This disclosure relates generally to machines of the type that are often referred to as rock “crushers,” which are constructed to apply mechanical force to rocks so as to break rocks into smaller rocks. Rock crushing machines typically place rocks between two solid surfaces and then apply sufficient pressure to draw the surfaces together, thereby fracturing rocks captured between the surfaces into a size that is desired or required. More specifically, this disclosure relates to an improved clearing cylinder used within such rock crushing machines.
Rock crushing machines (also referred to herein as simply “crushers”) break rocks into smaller pieces by squeezing the rocks between two surfaces. One type of crusher is a cone crusher that comprises an eccentrically gyrating and wear resistant mantle and a bowl liner. During use, rocks are fed into the top, or hopper assembly, of the crusher. As gravity draws the rocks downwardly, they become wedged and then squeezed in a crushing chamber between the mantle and the bowl liner until they are broken. As the rocks are broken into smaller pieces, these smaller pieces drop down into the crusher, their size being further reduced by further squeezing and fracturing, which continues until the rock pieces are small enough to fall through an opening at the bottom of the crusher.
When a crusher gets overloaded, it can jam, seize or stall. This can result in material being left in the crushing chamber. The crushing chamber must then be cleared of material. Most cone crushers comprise spring or hydraulic release systems that serve to provide overload protection and minimize damage to the crusher when the crushing chamber is overloaded. To that end, hydraulic clearing cylinders can be incorporated into an assembly for clearing the crushing chamber.
One problem with clearing cylinders of current manufacture is that they frequently seize when water, dirt and dust (collectively, “debris”) enter the rod area. That is, when the clearing cylinder piston retracts, it can pull debris into the cylinder, which is inherent in view of the environment that crushers are used within. This reduces the life of the clearing cylinder as well as all of the seals used in it. The only current solution to repairing such a clearing cylinder once debris has entered the cylinder is the remove it from the main frame and replace it. Alternatively, the cylinder body of the clearing cylinder can be unthreaded and disassembled in place, which is both difficult and time consuming.
In the view of this inventor, there is a need for an improved clearing cylinder and assembly that provides the necessary functionality described above, but avoids the problems encountered in clearing cylinders of the prior art.
The improved clearing cylinder and assembly of the present disclosure provides a cylinder with enhanced capabilities. More specifically, the improved clearing cylinder of the present disclosure has a rod wiper located at the top of the cylinder to prevent debris from entering the cylinder, thereby extending the life of the improved clearing cylinder and the seals within it. The improved clearing cylinder also utilizes an additional wiper ring and an added breather in the cylinder body, which allows the cylinder to add or displace air without creating a vacuum that pulls debris in. The body of the improved clearing cylinder is also designed to help reduce maintenance time by having a bolted flange at the head assembly for quick and easy disassembly to access internal seals and avoiding the need to unthread any major parts.
The foregoing and other features of the present disclosure will be apparent from the detailed description that follows.
Referring now to the drawings in detail where like numbers represent like elements throughout,
The cone rock crusher also includes a tramp release cylinder 104, a countershaft box assembly 108, and a bowl assembly including the bowl 112 and the hopper 116. The crusher 100 also includes an adjustment mechanism assembly 120, and the adjustment ring assembly including a clamping ring 124, a clamping cylinder 128, and the adjustment ring 132. The crusher 100 also includes a liner assembly including a wedge assembly, a torch ring 142, the bowl liner 146, and the mantle 150. The crusher 100 also includes a feed plate assembly 154, an eccentric assembly 162, a socket assembly 158, and the crusher head assembly 186. The crusher 100 also includes a main frame assembly including main frame pins 166, a clearing cylinder 10, a main shaft 178, and the main frame 182.
The clearing cylinder 10 is attached to the main frame and is operable to extend the rod 40 to engage the adjustment ring assembly and to separate the adjustment ring assembly from the main frame 182. The rod 40 and piston assembly 50 are received in and movable relative to the lower cylindrical housing 20, and a portion of the rod 40 extends from one end of the upper cylindrical housing 30.
The clearing cylinder 10 also includes a first outwardly extending cylindrical flange 28 attached to one end of the lower cylindrical housing 20, a second outwardly extending cylindrical flange 38 attached to an opposite end of the upper cylindrical housing 30, and a head assembly 60 captured between the lower cylindrical housing 20 and the upper cylindrical housing 30. In other embodiments (not shown), the flanges can be omitted, and one of the upper cylindrical housing 30 and the lower cylindrical housing 20 can be threaded into the other of the upper cylindrical housing 30 and the lower cylindrical housing 20.
Referring now to
Disposed atop the uppermost portion of the lower housing 20 is the upper housing 30. The upper housing 30 likewise comprises an upper housing sidewall 32 and a bore 31 that allows an upper portion 46 of the rod 40 to move upwardly and downwardly within the upper housing bore 31. The bottommost portion of the upper housing 30 comprises the outwardly extending circular flange 38. The circular flange 38 is configured to “mate” with the flange 28 of the lower housing 20. The circular flange 38 of the upper housing 30 further comprises a plurality of threaded holes (not shown) for receiving a portion of the above-mentioned like-threaded fasteners 70 in them. Fasteners, preferably in the form of threaded bolts, coupled with the flanges 28, 38, advantageously help reduce maintenance time. That is, having such a bolted flange arrangement allows for quick and easy disassembly for accessing internal seals, for example, and avoids the need to unthread any major parts of the clearing cylinder 10, as is required by clearing cylinders of current conventional manufacture.
In the preferred embodiment of the present disclosure, using fasteners 70 for the securement of the flanges 28, 38 of the lower and upper housings 20, 30, respectively, allows for the “capture” of the head assembly 60 between the flanges 28, 38. The head assembly 60 has therein an inner surface defining a cylindrical bore 61 that is configured to receive a medial portion 44 of the rod 40, the rod 40 being movable upwardly and downwardly within the captured head assembly 60 via this bore 61. The bore 61 of the head assembly 60 further comprises a plurality of seals within it. As configured, it is to be understood that, unlike the piston assembly 50, the head assembly 60 of the clearing cylinder 10 is intended to be stationary relative to the other structures of the clearing cylinder 10. That is, the only moving parts of the clearing cylinder 10 are the piston assembly 50 and the rod 40, the rod 40 being attached to the piston assembly 50.
Referring again to the upper housing 30 in greater detail, it is to be noted that the topmost upper surface 33 of the upper housing 30 comprises a circumferential recess 35 defined in it. See
Referring again to the head assembly 50 in greater detail, it is to be noted that the topmost inside surface 53 of the head assembly 50 has a circumferential recess 55. See
Referring again to
Lastly, and to the extent that the improved clearing cylinder 10 can be used within a rock crusher of conventional manufacture, this combination comprises an improved rock crushing assembly. In this regard, it is to be noted that the exterior surface of the upper cylindrical housing 30 has external threads (not shown) that screw into a like-threaded hole (not shown) of the main frame 182, which is how it is held in position. That is, the uppermost portion 46 of the rod 40 is the structure that will push against the bottom side of an adjustment ring 132 to lift the upper half of the crusher to clear it.
More particularly, a portion of the outer surface 184 of the upper cylindrical housing 30 is threaded and is received within a like threaded opening 180 in the main frame 182. Received within the threaded opening 180, spaced apart from the upper end of the upper cylindrical housing 30, is a rod wiper ring 170 that surrounds the rod 40. The rod wiper ring 170 prevents air and debris from entering the threaded opening.
In view of the foregoing, it will be apparent that there has been provided a new, useful and non-obvious clearing cylinder and assembly that improves the functionality of a clearing cylinder used with a rock crusher, the primary novelty of which is the incorporation of additional wiper 37, 57 and a breather vent 29. The secondary novelty of the cylinder 10 and assembly of the present disclosure is the coupling flanges 28, 38, the structure and use of which is described above.
Number | Name | Date | Kind |
---|---|---|---|
3315901 | Pollitz | Apr 1967 | A |
3837585 | Decker | Sep 1974 | A |
3887143 | Gilbert | Jun 1975 | A |
3985308 | Davis | Oct 1976 | A |
4750681 | Sawant | Jun 1988 | A |
8308095 | Solomon | Nov 2012 | B2 |
9309974 | Woodcock | Apr 2016 | B1 |
20040035967 | Johnson | Feb 2004 | A1 |
20040062628 | Alexander | Apr 2004 | A1 |
20120006918 | Belotserkovskiy | Jan 2012 | A1 |
20120187224 | Repinski | Jul 2012 | A1 |
20150292220 | Weijers | Oct 2015 | A1 |
20150360228 | McCloskey | Dec 2015 | A1 |
20170333909 | Kuvaja | Nov 2017 | A1 |
20180243745 | Niklewski | Aug 2018 | A1 |
Entry |
---|
Parker O-Ring Handbook, 2007, Parker Hannifin Corporation, 50th Anniversary Edition, p. 1-6 and 5-3 (Year: 2007). |
George Totten, 2012, Handbook of Hydraulic Fluid Technology. Boca Raton: CRC Press, https://doi.org/10.1201/b11225, p. 48 and 747. (Year: 2012). |
Number | Date | Country | |
---|---|---|---|
20170216847 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62289514 | Feb 2016 | US |