0.50 to 0.98 dL/g; 0.50 to 0.95 dL/g; 0.50 to 0.90 dL/g; 0.50 to 0.85 dL/g; 0.50 to 0.80 dL/g; 0.50 to 0.75 dL/g; 0.50 to less than 0.75 dL/g; 0.50 to 0.72 dL/g; 0.50 to 0.70 dL/g; 0.50 to less than 0.70 dL/g; 0.50 to 0.68 dL/g; 0.50 to less than 0.68 dL/g; 0.50 to 0.65 dL/g; 0.55 to 1.2 dL/g; 0.55 to 1.1 dL/g; 0.55 to 1 dL/g; 0.55 to less than 1 dL/g; 0.55 to 0.98 dL/g; 0.55 to 0.95 dL/g; 0.55 to 0.90 dL/g; 0.55 to 0.85 dL/g; 0.55 to 0.80 dL/g; 0.55 to 0.75 dL/g; 0.55 to less than 0.75 dL/g; 0.55 to 0.72 dL/g; 0.55 to 0.70 dL/g; 0.55 to less than 0.70 dL/g; 0.55 to 0.68 dL/g; 0.55 to less than 0.68 dL/g; 0.55 to 0.65 dL/g; 0.58 to 1.2 dL/g; 0.58 to 1.1 dL/g; 0.58 to 1 dL/g; 0.58 to less than 1 dL/g; 0.58 to 0.98 dL/g; 0.58 to 0.95 dL/g; 0.58 to 0.90 dL/g; 0.58 to 0.85 dL/g; 0.58 to 0.80 dL/g; 0.58 to 0.75 dL/g; 0.58 to less than 0.75 dL/g; 0.58 to 0.72 dL/g; 0.58 to 0.70 dL/g; 0.58 to less than 0.70 dL/g; 0.58 to 0.68 dL/g; 0.58 to less than 0.68 dL/g; 0.58 to 0.65 dL/g; 0.60 to 1.2 dL/g; 0.60 to 1.1 dL/g; 0.60 to 1 dL/g; 0.60 to less than 1 dL/g; 0.60 to 0.98 dL/g; 0.60 to 0.95 dL/g; 0.60 to 0.90 dL/g; 0.60 to 0.85 dL/g; 0.60 to 0.80 dL/g; 0.60 to 0.75 dL/g; 0.60 to less than 0.75 dL/g; 0.60 to 0.72 dL/g; 0.60 to 0.70 dL/g; 0.60 to less than 0.70 dL/g; 0.60 to 0.68 dL/g; 0.60 to less than 0.68 dL/g; 0.60 to 0.65 dL/g; 0.65 to 1.2 dL/g; 0.65 to 1.1 dL/g; 0.65 to 1 dL/g; 0.65 to less than 1 dL/g; 0.65 to 0.98 dL/g; 0.65 to 0.95 dL/g; 0.65 to 0.90 dL/g; 0.65 to 0.85 dL/g; 0.65 to 0.80 dL/g; 0.65 to 0.75 dL/g; 0.65 to less than 0.75 dL/g; 0.65 to 0.72 dL/g; 0.65 to 0.70 dL/g; or 0.65 to less than 0.70 dL/g; It is contemplated that the polyester compositions of the invention can possess at least one of the inherent viscosity ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can posses at least one of the Tg ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can posses at least one of the Tg ranges described herein, at least one of the inherent viscosity ranges described herein, and at least one of the monomer ranges for the compositions described herein unless otherwise stated.


For the desired polyester, the molar ratio of cis/trans 2,2,4,4-tetramethyl-1,3-cyclobutanediol can vary from the pure form of each or mixtures thereof. In certain embodiments, the molar percentages for cis and/or trans 2,2,4,4-tetramethyl-1,3-cyclobutanediol are greater than 50 mole % cis and less than 50 mole % trans; or greater than 55 mole % cis and less than 45 mole % trans; or 30 to 70 mole % cis and 70 to 30% trans; or 40 to 60 mole % cis and 60 to 40 mole % trans; or 50 to 70 mole % trans and 50 to 30 mole % cis; or 50 to 70 mole % cis and 50 to 30% trans or 60 to 70 mole % cis and 30 to 40 mole % trans; or greater than 70 mole % cis and less than 30 mole % trans; wherein the total sum of the mole percentages for cis- and trans-2,2,4,4-tetramethyl-1,3-cyclobutanediol is equal to 100 mole %. The molar ratio of cis/trans 1,4-cyclohexandimethanol can vary within the range of 50/50 to 0/100, for example, between 40/60 to 20/80.


In certain embodiments, terephthalic acid, or an ester thereof, such as, for example, dimethyl terephthalate, or a mixture of terephthalic acid and an ester thereof, makes up most or all of the dicarboxylic acid component used to form the polyesters useful in the invention. In certain embodiments, terephthalic acid residues can make up a portion or all of the dicarboxylic acid component used to form the present polyester at a concentration of at least 70 mole %, such as at least 80 mole %, at least 90 mole %, at least 95 mole %, at least 99 mole %, or the preferred embodiment of 100 mole %. In certain embodiments, polyesters with higher amounts of terephthalic acid can be used in order to produce higher impact strength properties. For purposes of this disclosure, the terms “terephthalic acid” and “dimethyl terephthalate are used interchangeably herein. In one embodiment, dimethyl terephthalate is part or all of the dicarboxylic acid component used to make the polyesters useful in the present invention. In all embodiments, ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole % terephthalic acid and/or dimethyl terephthalate and/or mixtures thereof may be used.


In addition to terephthalic acid residues, the dicarboxylic acid component of the polyesters useful in the invention can comprise up to 30 mole %, up to 20 mole %, up to 10 mole %, up to 5 mole %, or up to 1 mole % of one or more modifying aromatic dicarboxylic acids. The preferred embodiment contains 0 mole % modifying aromatic dicarboxylic acids. Thus, if present, it is contemplated that the amount of one or more modifying aromatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 30 mole %, from 0.01 to 20 mole %, from 0.01 to 10 mole %, from 0.01 to 5 mole %, or from 0.01 to 1 mole % of one or more modifying aromatic dicarboxylic acids. In one embodiment, modifying aromatic dicarboxylic acids that may be used in the present invention include but are not limited to those having up to 20 carbon atoms, and that can be linear, para-oriented, or symmetrical. Examples of modifying aromatic dicarboxylic acids which may be used in this invention include, but are not limited to, isophthalic acid, 4,4′-biphenyldicarboxylic acid, 1,4-, 1,5-, 2,6-, 2,7-naphthalenedicarboxylic acid, and trans-4,4′-stilbenedicarboxylic acid, and esters thereof. In one embodiment, isophthalic acid is the modifying aromatic dicarboxylic acid. The preferred embodiment of the invention is for 100% of the dicarboxylic acid component based on terephthalic acid residues.


The carboxylic acid component of the polyesters useful in the invention can be further modified with up to 10 mole %, such as up to 5 mole % or up to 1 mole % of one or more aliphatic dicarboxylic acids containing 2-16 carbon atoms, such as, for example, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and dodecanedioic dicarboxylic acids. Certain embodiments can also comprise 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole % of one or more modifying aliphatic dicarboxylic acids. The preferred embodiment contains 0 mole % modifying aliphatic dicarboxylic acids. Thus, if present, it is contemplated that the amount of one or more modifying aliphatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 10 mole % and from 0.1 to 10 mole %. The total mole % of the dicarboxylic acid component is 100 mole %.


Esters of terephthalic acid and the other modifying dicarboxylic acids or their corresponding esters and/or salts may be used instead of the dicarboxylic acids. Suitable examples of dicarboxylic acid esters include, but are not limited to, the dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, and diphenyl esters. In one embodiment, the esters are chosen from at least one of the following: methyl, ethyl, propyl, isopropyl, and phenyl esters.


The 1,4-cyclohexanedimethanol may be cis, trans, or a mixture thereof, for example, a cis/trans ratio of 60:40 to 40:60. In another embodiment, the trans-1,4-cyclohexanedimethanol can be present in the amount of 60 to 80 mole %.


The glycol component of the polyester portion of the polyester compositions useful in the invention can contain 14 mole % or less of one or more modifying glycols which are not 2,2,4,4-tetramethyl-1,3-cyclobutanediol or 1,4-cyclohexanedimethanol; in another embodiment, the polyesters useful in the invention can contain 10 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 5 mole % or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 3 mole % or less of one or more modifying glycols. In the preferred embodiment, the polyesters useful in the invention may contain 0 mole % modifying glycols. Certain embodiments can also contain 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole % of one or more modifying glycols. Thus, if present, it is contemplated that the amount of one or more modifying glycols can range from any of these preceding endpoint values including, for example, from 0.1 to 10 mole %.


Modifying glycols useful in the polyesters useful in the invention refer to diols other than 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol and may contain 2 to 16 carbon atoms. Examples of suitable modifying glycols include, but are not limited to, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, p-xylene glycol or mixtures thereof. In one embodiment, the modifying glycol is ethylene glycol. In another embodiment, the modifying glycols include but are not limited to 1,3-propanediol and/or 1,4-butanediol. In another embodiment, ethylene glycol is excluded as a modifying diol. In another embodiment, 1,3-propanediol and 1,4-butanediol are excluded as modifying diols. In another embodiment, 2,2-dimethyl-1,3-propanediol is excluded as a modifying diol. The polyesters useful the invention can comprise from 0 to 10 mole percent, for example, from 0.01 to 5 mole percent, from 0.01 to 1 mole percent, from 0.05 to 5 mole percent, from 0.05 to 1 mole percent, or from 0.1 to 0.7 mole percent, or 0.1 to 0.5 mole percent, based the total mole percentages of either the diol or diacid residues; respectively, of one or more residues of a branching monomer, also referred to herein as a branching agent, having 3 or more carboxyl substituents, hydroxyl substituents, or a combination thereof. In certain embodiments, the branching monomer or agent may be added prior to and/or during and/or after the polymerization of the polyester. The polyester(s) useful in the invention can thus be linear or branched. In certain embodiments, the branching monomer or agent may be added prior to and/or during and/or after the polymerization.


Examples of branching monomers include, but are not limited to, multifunctional acids or multifunctional alcohols such as trimellitic acid, trimellitic anhydride, pyromellitic dianhydride, trimethylolpropane, glycerol, pentaerythritol, citric acid, tartaric acid, 3-hydroxyglutaric acid and the like. In one embodiment, the branching monomer residues can comprise 0.1 to 0.7 mole percent of one or more residues chosen from at least one of the following: trimellitic anhydride, pyromellitic dianhydride, glycerol, sorbitol, 1,2,6-hexanetriol, pentaerythritol, trimethylolethane, and/or trimesic acid. The branching monomer may be added to the polyester reaction mixture or blended with the polyester in the form of a concentrate as described, for example, in U.S. Pat. Nos. 5,654,347 and 5,696,176, whose disclosure regarding branching monomers is incorporated herein by reference.


The polyesters useful in the invention can be made by processes known from the literature such as, for example, by processes in homogenous solution, by transesterification processes in the melt, and by two phase interfacial processes. Suitable methods include, but are not limited to, the steps of reacting one or more dicarboxylic acids with one or more glycols at a temperature of 100° C. to 315° C. at a pressure of 0.1 to 760 mm Hg for a time sufficient to form a polyester. See U.S. Pat. No. 3,772,405 for methods of producing polyesters, the disclosure regarding such methods is hereby incorporated herein by reference.


In another aspect, the invention relates to a process for producing a polyester. The process comprises:

  • (I) heating a mixture comprising the monomers useful in any of the polyesters useful in the invention in the presence of a catalyst at a temperature of 150 to 240° C. for a time sufficient to produce an initial polyester;
  • (II) heating the initial polyester of step (I) at a temperature of 240 to 320° C. for 1 to 4 hours; and
  • (III) removing any unreacted glycols.


Suitable catalysts for use in this process include, but are not limited to, organo-zinc or tin compounds. The use of this type of catalyst is well known in the art. Examples of catalysts useful in the present invention include, but are not limited to, zinc acetate, butyltin tris-2-ethylhexanoate, dibutyltin diacetate, and/or dibutyltin oxide. Other catalysts may include, but are not limited to, those based on titanium, zinc, manganese, lithium, germanium, and cobalt. Catalyst amounts can range from 10 ppm to 20,000 ppm or 10 to 10,000 ppm, or 10 to 5000 ppm or 10 to 1000 ppm or 10 to 500 ppm, or 10 to 300 ppm or 10 to 250 based on the catalyst metal and based on the weight of the final polymer. The process can be carried out in either a batch or continuous process.


Typically, step (I) can be carried out until 50% by weight or more of the 2,2,4,4-tetramethyl-1,3-cyclobutanediol has been reacted. Step (I) may be carried out under pressure, ranging from atmospheric pressure to 100 psig. The term “reaction product” as used in connection with any of the catalysts useful in the invention refers to any product of a polycondensation or esterification reaction with the catalyst and any of the monomers used in making the polyester as well as the product of a polycondensation or esterification reaction between the catalyst and any other type of additive.


Typically, Step (II) and Step (III) can be conducted at the same time. These steps can be carried out by methods known in the art such as by placing the reaction mixture under a pressure ranging from 0.002 psig to below atmospheric pressure, or by blowing hot nitrogen gas over the mixture.


The polyesters useful in this invention can also be prepared by reactive melt blending and extrusion of two polyesters. For example: a polyester containing 100% terephthalic acid residues; 10 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and 90 mole % 1,4-cyclohexanedimethanol can be prepared by reactive melt blending and extrusion of equal amounts of a polyester containing 100 mole % terephthalic residues and 100% 1,4-cyclohexanedimethanol with another polyester containing 100 mole % terephthalic residues; 80 mole % 1,4-cyclohexanedimethanol residues, and 20 mole % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.


The polyesters of this invention, prepared in a reactor or by melt blending/extrusion, can subsequently be crystallized if needed and solid stated by techniques known in the art to further increase the IV.


Strain induced crystallization refers to a phenomenon in which an initially amorphous solid material undergoes a phase transformation in which some amorphous domains are converted to crystalline domains due to the application of strain. This phenomenon has important effects in strength and fatigue properties.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 8% to 35% when stretched at a temperature above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 8% to 35% when stretched at a temperature 10° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 8% to 35% when stretched at a temperature 20° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 10% to 35% when stretched at a temperature 10° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 10% to 35% when stretched at a temperature 20° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 10% to 30% when stretched at a temperature 10° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 10% to 30% when stretched at a temperature 20° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 10% to 25% when stretched at a temperature 10° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 10% to 25% when stretched at a temperature 20° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 15% to 30% when stretched at a temperature 10° C. above the Tg of the polyester.


In one embodiment of the invention, the article of the invention has a strain induced crystallinity of from 15% to 30% when stretched at a temperature 20° C. above the Tg of the polyester.


In addition, the polyester useful in this invention may also contain from 0.01 to 25% by weight or 0.01 to 20% by weight or 0.01 to 15% by weight or 0.01 to 10% by weight or 0.01 to 5% by weight of the total weight of the polyester composition of common additives such as colorants, dyes, mold release agents, reheat additives, flame retardants, plasticizers, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers. Examples of typical commercially available impact modifiers well known in the art and useful in this invention include, but are not limited to, ethylene/propylene terpolymers; functionalized polyolefins, such as those containing methyl acrylate and/or glycidyl methacrylate; styrene-based block copolymeric impact modifiers; and various acrylic core/shell type impact modifiers. For example, UV additives can be incorporated into articles of manufacture through addition to the bulk, through application of a hard coat, or through coextrusion of a cap layer. Residues of such additives are also contemplated as part of the polyester composition.


The polyesters useful in the invention can comprise at least one chain extender. Suitable chain extenders include, but are not limited to, multifunctional (including, but not limited to, bifunctional) isocyanates, multifunctional epoxides, including for example, epoxylated novolacs, and phenoxy resins. In certain embodiments, chain extenders may be added at the end of the polymerization process or after the polymerization process. If added after the polymerization process, chain extenders can be incorporated by compounding or by addition during conversion processes such as injection molding or extrusion. The amount of chain extender used can vary depending on the specific monomer composition used and the physical properties desired but is generally about 0.1 percent by weight to about 10 percent by weight, preferably about 0.1 to about 5 percent by weight, based on the total weight of the polyester.


Thermal stabilizers are compounds that stabilize polyesters during polyester manufacture and/or post polymerization including, but not limited to, phosphorous compounds including but not limited to phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, phosphonous acid, and various esters and salts thereof. These can be present in the polyester compositions useful in the invention. The esters can be alkyl, branched alkyl, substituted alkyl, difunctional alkyl, alkyl ethers, aryl, and substituted aryl. In one embodiment, the number of ester groups present in the particular phosphorous compound can vary from zero up to the maximum allowable based on the number of hydroxyl groups present on the thermal stabilizer used. The term “thermal stabilizer” is intended to include the reaction products thereof. The term “reaction product” as used in connection with the thermal stabilizers of the invention refers to any product of a polycondensation or esterification reaction between the thermal stabilizer and any of the monomers used in making the polyester as well as the product of a polycondensation or esterification reaction between the catalyst and any other type of additive.


Reinforcing materials may be useful in the compositions of this invention. The reinforcing materials may include, but are not limited to, carbon filaments, silicates, mica, clay, talc, titanium dioxide, Wollastonite, glass flakes, glass beads and fibers, and polymeric fibers and combinations thereof. In one embodiment, the reinforcing materials are glass, such as, fibrous glass filaments, mixtures of glass and talc, glass and mica, and glass and polymeric fibers.


The invention further relates to articles of manufacture. These articles include, but are not limited to, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, calendered articles, compression molded articles, and solution casted articles. Methods of making the articles of manufacture, include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, compression molding, and solution casting.


The invention further relates to the film(s) and/or sheet(s) comprising the polyester compositions of the invention. The methods of forming the polyesters into film(s) and/or sheet(s) are well known in the art. Examples of film(s) and/or sheet(s) of the invention including but not limited to extruded film(s) and/or sheet(s), calendered film(s) and/or sheet(s), compression molded film(s) and/or sheet(s), solution casted film(s) and/or sheet(s). Methods of making film and/or sheet include but are not limited to extrusion, calendering, compression molding, and solution casting.


Examples of potential articles made from film and/or sheet include, but are not limited, to uniaxially stretched film, biaxially stretched film, shrink film (whether or not uniaxially or biaxially stretched), liquid crystal display film (including, but not limited to, diffuser sheets, compensation films and protective films), thermoformed sheet, graphic arts film, outdoor signs, skylights, coating(s), coated articles, painted articles, laminates, laminated articles, and/or multiwall films or sheets.


As used herein, the abbreviation “wt” means “weight”.


The following examples further illustrate how the compositions of matter of the invention can be made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope thereof. Unless indicated otherwise, parts are parts by weight, temperature is in degrees C. or is at room temperature, and pressure is at or near atmospheric.


EXAMPLES

The inherent viscosity of the polyesters was determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.


The glycol content and the cis/trans ratio of the compositions were determined by proton nuclear magnetic resonance (NMR) spectroscopy. All NMR spectra were recorded on a JEOL Eclipse Plus 600 MHz nuclear magnetic resonance spectrometer using either chloroform-trifluoroacetic acid (70-30 volume/volume) for polymers or, for oligomeric samples, 60/40 (wt/wt) phenol/tetrachloroethane with deuterated chloroform added for lock. Peak assignments for 2,2,4,4-tetramethyl-1,3-cyclobutanediol resonances were made by comparison to model mono- and dibenzoate esters of 2,2,4,4-tetramethyl-1,3-cyclobutanediol. These model compounds closely approximate the resonance positions found in the polymers and oligomers.


The crystallization half-time, t1/2, was determined by measuring the light transmission of a sample via a laser and photo detector as a function of time on a temperature controlled hot stage. This measurement was done by exposing the polymers to a temperature, Tmax, and then cooling it to the desired temperature. The sample was then held at the desired temperature by a hot stage while transmission measurements were made as a function of time. Initially, the sample was visually clear with high light transmission and became opaque as the sample crystallized. The crystallization half-time was recorded as the time at which the light transmission was halfway between the initial transmission and the final transmission. Tmax is defined as the temperature required to melt the crystalline domains of the sample (if crystalline domains are present). The Tmax reported in the examples below represents the temperature at which each sample was heated to condition the sample prior to crystallization half time measurement. The Tmax temperature is dependant on composition and is typically different for each polyester. For example, PCT may need to be heated to some temperature greater than 290° C. to melt the crystalline domains.


Differential scanning calorimetry (DSC) was performed using TA Instruments Model 2920 with a liquid nitrogen cooling accessory. The sample weight, in the range of 8 to 12 mg, was measured and recorded. Samples were first heated (1st heating scan) from 0 to 320° C. at 20° C./min, followed by cooling to 0° C. at 20° C./min (cooling scan), and then heated again from 0 to 320° C. at 20° C. min. Various thermal parameters were measured and recorded. ΔHcc (cal/g) is the heat of crystallization measured from the cooling scan. Tcc is the crystallization peak temperature on the cooling scan. Tg is the glass transition temperature measured from 2nd heating scan. Tm is the melting point measured during the 2nd heating scan. ΔHch1 (cal/g) is the heat of crystallization measured during the 1st heating scan. ΔHm1 (cal/g) is the heat of melting measured during the 1st heating scan.


Unless otherwise specified, the cis/trans ratio of the 1,4 cyclohexanedimethanol used in the following examples was approximately 30/70, and could range from 35/65 to 25/75. Unless otherwise specified, the cis/trans ratio of the 2,2,4,4-tetramethyl -1,3-cyclobutanediol used in the following examples was approximately 50/50.


The following abbreviations apply throughout the working examples and figures:

















TPA
Terephthalic acid



DMT
Dimethyl therephthalate



TMCD
2,2,4,4-tetramethyl-1,3-cyclobutanediol



CHDM
1,4-cyclohexanedimethanol



EG
ethylene glycol



IPA
Isophthalic acid









Example 1

This example illustrates that TMCD is more effective at reducing the crystallization rate of PCT than EG or IPA.


A variety of copolyesters were prepared as described below. These copolyesters were all made with 200 ppm dibutyl tin oxide as the catalyst in order to minimize the effect of catalyst type and concentration on nucleation during crystallization studies. The cis/trans ratio of the 1,4-cyclohexanedimethanol was 31/69 while the cis/trans ratio of the 2,2,4,4-tetramethyl-1,3-cyclobutanediol is reported in Table 1.


For purposes of this example, the samples had sufficiently similar inherent viscosities thereby effectively eliminating this as a variable in the crystallization rate measurements.


Crystallization half-time measurements from the melt were made at temperatures from 140 to 200° C. at 10° C. increments and are reported in Table 1. The fastest crystallization half-time for each sample was taken as the minimum value of crystallization half-time as a function of temperature, typically occurring around 170 to 180° C. The fastest crystallization half-times for the samples are plotted in FIG. 1 as a function of mole % comonomer modification to PCT.


The data shows that 2,2,4,4-tetramethyl-1,3-cyclobutanediol is more effective than ethylene glycol and isophthalic acid at decreasing the crystallization rate (i.e., increasing the crystallization half-time). In addition, 2,2,4,4-tetramethyl-1,3-cyclobutanediol increases Tg and lowers density.









TABLE 1







Crystallization Half-times (min)

























at
at
at
at
at
at
at



Comonomer
IV
Density
Tg
Tmax
140° C.
150° C.
160° C.
170° C.
180° C.
190° C.
200° C.


Example
(mol %)1
(dl/g)
(g/ml)
(° C.)
(° C.)
(min)
(min)
(min)
(min)
(min)
(min)
(min)






















1A
20.2% A2
0.630
1.198
87.5
290
2.7
2.1
1.3
1.2
0.9
1.1
1.5


1B
19.8% B
0.713
1.219
87.7
290
2.3
2.5
1.7
1.4
1.3
1.4
1.7


1C
20.0% C
0.731
1.188
100.5
290
>180
>60
35.0
23.3
21.7
23.3
25.2


1D
40.2% A2
0.674
1.198
81.2
260
18.7
20.0
21.3
25.0
34.0
59.9
96.1


1E
34.5% B
0.644
1.234
82.1
260
8.5
8.2
7.3
7.3
8.3
10.0
11.4


1F
40.1% C
0.653
1.172
122.0
260
>10 days
>5 days
>5 days
19204
>5 days
>5 days
>5 days


1G
14.3% D
0.6463
1.188
103.0
290
55.0
28.8
11.6
6.8
4.8
5.0
5.5


1H
15.0% E
0.7284
1.189
99.0
290
25.4
17.1
8.1
5.9
4.3
2.7
5.1






1The balance of the diol component of the polyesters in Table 1 is 1,4-cyclohexanedimethanol; and the balance of the dicarboxylic acid component of the polyesters in Table 1 is dimethyl terephthalate; if the dicarboxylic acid is not described, it is 100 mole % dimethyl terephthalate.




2100 mole % 1,4-cyclohexanedimethanol.




3A film was pressed from the ground polyester of Example 1G at 240° C. The resulting film had an inherent viscosity value of 0.575 dL/g.




4A film was pressed from the ground polyester of Example 1H at 240° C. The resulting film had an inherent viscosity value of 0.0.652 dL/g.



where:


A is Isophthalic Acid


B is Ethylene Glycol


C is 2,2,4,4-Tetramethyl-1,3-cyclobutanediol (approx. 50/50 cis/trans)


D is 2,2,4,4-Tetramethyl-1,3-cyclobutanediol (98/2 cis/trans)


E is 2,2,4,4-Tetramethyl-1,3-cyclobutanediol (5/95 cis/trans)






As shown in Table 1 and FIG. 1, 2,2,4,4-tetramethyl-1,3-cyclobutanediol is more effective than other comonomers, such ethylene glycol and isophthalic acid, at increasing the crystallization half-time, i.e., the time required for a polymer to reach half of its maximum crystallinity. By decreasing the crystallization rate of PCT (increasing the crystallization half-time), amorphous articles based on 2,2,4,4-tetramethyl-1,3-cyclobutanediol-modified PCT as described herein may be fabricated by methods known in the art. As shown in Table 1, these materials can exhibit higher glass transition temperatures and lower densities than other modified PCT copolyesters.


Preparation of the polyesters shown on Table 1 is described below.


Example 1A

This example illustrates the preparation of a copolyester with a target composition of 80 mol % dimethyl terephthalate residues, 20 mol % dimethyl isophthalate residues, and 100 mol % 1,4-cyclohexanedimethanol residues (28/72 cis/trans).


A mixture of 56.63 g of dimethyl terephthalate, 55.2 g of 1,4-cyclohexanedimethanol, 14.16 g of dimethyl isophthalate, and 0.0419 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 210° C. The stirring speed was set to 200 RPM throughout the experiment. The contents of the flask were heated at 210° C. for 5 minutes and then the temperature was gradually increased to 290° C. over 30 minutes. The reaction mixture was held at 290° C. for 60 minutes and then vacuum was gradually applied over the next 5 minutes until the pressure inside the flask reached 100 mm of Hg. The pressure inside the flask was further reduced to 0.3 mm of Hg over the next 5 minutes. A pressure of 0.3 mm of Hg was maintained for a total time of 90 minutes to remove excess unreacted diols. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 87.5° C. and an inherent viscosity of 0.63 dl/g. NMR analysis showed that the polymer was composed of 100 mol % 1,4-cyclohexanedimethanol residues and 20.2 mol % dimethyl isophthalate residues.


Example 1B

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 20 mol % ethylene glycol residues, and 80 mol % 1,4-cyclohexanedimethanol residues (32/68 cis/trans).


A mixture of 77.68 g of dimethyl terephthalate, 50.77 g of 1,4-cyclohexanedimethanol, 27.81 g of ethylene glycol, and 0.0433 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 200° C. The stirring speed was set to 200 RPM throughout the experiment. The contents of the flask were heated at 200° C. for 60 minutes and then the temperature was gradually increased to 210° C. over 5 minutes. The reaction mixture was held at 210° C. for 120 minutes and then heated up to 280° C. in 30 minutes. Once at 280° C., vacuum was gradually applied over the next 5 minutes until the pressure inside the flask reached 100 mm of Hg. The pressure inside the flask was further reduced to 0.3 mm of Hg over the next 10 minutes. A pressure of 0.3 mm of Hg was maintained for a total time of 90 minutes to remove excess unreacted diols. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 87.7° C. and an inherent viscosity of 0.71 dl/g. NMR analysis showed that the polymer was composed of 19.8 mol % ethylene glycol residues.


Example 1C

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 20 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and 80 mol % 1,4-cyclohexanedimethanol residues (31/69 cis/trans).


A mixture of 77.68 g of dimethyl terephthalate, 48.46 g of 1,4-cyclohexanedimethanol, 17.86 g of 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and 0.046 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. This polyester was prepared in a manner similar to that described in Example 1A. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 100.5° C. and an inherent viscosity of 0.73 dl/g. NMR analysis showed that the polymer was composed of 80.5 mol % 1,4-cyclohexanedimethanol residues and 19.5 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.


Example 1D

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 40 mol % dimethyl isophthalate residues, and 100 mol % 1,4-cyclohexanedimethanol residues (28/72 cis/trans).


A mixture of 42.83 g of dimethyl terephthalate, 55.26 g of 1,4-cyclohexanedimethanol, 28.45 g of dimethyl isophthalate, and 0.0419 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 210° C. The stirring speed was set to 200 RPM throughout the experiment. The contents of the flask were heated at 210° C. for 5 minutes and then the temperature was gradually increased to 290° C. over 30 minutes. The reaction mixture was held at 290° C. for 60 minutes and then vacuum was gradually applied over the next 5 minutes until the pressure inside the flask reached 100 mm of Hg. The pressure inside the flask was further reduced to 0.3 mm of Hg over the next 5 minutes. A pressure of 0.3 mm of Hg was maintained for a total time of 90 minutes to remove excess unreacted diols. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 81.2° C. and an inherent viscosity of 0.67 dl/g. NMR analysis showed that the polymer was composed of 100 mol % 1,4-cyclohexanedimethanol residues and 40.2 mol % dimethyl isophthalate residues.


Example 1E

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 40 mol % ethylene glycol residues, and 60 mol % 1,4-cyclohexanedimethanol residues (31/69 cis/trans).


A mixture of 81.3 g of dimethyl terephthalate, 42.85 g of 1,4-cyclohexanedimethanol, 34.44 g of ethylene glycol, and 0.0419 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 200° C. The stirring speed was set to 200 RPM throughout the experiment. The contents of the flask were heated at 200° C. for 60 minutes and then the temperature was gradually increased to 210° C. over 5 minutes. The reaction mixture was held at 210° C. for 120 minutes and then heated up to 280° C. in 30 minutes. Once at 280° C., vacuum was gradually applied over the next 5 minutes until the pressure inside the flask reached 100 mm of Hg. The pressure inside the flask was further reduced to 0.3 mm of Hg over the next 10 minutes. A pressure of 0.3 mm of Hg was maintained for a total time of 90 minutes to remove excess unreacted diols. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 82.1° C. and an inherent viscosity of 0.64 dl/g. NMR analysis showed that the polymer was composed of 34.5 mol % ethylene glycol residues.


Example 1F

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 40 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and 60 mol % 1,4-cyclohexanedimethanol residues (31/69 cis/trans).


A mixture of 77.4 g of dimethyl terephthalate, 36.9 g of 1,4-cyclohexanedimethanol, 32.5 g of 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and 0.046 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 210° C. The stirring speed was set to 200 RPM throughout the experiment. The contents of the flask were heated at 210° C. for 3 minutes and then the temperature was gradually increased to 260° C. over 30 minutes. The reaction mixture was held at 260° C. for 120 minutes and then heated up to 290° C. in 30 minutes. Once at 290° C., vacuum was gradually applied over the next 5 minutes until the pressure inside the flask reached 100 mm of Hg. The pressure inside the flask was further reduced to 0.3 mm of Hg over the next 5 minutes. A pressure of 0.3 mm of Hg was maintained for a total time of 90 minutes to remove excess unreacted diols. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 122° C. and an inherent viscosity of 0.65 dl/g. NMR analysis showed that the polymer was composed of 59.9 mol % 1,4-cyclohexanedimethanol residues and 40.1 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.


Example 1G

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 20 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues (98/2 cis/trans), and 80 mol % 1,4-cyclohexanedimethanol residues (31/69 cis/trans).


A mixture of 77.68 g of dimethyl terephthalate, 48.46 g of 1,4-cyclohexanedimethanol, 20.77 g of 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and 0.046 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 210° C. The stirring speed was set to 200 RPM throughout the experiment. The contents of the flask were heated at 210° C. for 3 minutes and then the temperature was gradually increased to 260° C. over 30 minutes. The reaction mixture was held at 260° C. for 120 minutes and then heated up to 290° C. in 30 minutes. Once at 290° C., vacuum was gradually applied over the next 5 minutes until the pressure inside the flask reached 100 mm of Hg and the stirring speed was also reduced to 100 RPM. The pressure inside the flask was further reduced to 0.3 mm of Hg over the next 5 minutes and the stirring speed was reduced to 50 RPM. A pressure of 0.3 mm of Hg was maintained for a total time of 60 minutes to remove excess unreacted diols. A high melt viscosity, visually clear and colorless polymer was obtained with a glass transition temperature of 103° C. and an inherent viscosity of 0.65 dl/g. NMR analysis showed that the polymer was composed of 85.7 mol % 1,4-cyclohexanedimethanol residues and 14.3 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.


Example 1H

This example illustrates the preparation of a copolyester with a target composition of 100 mol % dimethyl terephthalate residues, 20 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues (5/95 cis/trans), and 80 mol % 1,4-cyclohexanedimethanol residues (31/69 cis/trans).


A mixture of 77.68 g of dimethyl terephthalate, 48.46 g of 1,4-cyclohexanedimethanol, 20.77 g of 2,2,4,4-tetramethyl-1,3-cyclobutanediol, and 0.046 g of dibutyl tin oxide was placed in a 500-milliliter flask equipped with an inlet for nitrogen, a metal stirrer, and a short distillation column. The flask was placed in a Wood's metal bath already heated to 210° C. The stirring speed was set to 200 RPM at the beginning of the experiment. The contents of the flask were heated at 210° C. for 3 minutes and then the temperature was gradually increased to 260° C. over 30 minutes. The reaction mixture was held at 260° C. for 120 minutes and then heated up to 290° C. in 30 minutes. Once at 290° C., vacuum was gradually applied over the next 5 minutes with a set point of 100 mm of Hg and the stirring speed was also reduced to 100 RPM. The pressure inside the flask was further reduced to a set point of 0.3 mm of Hg over the next 5 minutes and the stirring speed was reduced to 50 RPM. This pressure was maintained for a total time of 60 minutes to remove excess unreacted diols. It was noted that the vacuum system failed to reach the set point mentioned above, but produced enough vacuum to produce a high melt viscosity, visually clear and colorless polymer with a glass transition temperature of 99° C. and an inherent viscosity of 0.73 dl/g. NMR analysis showed that the polymer was composed of 85 mol % 1,4-cyclohexanedimethanol residues and 15 mol % 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues.


Example 2

This example illustrates that TMCD is more effective at reducing the crystallization rate of PCT than EG or IPA. This example also illustrates the improvements in heat resistance, as measured by Tm and Tg, provided by TMCD modification over EG or IPA modification of PCT at similar crystallization rates.


Materials were prepared via melt compounding Tritan™ TX1000 (IV=0.72 dl/g) with PCT 13787 (IV=0.76 dl/g) at 300° C. on a Sterling 1.5 inch pelletizing single screw extruder at different weight ratios. Tritan™ TX1000 and PCT 13787 are produced commercially by Eastman Chemical Company. The resulting compositions and IVs are shown as materials A, B, and C in Table 2. A portion of materials A, B, and C were solid stated to higher IVs, materials D, E, and F respectively, in a reactor at 225° C. using nitrogen. Materials G, H, and I are produced commercially by Eastman Chemical Company. Materials J and K were produced in a pilot plant at Eastman Chemical Company.


Material G is unmodified PCT. During the cooling scan of the DSC, crystallization releases 10 cal/g of heat (ΔHcc). This corresponds to about 34% crystallinity being formed during cooling from the melt at 320° C. to 0° C. at 20° C. per minute assuming a specific heat of fusion of 29 cal/g. The percent crystallinity formed during cooling is calculated by equation (1).










X
c

=



(

Δ






H
cc


)

29

×
100





(
1
)








The peak temperature in the crystallization exotherm (Tcc) occurs at 227° C. for unmodified PCT.


Comonomer modification of PCT will slow down the crystallization rate of PCT. As a result modified PCT materials will release less heat during the cooling from the melt at 320° C. to 0° C. than unmodified PCT. The data in Table 2 shows that TMCD is more effective than IPA or EG modification of PCT at slowing down the crystallization rate as evidenced by a lower ΔHcc on a mole percent modification of PCT. For example, unmodified PCT (Material G) releases 10 cal/g during the cooling scan. Modification of PCT with 17 mole % IPA (Material I), results in a slower crystallization rate as evidenced by ΔHcc=8.0 cal/g being released during the cooling scan due to crystallization. Modification of PCT with EG, results in a slower crystallization rate as evidenced by ΔHcc=9.0 cal/g for PCT modified by 16.6 mole % EG (Material J) and ΔHcc=5.8 cal/g for PCT modified by 22.6 mole % EG (Material K). In comparison, PCT only needs to be modified by approximately 5 mole % TMCD (Materials A, D, and E) to slow down the crystallization rate to achieve a similar heat release (ΔHcc˜8.0 cal/g) during the cooling scan compared with ˜17 mole % modification by EG or IPA. At similar crystallization rates or ΔHcc, PCT modified by TMCD have higher melting points (Tm) and glass transition temperatures (Tg) than PCT modified by IPA or EG. For example, at ΔHcc˜8.0 cal/g, PCT requires approximately 17 mole % EG or IPA modification resulting in a Tm˜261° C. and Tg˜89° C. (Materials I, J, and K). At ΔHcc˜8.0 cal/g, PCT requires only about 5 mole % TMCD (Materials A, D, and E) modification resulting in a Tm˜279° C. and Tg˜94° C. As a result, the PCT materials modified by TMCD will have better heat resistance. Tcc is also reduced more effectively for PCT modified by TMCD than PCT modified by EG or IPA on a mole % basis. This is another indicator that TMCD is more effective at slowing down the crystallization rate of PCT than either EG or IPA on a mole % basis.









TABLE 2







Thermal Properties of Unmodified and Modified PCT














Composition








by NMR








(mole %,
IV
ΔHcc
Tcc
Tm
Tg


Material
comonomer)
(dl/g)
(cal/g)
(° C.)
(° C.)
(° C.)
















A
4.4, TMCD
0.73
7.6
203
280
92


B
7.7, TMCD
0.72
5.5
184
275
95


C
9.1, TMCD
0.72
3.2
176
270
98


D
4.2, TMCD
0.81
8.3
202
279
93


E
6.7, TMCD
0.84
7.9
194
275
98


F
9.7, TMCD
0.85
3.0
175
268
100


G
0
0.76
10.0
227
288
93


H
5.0, IPA
0.84
9.3
207
280
92


I
17.0, IPA
0.77
8.0
182
262
91


J
16.6, EG
0.69
9.0
189
265
87


K
22.6, EG
0.74
5.8
165
257
86









Example 3

This example illustrates that PCT materials modified by TMCD can be extruded as amorphous films and subsequently stretched above Tg to create clear semi-crystalline films as a result of strain induced crystallinity.


Three modified PCT materials targeting approximately 5, 10, and 15 mole percent TMCD were prepared by melt compounding PCT 13787 and Tritan™ TX1000 at different weight ratios at 300° C. on a Sterling 1.5 inch pelletizing single screw extruder. Tritan™ TX1000 and PCT 13787 are produced commercially by Eastman Chemical Company. The resulting samples are described in Table 3.









TABLE 3







Materials prepared by melt blending Tritan ™ TX1000


and PCT 13787.













PCT/TX 1000
Mole % TMCD
IV



Material
Weight Ratio
Composition by NMR
(dl/g)















A
~3/1
4.9
0.72



B
~1/1
10.2
0.72



C
~1/3
15.5
0.71










A sample of Material A, B, and C was solid stated, as shown in Table 4, at 225° C. under vacuum (0.5 torr). Materials A, B, and C were also solid stated using nitrogen flow at 225° C. These results are shown in Table 5.









TABLE 4







Solid stating of PCT modified by TMCD at 225° C. at 0.5 torr.













IV
IV
IV




t = 0 hr
t = 6 hr
t = 24 hr



Material
(dl/g)
(dl/g)
(dl/g)















A
0.72
0.78
0.88



B
0.72
0.80
0.90



C
0.71
0.73
0.86
















TABLE 5







Solid stating of PCT modified by


TMCD at 225° C. with nitrogen.














Mole %
Temp
Time
IV



Material
TMCD
(° C.)
(hr)
(dl/g)

















A
4.9

0
0.72



A1
4.9
225
5
0.77



A2
4.9
225
11
0.82



A3
4.9
225
17
0.87



B
10.2

0
0.72



B1
10.2
225
5
0.74



B2
10.2
225
11
0.76



B3
10.2
225
17
0.84



C
15.5

0
0.71



C1
15.5
225
5
0.75



C2
15.5
225
11
0.83



C3
15.5
215
25
0.87










Materials A, A1, A2, A3, B, B1, B2, B3, C, C1, C2, and C3 were extruded into 20 mil clear amorphous film using a Killian 1 inch single screw extruder operating at 300° C. The 20 mil (0.51 mm) films were then cut into 4.5″ squares for stretching in a Bruckner KARO IV Laboratory stretching machine. The grip distances were 110 mm. Films of all the materials were uniaxially stretched to different draw ratios (λ) at temperatures relative to Tg (Tg+10 and Tg+20° C.) and a nominal strain rate of 100% sec−1. All the stretched films were visually clear. The percentage of strain induced crystallinity (Xc) in the stretched films was determined by equation (2) from the first heating scan of films evaluated in a DSC.










X
c

=



(


Δ






H

m





1



-

Δ






H

CH





1




)

29

×
100





(
2
)







Table 6 shows the various stretched films had developed crystallinity as result of strain induced crystallization for materials with different levels of TMCD with similar IVs (Materials A2, B2, and C2). The amount of crystallinity developed in the stretch films was higher for a given material stretched at Tg+20° C. compared to Tg+10° C. For a given stretching temperature relative to Tg, materials with higher amounts of TMCD developed less strain induced crystallinity. There was little effect of draw ratio from 3 to 4.5 on the amount of crystallinity developed for the various materials and stretching temperature. Higher stretching temperatures relative to Tg allowed the films to be stretched to higher draw ratios. In summary, PCT films modified by TMCD could be extruded into clear amorphous films that could be subsequently stretched above Tg to produce clear semi-crystalline films as a result of strain induced crystallization.









TABLE 6







Amount of strain induced crystallinity (Xc) of clear stretched


films of PCT modified by TMCD.
















Film

Xc (%)
Xc (%)



Mole %
Tg
IV

Stretched at
Stretched at


Material
TMCD
(° C.)
(dl/g)
λ
Tg + 10° C.
Tg + 20° C.
















A2
5
98
0.76
3
23.5



A2
5
98
0.76
3.5
24.4
26.8


A2
5
98
0.76
4.0
22.2
30.2


A2
5
98
0.76
4.5

31.4


B2
10.
101
0.76
3
17.4



B2
10
101
0.76
3.5
18.7
23.2


B2
10
101
0.76
4.0
17.9
23.4


B2
10
101
0.76
4.5

24.7


C2
15
106
0.76
3
 8.6



C2
15
106
0.76
3.5
10.5
15.3


C2
15
106
0.76
4.0
10.7
14.7


C2
15
106
0.76
4.5

14.3









Example 4

This example illustrates that PCT materials modified by TMCD can be injection molded into an amorphous bottle preform and subsequently reheated above Tg and blown into a bottle with clear semi-crystalline side-walls. In addition, this example illustrates that similar levels of side wall crystallinity are achieved in comparison to PET and PCT modified by IPA with significantly higher Tm's than PET and PCT modified by IPA.


Materials were prepared at 3 levels of TMCD (˜5, 7.5, and 10 mole %) modification to PCT and two IV levels (˜0.72 and ˜0.84 dl/g) in a similar manner to Examples 2 and 3 by melt blending Tritan™ TX1000 with PCT 13378 and subsequent solid stating. During the melt blending, black iron oxide at 20 ppm was compounded in to serve as a reheat aid for the blow molding of bottles. In addition, Material G, a commercial grade material based on PCT modified by 17 mole % IPA and Material H (Parastar 3000), a commercial grade PET material produced by Eastman Chemical Company Materials, were used for comparison. All the materials are described in Table 7. Materials were dried and injection molded into 16 oz. Boston round preforms using an Arburg injection molding machine at melt temperatures approximately 20° C. above the Tm of each material. The preforms were all clear and amorphous prior to blow molding. The amorphous preforms were then reheat blown into 16 oz. Boston round bottles using a Sidel SBO1 blow molding machine. Bottles were reheat blown at preform surface temperatures approximately 20° C. above Tg for each material into the blow mold operating at 7° C. All the blown bottles were visually clear. Samples were cut out of the sidewall of each bottle and analyzed in a DSC to determine the amount of crystallinity that was developed in the blow molding process. The percentage of strain induced crystallinity (Xc) in the sidewalls of the blown bottle was determined by equation (3) from the first heating scan of films evaluated in a DSC.










X
c

=



(


Δ






H

m





1



-

Δ






H

CH





1




)

29

×
100





(
3
)








The Tm reported in Table 8 was also taken from the first heating scan. Table 8 shows that the PCT materials modified by TMCD (Materials A thru F) developed similar levels of crystallinity in the sidewall in comparison to commercial materials G and H. At these similar levels of crystallinity, the PCT modified materials have significantly higher melting points, Tm, than materials commercial materials G and H.









TABLE 7







Materials used in the reheat blow molding


of 16 oz. Boston round bottles.















IV
Tg
Tm



Material
Mole % TMCD
(dl/g)
(° C.)
(° C.)
















A
5.2
0.72
92
280



B
7.5
0.72
95
276



C
9.5
0.72
98
272



D
4.6
0.85
93
278



E
7.0
0.85
98
276



F
9.7
0.83
100
269



G
n.a.
0.77
91
262



H
n.a.
0.80
78
235
















TABLE 8







Amount of strain induced crystallinity


(Xc) and Tm of blown bottle sidewalls.












Xc
Tm



Material
(%)
(° C.)














A
27
282



B
28
279



C
27
276



D
30
279



E
27
274



F
25
271



G
31
259



H
30
243









It can be clearly seen from a comparison of the data in the above relevant working examples that the polyesters of the present invention offer a definite advantage over the commercially available polyesters with regard to glass transition temperature, density, slow crystallization rate, melt viscosity, and toughness.


The invention has been described in detail with reference to the embodiments disclosed herein, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims
  • 1. A clear, semicrystalline, strain induced crystallized article comprising at least one polyester which comprises: (a) a dicarboxylic acid component comprising: i) 95 to 99.99 mole % of terephthalic acid residues; andii) 0.01 to 5 mole % of isophthalic acid residues; and(b) a glycol component comprising: i) 4.9 to 10.2 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues; andii) 89.8 to 95.1 mole % of 1,4-cyclohexanedimethanol residues,wherein the total mole % of the dicarboxylic acid component is 100 mole %, and the total mole % of the glycol component is 100 mole %;wherein the polyester is solid stated to increase the inherent viscosity (IV) of the polyester and wherein the IV for the solid stated polyester is from 0.76 to 1.1 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.;wherein said polyester has a glass transition temperature (Tg) of 90 to 110° C., andwherein the article has a strain induced crystallinity of from 15% to 35% when stretched at a draw ratio of 3 to 4 times and a temperature 10° C. above the Tg of the polyester or has a strain induced crystallinity of from 23.2% to 35% when stretched at a draw ratio of 3.5 to 4.5 times and a temperature 20° C. above the Tg.
  • 2. The article of claim 1, wherein the inherent viscosity of the solid stated polyester is from 0.76 to less than 1.0 dL/g.
  • 3. The article of claim 1, wherein the inherent viscosity of the solid stated polyester is from 0.76 to 0.95 dL/g.
  • 4. The article of claim 1, wherein the glycol component comprises: 5 to 10 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, and 90 to 95 mole % of 1,4-cyclohexanedimethanol residues.
  • 5. The article of claim 1, wherein the article has a strain induced crystallinity of from 15% to 30% when stretched at a draw ratio of 3 to 4 times and a temperature 10° C. above the Tg of the polyester.
  • 6. The article of claim 1, wherein said solid stated polyester has a crystallization half-time of less than 10 minutes but greater than about 30 seconds at 170° C.
  • 7. The article of claim 1, wherein the yellowness index of said polyester according to ASTM D-1925 is less than 50.
  • 8. The article of claim 1, wherein the polyester has a b* value of from −10 to less than 10 and a L* value from 50 to 90 according to the L*, a* and b* color system of the CIE (International Commission on Illumination).
  • 9. The article according to claim 1, wherein the article is a bottle with clear semi-crystalline side-walls.
US Referenced Citations (442)
Number Name Date Kind
1602699 Nightingale Oct 1926 A
2160841 Dreyfus Jun 1939 A
2202046 Dreyfus et al. May 1940 A
2278537 Dreyfus et al. Apr 1942 A
2720507 Caldwell Oct 1955 A
2806064 McKlveen Sep 1957 A
2901466 Kibler Aug 1959 A
2936324 Hasek et al. May 1960 A
3030335 Hasek et al. Sep 1961 A
3062852 Martin et al. Nov 1962 A
3075952 Coover et al. Jan 1963 A
3091600 Caldwell et al. May 1963 A
3169121 Goldberg et al. Feb 1965 A
3190928 Elam et al. Jun 1965 A
3201474 Hasek et al. Aug 1965 A
3207814 Goldberg et al. Sep 1965 A
3218372 Okamura et al. Nov 1965 A
3227764 Martin et al. Jan 1966 A
3236899 Clark Feb 1966 A
3249652 Quisenberry May 1966 A
3259469 Painter et al. Jul 1966 A
3287390 Poos et al. Nov 1966 A
3288854 Martin Nov 1966 A
3312741 Martin Apr 1967 A
3313777 Elam et al. Apr 1967 A
3317466 Caldwell et al. May 1967 A
3329722 Rylander Jul 1967 A
3360547 Wilson et al. Dec 1967 A
3366689 Maeda et al. Jan 1968 A
3386935 Jackson et al. Jun 1968 A
3403181 Painter et al. Sep 1968 A
T858012 Caldwell et al. Jan 1969 I4
3484339 Caldwell Dec 1969 A
3502620 Caldwell Mar 1970 A
T873016 Gilkey et al. Apr 1970 I4
3541059 Schaper Nov 1970 A
3546177 Kibler et al. Dec 1970 A
3629202 Gilkey et al. Dec 1971 A
RE27682 Hermann et al. Jun 1973 E
3772405 Hamb Nov 1973 A
3799953 Freitag et al. Mar 1974 A
3845884 Freitag et al. Nov 1974 A
3915913 Jackson, Jr. et al. Oct 1975 A
3962189 Russin et al. Jun 1976 A
4001184 Scott Jan 1977 A
4010145 Russin et al. Mar 1977 A
4046933 Stefanik Sep 1977 A
4056504 Grundmeier et al. Nov 1977 A
4084889 Vischer, Jr. Apr 1978 A
4125572 Scott Nov 1978 A
4156069 Prevorsek et al. May 1979 A
4160383 Rauschenberger Jul 1979 A
4185009 Idel et al. Jan 1980 A
4188314 Fox et al. Feb 1980 A
4194038 Baker et al. Mar 1980 A
4263364 Seymour et al. Apr 1981 A
4264751 Scheibelhoffer Apr 1981 A
4356299 Cholod et al. Oct 1982 A
4367186 Adelmann et al. Jan 1983 A
4372455 Adelmann et al. Jan 1983 A
4384106 Go et al. May 1983 A
4391954 Scott Jul 1983 A
4424140 Weinberg et al. Jan 1984 A
4426512 Barbee et al. Jan 1984 A
4427614 Barham et al. Jan 1984 A
4430484 Quinn Feb 1984 A
4431793 Rosenquist Feb 1984 A
4452933 McCready Jun 1984 A
4465820 Miller et al. Aug 1984 A
4469861 Mark et al. Sep 1984 A
4480086 O'Neill Oct 1984 A
4525504 Morris et al. Jun 1985 A
4578295 Jabarin Mar 1986 A
4578437 Light et al. Mar 1986 A
4642959 Swiech, Jr. et al. Feb 1987 A
4738880 Asada et al. Apr 1988 A
4749773 Weaver et al. Jun 1988 A
4786692 Allen et al. Nov 1988 A
4816308 Shimizu et al. Mar 1989 A
4826903 Weaver et al. May 1989 A
4845188 Martini et al. Jul 1989 A
4846359 Weaver et al. Jul 1989 A
4882412 Weaver et al. Nov 1989 A
4892922 Weaver et al. Jan 1990 A
4892923 Weaver et al. Jan 1990 A
4937134 Schrenk et al. Jun 1990 A
4939186 Nelson et al. Jul 1990 A
4976057 Bianchi Dec 1990 A
4981898 Bassett Jan 1991 A
4985342 Muramoto et al. Jan 1991 A
5017679 Chang et al. May 1991 A
5017680 Sublett May 1991 A
5034252 Nilsson et al. Jul 1991 A
5104450 Sand et al. Apr 1992 A
5118760 Blakely et al. Jun 1992 A
5118847 Jackson et al. Jun 1992 A
5142088 Phelps et al. Aug 1992 A
5169994 Sumner, Jr. et al. Dec 1992 A
5183863 Nakamura et al. Feb 1993 A
5191038 Krabbenhoft et al. Mar 1993 A
5207967 Small et al. May 1993 A
5217128 Small et al. May 1993 A
5224958 Warunek et al. Jul 1993 A
5239020 Morris Aug 1993 A
5256761 Blount, Jr. Oct 1993 A
5258556 Sumner, Jr. et al. Nov 1993 A
5268219 Harada et al. Dec 1993 A
5288715 Machell et al. Feb 1994 A
5288764 Rotter et al. Feb 1994 A
5292783 Buchanan et al. Mar 1994 A
5310611 Okabe et al. May 1994 A
5310787 Kutsuwa et al. May 1994 A
5326584 Kamel et al. Jul 1994 A
5331034 Pfahler et al. Jul 1994 A
5333073 Suzuki Jul 1994 A
5354791 Gallucci Oct 1994 A
5372864 Weaver et al. Dec 1994 A
5372879 Handa et al. Dec 1994 A
5378796 George et al. Jan 1995 A
5382292 Conroy et al. Jan 1995 A
5384377 Weaver et al. Jan 1995 A
5474735 Krishnakumar et al. Dec 1995 A
5475144 Watson et al. Dec 1995 A
5480926 Fagerburg et al. Jan 1996 A
5486562 Borman et al. Jan 1996 A
5489665 Yamato et al. Feb 1996 A
5494992 Kanno et al. Feb 1996 A
5498668 Scott Mar 1996 A
5498688 Oshino et al. Mar 1996 A
5506014 Minnick Apr 1996 A
5523382 Beavers et al. Jun 1996 A
5534609 Lewis et al. Jul 1996 A
5552512 Sublett Sep 1996 A
5591530 Warner et al. Jan 1997 A
5633340 Hoffman et al. May 1997 A
5650453 Eckberg et al. Jul 1997 A
5654347 Khemani et al. Aug 1997 A
5656715 Dickerson et al. Aug 1997 A
5668243 Yau et al. Sep 1997 A
5681918 Adams et al. Oct 1997 A
5688874 Hoffman Nov 1997 A
5696176 Khemani et al. Dec 1997 A
5705575 Kelsey Jan 1998 A
5780130 Hansen Jul 1998 A
5783307 Fagerburg et al. Jul 1998 A
5804617 Hoffman et al. Sep 1998 A
5814679 Eckberg et al. Sep 1998 A
5859116 Shih Jan 1999 A
5863622 Jester Jan 1999 A
5902631 Wang et al. May 1999 A
5907026 Factor et al. May 1999 A
5912307 Paschke Jun 1999 A
5918754 Lyons et al. Jul 1999 A
5942585 Scott et al. Aug 1999 A
5954216 Scott et al. Aug 1999 A
5958539 Eckart et al. Sep 1999 A
5958581 Khanarian et al. Sep 1999 A
5959066 Charbonneau et al. Sep 1999 A
5962625 Yau Oct 1999 A
5977347 Shuto et al. Nov 1999 A
5989663 Morris et al. Nov 1999 A
6001910 Blumenthal et al. Dec 1999 A
6005059 Scott et al. Dec 1999 A
6011124 Scott et al. Jan 2000 A
6012597 Nishihara et al. Jan 2000 A
6022603 Umeda et al. Feb 2000 A
6025061 Khanarian et al. Feb 2000 A
6030671 Yang et al. Feb 2000 A
6037424 Scott et al. Mar 2000 A
6043322 Scott et al. Mar 2000 A
6044996 Carew et al. Apr 2000 A
6063464 Charbonneau et al. May 2000 A
6063465 Charbonneau et al. May 2000 A
6063495 Charbonneau et al. May 2000 A
6084019 Matayabas et al. Jul 2000 A
6096854 Morris et al. Aug 2000 A
6114575 McMahon et al. Sep 2000 A
6120477 Campbell et al. Sep 2000 A
6120889 Turner et al. Sep 2000 A
6126992 Khanarian et al. Oct 2000 A
6127492 Nagashima et al. Oct 2000 A
6146228 Mougin et al. Nov 2000 A
6150494 Wang et al. Nov 2000 A
6183848 Turner et al. Feb 2001 B1
6191209 Andrews et al. Feb 2001 B1
6211309 McIntosh et al. Apr 2001 B1
6221556 Gallucci et al. Apr 2001 B1
6225436 Eiffler et al. May 2001 B1
6232504 Barteau et al. May 2001 B1
6239910 Kim et al. May 2001 B1
6255523 Panandiker et al. Jul 2001 B1
6273282 Ogg et al. Aug 2001 B1
6287656 Turner et al. Sep 2001 B1
6307006 Konig et al. Oct 2001 B1
6309718 Sprayberry Oct 2001 B1
6320042 Michihata et al. Nov 2001 B1
6323291 Mason et al. Nov 2001 B1
6323304 Lemmon et al. Nov 2001 B1
6342304 Buchanan et al. Jan 2002 B1
6352783 Fagerburg Mar 2002 B1
6354986 Hlavinka et al. Mar 2002 B1
6359070 Khanarian et al. Mar 2002 B1
6406792 Briquet et al. Jun 2002 B1
6431401 Briquet et al. Jun 2002 B1
6448334 Verhoogt et al. Sep 2002 B1
6458468 Moskala et al. Oct 2002 B1
6504002 Karlik et al. Jan 2003 B1
6559272 Jeon et al. May 2003 B1
6573328 Kropp et al. Jun 2003 B2
6576717 Kuo et al. Jun 2003 B1
6599994 Shelby et al. Jul 2003 B2
6639067 Brinegar et al. Oct 2003 B1
6656577 Adelman et al. Dec 2003 B1
6669980 Hansen Dec 2003 B2
6723768 Adams et al. Apr 2004 B2
6733716 Belcher May 2004 B2
6740377 Pecorini et al. May 2004 B2
6740714 Pecorini et al. May 2004 B2
6818293 Keep et al. Nov 2004 B1
6818730 Brandenburg et al. Nov 2004 B2
6846440 Flynn et al. Jan 2005 B2
6846508 Colas et al. Jan 2005 B1
6896966 Crawford et al. May 2005 B2
6908650 Odorisio et al. Jun 2005 B2
6914120 Germroth et al. Jul 2005 B2
7037576 Willham et al. May 2006 B2
7048978 Tanaka et al. May 2006 B2
7051892 Tanaka et al. May 2006 B1
7122661 Fleche et al. Oct 2006 B2
7169880 Shelby et al. Jan 2007 B2
7273894 Shelby et al. Sep 2007 B2
7297755 Shelby et al. Nov 2007 B2
7354628 Steube Apr 2008 B2
7375154 Stafford et al. May 2008 B2
7427430 Rhee et al. Sep 2008 B2
7462684 Hale et al. Dec 2008 B2
7468409 Pearson et al. Dec 2008 B2
7482397 Pearson et al. Jan 2009 B2
7510768 Crawford et al. Mar 2009 B2
7576171 Crawford et al. Aug 2009 B2
7704605 Crawford et al. Apr 2010 B2
7737246 Crawford et al. Jun 2010 B2
7740941 Crawford et al. Jun 2010 B2
7781562 Crawford et al. Aug 2010 B2
7803439 Crawford et al. Sep 2010 B2
7803440 Crawford et al. Sep 2010 B2
7803441 Crawford et al. Sep 2010 B2
7807774 Crawford et al. Oct 2010 B2
7807775 Crawford et al. Oct 2010 B2
7812111 Crawford et al. Oct 2010 B2
7812112 Crawford et al. Oct 2010 B2
7834129 Crawford et al. Nov 2010 B2
7838620 Crawford et al. Nov 2010 B2
7842776 Crawford et al. Nov 2010 B2
7855267 Crawford et al. Dec 2010 B2
7868128 Crawford et al. Jan 2011 B2
7893187 Crawford et al. Feb 2011 B2
7893188 Crawford et al. Feb 2011 B2
7902320 Crawford et al. Mar 2011 B2
7906211 Crawford et al. Mar 2011 B2
7906212 Crawford et al. Mar 2011 B2
7906610 Crawford et al. Mar 2011 B2
7915376 Crawford et al. Mar 2011 B2
7951900 Crawford et al. May 2011 B2
7955674 Hale et al. Jun 2011 B2
7959836 Hale et al. Jun 2011 B2
7959998 Hale et al. Jun 2011 B2
7985827 Crawford et al. Jul 2011 B2
8063172 Crawford et al. Nov 2011 B2
8063173 Crawford et al. Nov 2011 B2
8067525 Crawford et al. Nov 2011 B2
8101705 Crawford et al. Jan 2012 B2
8119761 Crawford et al. Feb 2012 B2
8119762 Crawford et al. Feb 2012 B2
8133967 Pecorini et al. Mar 2012 B2
8193302 Crawford et al. Jun 2012 B2
8198371 Stack et al. Jun 2012 B2
8287970 Pecorini et al. Oct 2012 B2
8299204 Germroth et al. Oct 2012 B2
8354491 Crawford et al. Jan 2013 B2
8415450 Crawford et al. Apr 2013 B2
8501287 Pecorini et al. Aug 2013 B2
8501292 Pecorini Aug 2013 B2
8507638 Crawford et al. Aug 2013 B2
9169348 Crawford et al. Oct 2015 B2
9169388 Germroth et al. Oct 2015 B2
9175134 Crawford et al. Nov 2015 B2
9181387 Crawford et al. Nov 2015 B2
9181388 Crawford et al. Nov 2015 B2
9534079 Crawford et al. Jan 2017 B2
9598533 Crawford et al. Mar 2017 B2
20010029324 Walker et al. Oct 2001 A1
20010031805 Buhler Oct 2001 A1
20010034419 Kanayama et al. Oct 2001 A1
20010044003 Galluci et al. Nov 2001 A1
20020055586 Dalgewicz, III et al. May 2002 A1
20020128357 Goossens et al. Sep 2002 A1
20020132963 Quillen Sep 2002 A1
20020137856 Andrews et al. Sep 2002 A1
20020188092 Moskala et al. Dec 2002 A1
20020198297 Odorisio et al. Dec 2002 A1
20030032737 Andrews et al. Feb 2003 A1
20030060546 Moskala et al. Mar 2003 A1
20030075516 Rothman et al. Apr 2003 A1
20030077546 Donovan et al. Apr 2003 A1
20030135015 Fujimaki et al. Jul 2003 A1
20030139497 Odorisio et al. Jul 2003 A1
20030149177 Andrews et al. Aug 2003 A1
20030169514 Bourdelais et al. Sep 2003 A1
20030187151 Adams et al. Oct 2003 A1
20030195295 Mahood et al. Oct 2003 A1
20030221716 Olson Dec 2003 A1
20030229181 Hariharan et al. Dec 2003 A1
20040022526 Kuno et al. Feb 2004 A1
20040056053 Hollander et al. Mar 2004 A1
20040063864 Adams et al. Apr 2004 A1
20040101687 Crawford et al. May 2004 A1
20040106707 Su et al. Jun 2004 A1
20040106767 Simon et al. Jun 2004 A1
20040108623 Deeter et al. Jun 2004 A1
20040138381 Blasius et al. Jul 2004 A1
20040145700 Miniutti et al. Jul 2004 A1
20040164279 Stevenson et al. Aug 2004 A1
20040202822 Bourdelais et al. Oct 2004 A1
20040214984 Keep et al. Oct 2004 A1
20050008885 Blakely et al. Jan 2005 A1
20050072060 Moncho et al. Apr 2005 A1
20050096453 Flynn et al. May 2005 A1
20050101759 Odorisio et al. May 2005 A1
20050113556 Strand et al. May 2005 A1
20050119359 Shelby et al. Jun 2005 A1
20050124779 Shelby et al. Jun 2005 A1
20050181155 Share et al. Aug 2005 A1
20060004151 Shaikh et al. Jan 2006 A1
20060036012 Hayes et al. Feb 2006 A1
20060094858 Turner et al. May 2006 A1
20060111481 Pearson et al. May 2006 A1
20060111519 Strand et al. May 2006 A1
20060135668 Hayes Jun 2006 A1
20060146228 Sogo et al. Jul 2006 A1
20060151907 Kashiwabara Jul 2006 A1
20060180560 Robinson Aug 2006 A1
20060197246 Hale et al. Sep 2006 A1
20060199904 Hale et al. Sep 2006 A1
20060199919 Hale et al. Sep 2006 A1
20060226565 Hale et al. Oct 2006 A1
20060228507 Hale et al. Oct 2006 A1
20060234073 Hale et al. Oct 2006 A1
20060235167 Hale et al. Oct 2006 A1
20060247388 Hale et al. Nov 2006 A1
20060270773 Hale et al. Nov 2006 A1
20060270806 Hale et al. Nov 2006 A1
20060286322 Crawford et al. Dec 2006 A1
20060286326 Crawford et al. Dec 2006 A1
20060286327 Crawford et al. Dec 2006 A1
20060286328 Crawford et al. Dec 2006 A1
20060286329 Crawford et al. Dec 2006 A1
20060286330 Crawford et al. Dec 2006 A1
20060286331 Crawford et al. Dec 2006 A1
20060286384 Crawford et al. Dec 2006 A1
20060286389 Crawford et al. Dec 2006 A1
20060286394 Crawford et al. Dec 2006 A1
20060287474 Crawford et al. Dec 2006 A1
20060287476 Crawford et al. Dec 2006 A1
20060287477 Crawford et al. Dec 2006 A1
20060287478 Crawford Dec 2006 A1
20060287479 Crawford et al. Dec 2006 A1
20060287480 Crawford et al. Dec 2006 A1
20060287481 Crawford Dec 2006 A1
20060287483 Crawford et al. Dec 2006 A1
20060287484 Crawford et al. Dec 2006 A1
20060287485 Crawford et al. Dec 2006 A1
20060287486 Crawford et al. Dec 2006 A1
20060287487 Crawford et al. Dec 2006 A1
20060287488 Crawford et al. Dec 2006 A1
20060287489 Crawford et al. Dec 2006 A1
20060287490 Crawford et al. Dec 2006 A1
20060287491 Crawford et al. Dec 2006 A1
20060287492 Crawford et al. Dec 2006 A1
20060287493 Crawford et al. Dec 2006 A1
20060287494 Crawford Dec 2006 A1
20060287495 Crawford et al. Dec 2006 A1
20060287496 Crawford et al. Dec 2006 A1
20060293494 Crawford et al. Dec 2006 A1
20060293495 Crawford et al. Dec 2006 A1
20070010649 Crawford et al. Jan 2007 A1
20070016050 Crawford et al. Jan 2007 A1
20070071930 Shelby et al. Mar 2007 A1
20070100122 Crawford et al. May 2007 A1
20070100125 Crawford et al. May 2007 A1
20070105993 Germroth et al. May 2007 A1
20070106054 Crawford et al. May 2007 A1
20070129531 Crawford et al. Jun 2007 A1
20070142511 Crawford et al. Jun 2007 A1
20070142615 Crawford et al. Jun 2007 A1
20070232778 Moody et al. Oct 2007 A1
20070232779 Moody et al. Oct 2007 A1
20070270569 Crawford et al. Nov 2007 A1
20080092776 Stockl et al. Apr 2008 A1
20080293857 Crawford et al. Nov 2008 A1
20080293882 Germroth et al. Nov 2008 A1
20090093573 Germroth et al. Apr 2009 A1
20090093574 Crawford et al. May 2009 A1
20090130353 Pecorini et al. May 2009 A1
20090137723 Crawford et al. May 2009 A1
20090137735 Crawford et al. May 2009 A1
20100087574 Crawford et al. Apr 2010 A1
20100092705 Crawford et al. Apr 2010 A1
20100096589 Crawford et al. Apr 2010 A1
20100099828 Stack et al. Apr 2010 A1
20100120979 Crawford et al. May 2010 A1
20100159176 Hale et al. Jun 2010 A1
20100174030 Crawford et al. Jul 2010 A1
20100174033 Crawford et al. Jul 2010 A1
20100174034 Crawford et al. Jul 2010 A1
20100184940 Germroth et al. Jul 2010 A1
20100204413 Powell et al. Aug 2010 A1
20100227971 Crawford Sep 2010 A1
20100249293 Treece et al. Sep 2010 A1
20100252570 Treece et al. Sep 2010 A1
20100298523 Germroth et al. Nov 2010 A1
20100300918 Crawford et al. Dec 2010 A1
20100301524 Crawford et al. Dec 2010 A1
20110017751 Pecorini et al. Jan 2011 A1
20110042338 Pecorini et al. Feb 2011 A1
20110054091 Crawford et al. Mar 2011 A1
20110144266 Crawford et al. Jun 2011 A1
20110189415 Crawford et al. Aug 2011 A1
20110306730 Crawford et al. Dec 2011 A1
20120021158 Crawford et al. Jan 2012 A1
20120108715 Crawford et al. May 2012 A1
20120184668 Stack et al. Jul 2012 A1
20120184669 Hale et al. Jul 2012 A1
20120184687 Hale et al. Jul 2012 A1
20120318767 Burgess et al. Dec 2012 A1
20120322951 Hale et al. Dec 2012 A1
20120328815 Pecorini et al. Dec 2012 A1
20130072628 Crawford et al. Mar 2013 A1
20130217830 Crawford et al. Aug 2013 A1
20160009857 Crawford et al. Jan 2016 A1
20160009951 Crawford et al. Jan 2016 A1
20160017125 Germroth et al. Jan 2016 A1
Foreign Referenced Citations (78)
Number Date Country
615850 Apr 1962 BE
2035149 Aug 1991 CA
101193935 Jun 2008 CN
29 21 868 Dec 1980 DE
197 27 709 Jun 1997 DE
198 11 773 Sep 1999 DE
0 039 838 Nov 1981 EP
0 273 144 May 1987 EP
0 282 277 Sep 1988 EP
0 372 846 Jun 1990 EP
0 544 008 Jun 1993 EP
0 595 413 May 1994 EP
0 698 631 Feb 1996 EP
0 714 764 Jun 1996 EP
0 902 052 Mar 1999 EP
0 930 531 Jul 1999 EP
1 035 167 Sep 2000 EP
1 066 825 Jan 2001 EP
1 674 496 Jun 2006 EP
1 705 124 Jun 2006 EP
2168752 Mar 2010 EP
2 332 592 Jun 2011 EP
1291273 May 1965 FR
1432471 Feb 1966 FR
1434658 Feb 1966 FR
2112400 Jun 1972 FR
962913 Jul 1964 GB
1041651 Sep 1966 GB
1044015 Sep 1966 GB
1047043 Nov 1966 GB
1090241 Nov 1967 GB
1130558 Oct 1968 GB
1278284 Jun 1972 GB
1364732 Aug 1974 GB
2216919 Oct 1989 GB
56-88440 Dec 1979 JP
03207743 Sep 1991 JP
65-01040 Feb 1994 JP
9-59371 Apr 1997 JP
11-222516 Aug 1999 JP
2001-066701 Aug 1999 JP
2000-352620 Dec 2000 JP
2001-098086 Apr 2001 JP
2001-214049 Aug 2001 JP
2002-059913 Feb 2002 JP
2004-058565 Feb 2004 JP
2004-066624 Feb 2004 JP
2004-244497 Mar 2004 JP
2004-292558 Oct 2004 JP
2005-254757 Sep 2005 JP
2007-069914 Mar 2007 JP
2007-253491 Oct 2007 JP
2001-089942 Oct 2001 KR
2003-054611 Jul 2003 KR
WO 9306018 Apr 1993 WO
WO 01-06981 Jan 1997 WO
WO 01-85824 Feb 2001 WO
WO 02-055570 Nov 2001 WO
WO 02-059207 Jul 2002 WO
WO2004-009146 Aug 2002 WO
WO 8804279 Jul 2003 WO
WO 2004-039860 Jan 2004 WO
WO 2004-104077 May 2004 WO
WO 2004-106988 Dec 2004 WO
WO 2005-007735 Dec 2004 WO
WO 2005-026241 Jan 2005 WO
WO 2005110874 Mar 2005 WO
WO 2006-127755 Mar 2006 WO
WO 2006-127831 Nov 2006 WO
WO 2007-053434 Nov 2006 WO
WO 2007001551 Jan 2007 WO
WO 2007001552 Jan 2007 WO
WO 2007-053548 May 2007 WO
WO 2007-053549 May 2007 WO
WO 2007-053550 May 2007 WO
WO 2009130033 May 2007 WO
WO 2007-123631 Nov 2007 WO
WO 2009070238 Apr 2010 WO
Non-Patent Literature Citations (47)
Entry
Abstract of U.S. Defense Publication T869,015, 869 O.G. 714, Dec. 16, 1969.
Abstract of U.S. Defense Publication T875,010, 875 O.G. 342, Jun. 9, 1970.
Chen et al., “The molecular basis for the relationship between the secondary relaxation and mechanical properties of a series of polyester copolymer glasses,” Marcromolecules, 32:5944-5955 (1999).
Coover, H. et al., “Copolyester Molding Compositions,” Chemical Abstracts Service, XP002391844, Jun. 1970.
Kelsey, E. et al., “High Impact, Amorphous Terephthalate Copolyesters of Rigid 2,2,4,4-Tetramethyl-1,3-cyclobutanediol with Flexible Diols,” Macromolecules, vol. 33, 2000, pp. 5810-5818, American Chemical Society.
“Plastic Additives Handbook,” 5th Edition, 2001, pp. 98-108 and pp. 109-112 (Hanser Gardner Publications, Inc., Cincinnati, OH.
Bergen, R. L., Jr., “Stress Cracking of Rigid Thermoplastics,” SPE Journal, Jun. 1962.
Scheirs, John, et al., “Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters,” Technology & Engineering, 2003, p. 287.
English language Abstract of JP 02-305816 from Patent Abstracts of Japan, Dec. 19, 1990.
English language translation of Belgian Patent No. BE 615,850, Apr. 13, 1962.
English language translation of French Patent No. FR 1,432,471, Feb. 7, 1966.
English language translation of French Patent No. FR 1,434,658, Feb. 28, 1966.
Chapter 4—Processing of Plastics in “Plastics Engineering, 3rd ed ”, R.J. Crawford, Butterworth-Heinemann Publisher, 1998, Oxford, England, pp. 245-342.
Fox equation (T.G. Fox, Session J, Bull. Am. Phys. Soc., 1, 123 (1956)).
The Technology of Plasticizers, by J. Kern Sears and Joseph R Darby, published by Society of Plastic Engineers—Wiley and Sons, New York, 1982; pp. 136-139.
Coleman et al., “Polymer Reviews—A Practical Guide to Polymer Miscibility,” Polymer 31, pp. 1187-1203 (1990).
“Hansen Solubility Parameters, a Users Handbook”, by Charles M. Hansen, Chapter 1, CRC Press, 2000, pp. 1-24.
Martinez et al., “Phase Behavior and Mechanical Properties of Injection Molded Poly (Ethylene Terephthalate)—Polyarylate Blends”; Journal of Applied Polymer Science, John Wiley and Sons Inc. New York, US, vol. 45, No. 7, Jul. 5, 1992 (Jul. 5, 1992), p. 1135-1143.
Won Ho Jo et al. : :Miscibility of poly(ether imide)-poly(ethylene terephthalate) blends; Polymer Bulletin, Springer, Heidelberg, DE, vol. 33, No. 1, Jun. 1, 1994 (Jun. 1, 1994), pp. 113-118 (1994).
Anonymous: “Poly (ethylene naphthalenedicarboxylate)-polyetherimide blends” Research Disclosure, Mason Publications, Hampshire, GB, vol. 283, No. 38, Nov. 1987 (Nov. 1987).
ASTM D1525-06, Standard Test Method for Vicat Softening Temperature of Plastics, Mar. 15, 2006.
ASTM D648-06, Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position, Mar. 15, 2006.
ASTM D256-06, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, Mar. 15, 2006.
ASTM D790-03, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Mar. 10, 2003.
ASTM D638-03, Standard Test Method for Tensile Properties of Plastics, Dec. 1, 2003.
ASTM D3418-03, Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry, Dec. 1, 2003.
Color Index Constitution No. 515240, SciFinder, Nov. 6, 2006.
Color Index Constitution No. 515245, SciFinder, Nov. 6, 2006.
Database WPI, Section Ch, Week 200536, Derwent Publications Ltd., London, GB; AN 2005-355258, XP002396922 & WO 2005-030833 A1 (Kanebo Ltd) Apr. 7, 2005 (Apr. 7, 2005) abstract.
Shearer, N.H., “T18-Type 1 Polyesters,” Mar. 1966, SPE Annual Technical Conference and Exhibition, XP009080224.
Gachter, Muller, “Taschenbuch der Kunststoff-Additive,” 1990, Carl Hanser Verlag Munchen Wien, XP02450422, pp. 96-97.
Gachter, Muller, “Kunstoff-Additive,” 1990, Carl Hanser Verlag Munchen Wien, XP 02449987, pp. 96-99.
Brown, R., “Taschenbuch Kunstoff-Additive”, 1990, Carl Hanswer Verlag Munchen Wiel, XP002455247, pp. 361-363.
Chang, S. et al., “Effect of Stabilizers on the Preparation of Poly(ethylene Terephthalate)”, Journal of Polymer Science, Polymer Chemistry Edition, 1982, vol. 20, pp. 2053-2061, John Wiley & Sons, Inc.
Dixon, E.R. et al., “The Inter-Relation of Some Mechanical Properties with Molecular Weight and Crystallinity in Poly(ethylene terephthalate)”, 1968, pp. 464-470, Journal of Materials Science, vol. 3.
Ellis, Thomas S., “Miscibility of Polyamide Blends: Effects of Configuration,” 1995, Polymer, vol. 36, Issue 20, pp. 3919-3926.
Buschow, K.H.J., et al., “Packaging: Papers for Sacks and Bags,” 2001, Encyclopedia of Materials: Science and Technology, vol. 8, Elsevier, pp. 6646-6652.
Coles, Richard, et al., “Food Packaging Technology,” 2003, pp. 194-195 and 224-229, Blackwell Publishing.
Sajiki, Junko, et al., “Leaching of Bisphenol A (BPA) to Seawater from Polycarbonate Plastic and its Degradation by Reactive Oxygen Species,” 2003, Chemosphere, 51, pp. 55-62.
Gupta, V.B. et al., “PET Fibers, Films, and Bottles: Section 5-7”, Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends, and Composites, 2005, pp. 362-388, Wiley InterScience.
Turner, S.R., et al., “Amorphous and Crystalline Polyesters based on 1,4-Cyclohexanedimethanol”, Chapter 7, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, Edited by J. Sheirs and T.E. Long, 2003 John Wiley & Sons, Ltd., pp. 267-292.
Zipper, Marcus D.,et al., “A Free Volume Study of Miscible Polyester Blends,” 1995, pp. 127-136, Polymer, vol. 36.
“APEC High-Heat Polycarbonate Resin,” 2004, Bayer Material Science Product Information Not Prior Art; Submitted for State of the Art.
Lobo, Hubert et al, “Handbook of Plastics Analysis,” 2003, pp. 20 and 21, Marcel Dekker, Inc.
Turner, S.R., et al. “Amorphous and Crystalline Polyesters based on 1,4-Cyclohexanedimethanol,” 2003, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, pp. 268, 284-285, J. Sheirs and T.E. Long, ed., John Wiley and Sons, Ltd.
Al-Malaika, S., “Stabilization”, Encyclopedia of Polymer Science and Technology, vol. 4, 2001, pp. 179-229, John Wiley & Sons, Inc.
News Release by Eastman on May 13, 2010 on its web site [News Release]: http://www.eastman.com/Company/News_Center/2010?Pages/Greif_Packaging_Introduces_Reusable_Home_Office_Water_Bottles_Made_With_Eastman_Tritan_Copolyester.aspx.
Related Publications (1)
Number Date Country
20170218194 A1 Aug 2017 US
Continuations (1)
Number Date Country
Parent 13398262 Feb 2012 US
Child 15492685 US