The present disclosure relates to financial systems and, more particularly, to systems and methods that clear financial transactions, financial trades, and the like.
Various financial systems are used to transfer assets between different organizations, such as financial institutions. For example, in existing systems, each financial institution maintains a ledger to keep track of accounts at the financial institution and transactions associated with those accounts. Financial institutions generally cannot access the ledger of another financial institution. Thus, a particular financial institution can only see part of a financial transaction (i.e., the part of the transaction associated with that financial institution's accounts). When executing critical asset transfers, it is important that all parties to the transfer can see the details of the transfer. Further, in some situations it is desirable to clear financial transactions, financial trades, and the like within a specific time period, such as 24 hours.
Non-limiting and non-exhaustive embodiments of the present disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified.
It will be readily understood that the components of the present systems and methods, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. The following detailed description of the embodiments of the data ingestion systems and methods is not intended to limit the scope of the invention, as claimed, but is merely representative of certain examples of presently contemplated embodiments in accordance with the invention.
Existing financial institutions typically maintain account information and asset transfer details in a ledger at the financial institution. The ledgers at different financial institutions do not communicate with one another and often use different data storage formats or protocols. Thus, each financial institution can only access its own ledger and cannot see data in another financial institution's ledger, even if the two financial institutions implemented a common asset transfer.
The systems and methods described herein enable institutions to move assets on demand by enabling authorized users to execute complex workflows. Additionally, the described systems and methods allow one or more 3rd parties to view and confirm payment activities between participants. Further, the systems and methods support the synchronization of data, such as transaction data, across multiple ledgers. In some embodiments, the multiple ledgers are heterogeneous ledgers. In other situations, the multiple ledgers are non-heterogeneous ledgers. The systems and methods described herein are capable of on-demand settlements across multiple ledgers. Additionally, the systems and methods discussed herein are operable with DLT (Distributed Ledger Technology) systems and non-DLT systems. In some examples discussed herein, the systems and methods are discussed with respect to one or more financial institutions. However, the described systems and methods are applicable to any type of system associated with any entity. The described systems and methods are not limited to use with financial institutions.
As discussed herein, distributed ledger technology (DLT) is a database or other data storage mechanism that is spread across multiple systems or sites, such as different institutions and/or different geographic areas.
As used herein, a workflow describes, for example, the sequence of activities associated with a particular transaction, such as an asset transfer. In particular, the systems and methods provide a clearing and settlement gateway between, for example, multiple financial institutions. When a workflow is executed, the system generates and issues clearing and settlement messages (or instructions) to facilitate the movement of assets. A shared permissioned ledger (discussed herein) keeps track of the asset movement and provides visibility to the principals and observers in substantially real time. The integrity of these systems and methods is important because the systems are dealing with core payments that are a critical part of banking operations. Additionally, many asset movements are final and irreversible. Therefore, the authenticity of the request and the accuracy of the instructions are crucial. Further, reconciliation of transactions between multiple parties are important to the management of financial data.
As discussed herein, payments between parties can be performed using multiple asset types, including currencies, treasuries, securities (e.g., notes, bonds, bills, and equities), and the like. Payments can be made for different reasons, such as margin movements, collateral pledging, swaps, delivery, fees, liquidation proceeds, and the like. As discussed herein, each payment may be associated with one or more metadata.
As used herein, DCC refers to a direct clearing client or an individual or institution that owes an obligation. A payee refers to an individual or institution that is owed an obligation. A CCG (or Guarantor) refers to a client clearing guarantor or an institution that guarantees the payment of an obligation. A CCP refers to a central counterparty clearinghouse and a Client is a customer of the FCM (Futures Clearing Merchant or Futures Commission Merchant)/CCG guarantor. Collateral settlements refer to non-cash based assets that are cleared and settled between CCP, FCM/CCG guarantor, and DCC. CSW refers to collateral substitution workflow, which is a workflow used for the pledging and recall (including substitution) of collateral for cash. A clearing group refers to a logical grouping of stakeholders who are members of that clearing group that are involved in the clearing and settlement of one or more asset types. A workflow, when executed, facilitates a sequence of clearing and settlement instructions between members of a clearing group as specified by the workflow parameters.
When some financial transactions change state (e.g., initiated—pending—approved—cleared—settled, etc.) it may trigger one or more notifications to the principals involved in the transaction. The systems and methods described herein provide multiple ways to receive and respond to these notifications. In some embodiments, these notifications can be viewed and acknowledged using a dashboard associated with the described systems and methods or using one or more APIs.
As used herein, principals refer to the parties that are directly involved in a payment or transaction origination or termination. An observer refers to a party that is not a principal, but may be a stakeholder in a transaction. In some embodiments, an observer can subscribe for a subset of notifications generated by the systems and methods discussed herein. In some situations, one or more principals may need to agree that the observer can receive the subset of notifications. APIs refer to an application program interface that allow other systems and devices to integrate with the systems and methods described herein.
The systems and methods described herein provide a payment platform that enables the movement of assets between principals. The platform also provides real time visibility into the funds flow with the use of a shared ledger (e.g., a shared, permissioned, and replicated ledger). Using the shared ledger, users can generate reports on the asset movements and status of the workflows.
In capital markets, the asset movement is triggered due to a settlement on a set of trades between principals. All parties involved in the trade as well as the clearing and settlement of the trade need to perform post trade activities that include reconciliation and regulatory reporting of the trades as well as the payments associated with the trades. Reconciliation and regulatory reporting is a significant pain point for operations teams since it is mostly manual and labor intensive. The main problems related to reconciliation and the regulatory reporting are the heterogeneous systems that are involved in the trade data and the payments. The systems and methods described herein provide a platform to move the assets as part of settlement. These systems and methods can extend this to capture the trade-level information that resulted in the asset movement (settlement). When this functionality is extended to participants on the platform, the reconciliation efforts can be minimized as participants can use the shared and permissioned features of the shared ledger to generate the reconciliation and regulatory reports.
The number of trade events that happen in a day is 3 to 5 orders of magnitude higher than the number of settlements that happen in a day. The data ingestion platform should be able to capture all of the trade events. By extending a data ingestion engine and integrating it with the payments, the systems and methods described herein are able to tie the settlements to the trades. This simplifies the reconciliation and regulatory reporting problems experienced by institutions, users, and the like.
In some embodiments, data communication network 104 includes any type of network, such as a local area network, a wide area network, the Internet, a cellular communication network, or any combination of two or more communication networks. The described systems and methods can use any communication protocol supported by a financial institution's ledger and other systems. For example, the communication protocol may include SWIFT MT (Society for Worldwide Interbank Financial Telecommunication Message Type) messages (such as MT 2XX, 5XX, 9XX), ISO 20022 (a standard for electronic data interchange between financial institutions), and proprietary application interfaces exposed by particular financial institutions. Financial institutions 106, 108 include banks, exchanges, hedge funds, and any other type of financial entity or system. In some embodiments, financial management system 102 interacts with financial institutions 106, 108 using existing APIs and other protocols already being used by financial institutions 106, 108, thereby allowing financial management system 102 to interact with existing financial institutions without significant modification to the financial institution's systems. Authorized system 110 and authorized user device 112 include any type of system, device, or component that is authorized to communicate with financial management system 102. Replicated data store 114 stores any type of data accessible by any number of systems and devices, such as the systems and devices described herein. In some embodiments, replicated data store 114 stores immutable and auditable forms of transaction data between financial institutions. The immutable data cannot be deleted or modified. In particular implementations, replicated data store 114 is an append only data store which keeps track of all intermediate states of the transactions. Additional metadata may be stored along with the transaction data for referencing information available in external systems. In specific embodiments, replicated data store 114 may be contained within a financial institution or other system.
As shown in
In some embodiments, ledger 118 is modeled after double-entry accounting systems where each transaction has two entries (i.e., one entry for each of the principals to the transaction). The entries in ledger 118 include data related to the principal parties to the transaction, a transaction date, a transaction amount, a transaction state, any relevant workflow reference, a transaction ID, and any additional metadata to associate the transactions with one or more external systems. The entries in ledger 118 also include cryptographic hashes to provide tamper resistance and auditability. Users for each of the principals to the transaction only have access to their own entries (i.e., the transactions to which the principal was a party). Access to the entries in ledger 118 can be further restricted or controlled based on a user's role or a party's role, where certain data is only available to certain roles.
In some embodiments, ledger 118 is a shared ledger that can be accessed by multiple financial institutions and other systems and devices. In particular implementations, both parties to a specific transaction can access all details related to that transaction stored in ledger 118. All details related to the transaction include, for example, the parties involved in the transaction, the type of transaction, the date and time of the transaction, the amount of the transaction, and other data associated with the transaction. Additionally, ledger 118 restricts permission to access specific transaction details based on relevant trades associated with a particular party. For example, if a specific party (such as a financial institution or other entity) requests access to data in ledger 118, that party can only access (or view) data associated with transactions to which the party was involved. Thus, a specific party cannot see data associated with transactions that are associated with other parties and do not include the specific party.
The shared permission aspects of ledger 118 provides for a subset of the ledger data to be replicated at various client nodes and other systems. The financial management systems and methods discussed herein allow selective replication of data. Thus, principals, financial institutions, and other entities do not have to hold data for transactions to which they were not a party.
It will be appreciated that the embodiment of
In some embodiments, financial management system 102 interacts with authorized systems and authorized users. The authorized set of systems and users often reside outside the jurisdiction of financial management system 102. Typically, interactions with these systems and users are performed via secured channels. To ensure the integrity of financial management system 102, various constructs are used to provide system/platform integrity as well as data integrity.
In some embodiments, system/platform integrity is provided by using authorized (e.g., whitelisted) machines and devices, and verifying the identity of each machine using security certificates, cryptographic keys, and the like. In certain implementations, particular API access points are determined to ensure that a specific communication originates from a known enterprise or system. Additionally, the systems and methods described herein maintain a set of authorized users and roles, which may include actual users, systems, devices, or applications that are authorized to interact with financial management system 102. System/platform integrity is also provided through the use of secure channels to communicate between financial management system 102 and external systems. In some embodiments, communication between financial management system 102 and external systems is performed using highly secure TLS (Transport Layer Security) with well-established handshakes between financial management system 102 and the external systems. Particular implementations may use dedicated virtual private clouds (VPCs) for communication between financial management system 102 and any external systems. Dedicated VPCs offer clients the ability to set up their own security and rules for accessing financial management system 102. In some situations, an external system or user may use the DirectConnect network service for better service-level agreements and security.
In some embodiments financial management system 102 allows each client to configure and leverage their own authentication systems. This allows clients to set their custom policies on user identity verification (including 2FA (two factor authentication)) and account verification. An authentication layer in file management system 102 delegates requests to client systems and allows the financial management system to communicate with multiple client authentication mechanisms.
Financial management system 102 also supports role-based access control of workflows and the actions associated with workflows. Example workflows may include Payment vs Payment (PVP) and Delivery vs Payment (DVP) workflows. In some embodiments, users can customize a workflow to add their own custom steps to integrate with external systems that can trigger a change in transaction state or associate them with manual steps. Additionally, system developers can develop custom workflows to support new business processes. In particular implementations, some of the actions performed by a workflow can be manual approvals, a SWIFT message request/response, scheduled or time-based actions, and the like. In some embodiments, roles can be assigned to particular users and access control lists can be applied to roles. An access control list controls access to actions and operations on entities within a network. This approach provides a hierarchical way of assigning privileges to users. A set of roles also includes roles related to replication of data, which allows financial management system 102 to identify what data can be replicated and who is the authorized user to be receiving the data at an external system.
In some embodiments, financial management system 102 detects and records all client metadata, which creates an audit trail for the client metadata. Additionally, one or more rules identify anomalies which may trigger a manual intervention by a user or principal to resolve the issue. Example anomalies include system request patterns that are not expected, such as a high number of failed login attempts, password resets, invalid certificates, volume of requests, excessive timeouts, http errors, and the like. Anomalies may also include data request patterns that are not expected, such as first time use of an account number, significantly larger than normal amount of payments being requested, attempts to move funds from an account just added, and the like. When an anomaly is triggered, financial management system 102 is capable of taking a set of actions. The set of actions may initially be limited to pausing the action, notifying the principals of the anomaly, and only resuming activity upon approval from a principal.
Financial management system 102 includes secure APIs 202 that are used by partners to securely communicate with financial management system 102. In some embodiments, the APIs are stateless to allow for automatic scaling and load balancing. Role-based access controller 204 provide access to modules, data and activities based on the roles of an individual user or participant interacting with financial management system 102. In some embodiments, users belong to roles that are given permissions to perform certain actions. An API request may be checked against the role to determine whether the user has proper permissions to perform an action. An onboarding module 206 includes all of the metadata associated with a particular financial institution, such as bank account information, user information, roles, permissions, clearing groups, assets, and supported workflows. A clearing module 208 includes, for example, a service that provides the functionality to transfer assets between accounts within a financial institution. A settlement module 210 monitors and manages the settlement of funds or other types of assets associated with one or more transactions handled by financial management system 102.
Financial management system 102 also includes a ledger manager 212 that manages a ledger (e.g., ledger 118 in
In the example of
As mentioned above, system/platform integrity is important to the secure operation of financial management system 102. This integrity is maintained by ensuring that all actions are initiated by authorized users or systems. Additionally, once an action is initiated and the associated data is created, an audit trail of any changes made and other information related to the action is recorded for future reference.
In particular embodiments, financial management system 102 includes (or interacts with) a roles database and an authentication layer. The roles database stores various roles of the type discussed herein.
In the example of
As discussed herein, financial management system 302 facilitates the transfer of funds between bank 304 and 306. Additional details regarding the manner in which the funds are transferred are provided below with respect to
In some embodiments, one or more components discussed herein are contained in a traditional infrastructure of a bank or other financial institution. For example, an HSM (Hardware Security Module) in a bank may execute software or contain hardware components that interact with a financial management system to facilitate the various methods and systems discussed herein. In some embodiments, the HSM provides security signatures and other authentication mechanisms to authenticate participants of a transaction.
Method 400 continues as the financial management system confirms 404 available funds for the transfer. For example, financial management system 302 in
If available funds are confirmed at 404, then account A101 at Bank A is debited 406 by the transfer amount and suspense account A (at Bank A) is credited with the transfer amount. Using the example of
The transferred funds are then settled 408 from suspense account A (at Bank A) to suspense account B (at Bank B). For example, financial management system 302 in
Method 400 continues as suspense account B (at Bank B) is debited 410 by the transfer amount and account B101 at Bank B is credited with the transfer amount. For example, financial management system 302 in
In some embodiments, the financial management system facilitates (or initiates) the debit, credit, and settlement activities (as discussed with respect to
The financial management system further receives 510 a transaction request from the client node, such as a request to transfer assets between two financial institutions or other entities. In response to the received transaction request, the financial management system verifies 512 the client node's identity and validates the requested transaction. In some embodiments, the client node's identity is validated based on an authentication token, and then permissions are checked to determine if the user has permissions to perform a particular action or transaction. Transfers of assets also involve validating approval of an account by multiple roles to avoid compromising the network. If the client node's identity and requested transaction are verified, the financial management system creates 514 one or more ledger entries to store the details of the transaction. The ledger entries may be stored in a ledger such as ledger 118 discussed herein. The financial management system then sends 516 an acknowledgement regarding the transaction to the client node with a server transaction token. In some embodiments, the server transaction token is used at a future time by the client when conducting audits. Finally, the financial management system initiates 518 the transaction using, for example, the systems and methods discussed herein.
In some embodiments, various constructs are used to ensure data integrity. For example, cryptographic safeguards allow a transaction to span 1-n principals. The financial management system ensures that no other users (other than the principals who are parties to the transaction) can view data in transit. Additionally, no other user should have visibility into the data as it traverses the various channels. In some embodiments, there is a confirmation that a transaction was received completely and correctly. The financial management system also handles failure scenarios, such as loss of connectivity in the middle of the transaction. Any data transmitted to a system or device should be explicitly authorized such that each entry (e.g., ledger entry) can only be seen and read by the principals who were a party to the transaction. Additionally, principals can give permission to regulators and other individuals to view the data selectively.
Cryptographic safeguards are used to detect data tampering in the financial management system and any other systems or devices. Data written to the ledger and any replicated data may be protected by:
In some embodiments, the financial management system monitors for data tampering. If the data store (central data store or replicated data store) is compromised in any way and the data is altered, the financial management system should be able to detect exactly what changed. Specifically, the financial management system should guarantee all participants on the network that their data has not been compromised or changed. Information associated with changes are made available via events such that the events can be sent to principals via messaging or available to view on, for example, a user interface. Regarding data forensics, the financial management system is able to determine that the previous value of an attribute was X, it is now Y and it was changed at time T, by a person A. If a system is hacked or compromised, there may be any number of changes to attribute X and all of those changes are captured by the financial management system, which makes the tampering evident.
In particular embodiments, the financial management system leverages the best security practices for SaaS (Software as a Service) platforms to provide cryptographic safeguards for ensuring integrity of the data. For ensuring data integrity, the handshake between the client and an API server (discussed with respect to
In some embodiments, all interactions with financial management system 602 or the API server are secured with TLS. API server 608 and audit server 610 may communicate with financial management system 602 using any type of data communication link or data communication network, such as a local area network or the Internet. Although API server 608 and audit server 610 are shown in
In some embodiments, at startup, a client sends a few checksums it has sent and transaction IDs to API server 608, which can verify the checksums and transaction IDs, and take additional traffic from the client upon verification. In the case of a new client, mutually agreed upon seed data is used at startup. A client request may be accompanied by a client signature and, in some cases, a previous signature sent by the server. The server verifies the client request and the previous server signature to acknowledge the client request. The client persists the last server signature and a random set of server hashes for auditing. Both client and server signatures are saved with requests to help quickly audit correctness of the financial management system ledger. The block size of transactions contained in the request may be determined by the client. A client SDK (Software Development Kit) assists with the client server handshake and embedding on server side signatures. The SDK also persists a configurable amount of server signatures to help with restart and for random audits. Clients can also set appropriate block size for requests depending on their transaction rates. The embedding of previous server signatures in the current client block provides a way to chain requests and provide an easy mechanism to detect tampering. In addition to a client-side signature, the requests are encrypted using standard public key cryptography to provide additional defense against client impersonation. API server 608 logs all encrypted requests from the client. The encrypted requests are used, for example, during data forensics to resolve any disputes.
In particular implementations, a client may communicate a combination of a previous checksum, a current transaction, and a hash of the current transaction to the financial management system. Upon receipt of the information, the financial management system checks the previous checksum and computes a new checksum, and stores the client hash, the current transaction, and the current checksum in a storage device, such as data store 604. The checksum history and hash (discussed herein) protect the integrity of the data. Any modification to an existing row in the ledger cannot be made easily because it would be detected by mismatched checksums in the historical data, thereby making it difficult to alter the data.
The integrity of financial management system 602 is ensured by having server audits at regular intervals. Since financial management system 602 uses chained signatures per client at the financial management system, it ensures that an administrator of financial management system 602 cannot delete or update any entries without making the ledger tamper evident. In some embodiments, the auditing is done at two levels: a minimal level which the SDK enforces using a randomly selected set of server signatures to perform an audit check; and a more thorough audit check run at less frequent intervals to ensure that the data is correct.
In some implementations, financial management system 602 allows for the selective replication of data. This approach allows principals or banks to only hold data for transactions they were a party to, while avoiding storage of other data related to transactions in which they were not involved. Additionally, financial management system 602 does not require clients to maintain a copy of the data associated with their transactions. Clients can request the data to be replicated to them at any time. Clients can verify the authenticity of the data by using the replicated data and comparing the signature the client sent to the financial management system with the request.
In some embodiments, a notarial system is used to maintain auditability and forensics for the core systems. Rather than relying on a single notary hosted by the financial management system, particular embodiments allow the notarial system to be installed and executed on any system that interacts with the financial management system (e.g., financial institutions or clients that facilitate transactions initiated by the financial management system).
The systems and methods discussed herein support different asset classes. Each asset class may have a supporting set of metadata characteristics that are distinct. Additionally, the requests and data may be communicated through multiple “hops” between the originating system and the financial management system. During these hops, data may be augmented (e.g., adding trade positions, account details, and the like) or changed.
In certain types of transactions, such as cash transactions, the financial management system streamlines the workflow by supporting rich metadata accompanying each cash transfer. This rich metadata helps banks tie back cash movements to trades, accounts, and clients.
As discussed herein, the described systems and methods facilitate the movement of assets between principals (also referred to as “participants”). The participants are typically large financial institutions in capital markets that trade multiple financial products. Trades in capital markets can be complex and involve large asset movements (also referred to as “settlements”). The systems and methods described herein can integrate to financial institutions and central settlement authorities such as the US Federal Reserve or DTCC (Depository Trust & Clearing Corporation) to facilitate the final settlement of assets. The described systems and methods also have the ability to execute workflows such as DVP, threshold based settlement, or time-based settlement between participants. Using the workflows, transactions are settled in gross or net amounts.
The systems and methods described herein include a platform and workflow to support and enable 3rd party guarantors the ability to view payment activity between participants in real time (or substantially real time), and step in to make payments on behalf of participants when necessary.
The ACH (Automated Clearing House) payment service enables companies to electronically collect payments from customers for either one-off or recurring payments by directly debiting a customer's checking or saving accounts. Common uses of ACH include online bill payment, mortgage and loan repayment, and direct deposit of payroll. Also, many investment managers and brokerage firms allow users to link a bank account or an online funding source to a trading account.
Traditionally, connecting directly to bank accounts has been preferred for the following reasons:
As used herein, a retail payment is considered a movement of amounts smaller than $100,000 (although this can be any amount). Typically, retail payments in and out of a bank account are settled over settlement venues and protocols such as ACH in the U.S., SEPA (Single Euro Payments Area), NACH in India, etc. These payments have the following advantages:
Despite the advantages mentioned above, ACH has the following disadvantages:
In some situations, rejections in payments are in the range of 1-10% depending on the type of products that are being purchased. For example, certain types of product purchases (e.g., electronics, jewelry, and the like) are more prone to fraud.
Adding a funding source and moving money
In some situations, online sites and other vendors perform the following steps when linking a bank account.
1. Select a bank from a list of popular retail banks using either of the following:
2. Once the bank account has been added as a funding source, the website or process will attempt to debit money from or credit money to the account. Debits are done when the website or process attempts to “pull” money from the account to complete a transaction. Credits are done when the website or process allows the user to “push” money to their bank account. This is done when the website or process has an associated product that allows the user to hold money in their account. This can be for online payments products, brokerage accounts, tax products, auction sites, mortgage or rent payments, and the like.
3. Payments in and out of the bank account can be done as a debit-pull or a credit-push. A debit-pull in the case above is when the company or user attempts to pull a debit from the bank account. A credit-push is when the user authorizes their bank to push funds to a receiver (in this case, the company).
4. In many existing systems, payments are completed over ACH or equivalent methods. The initiator is called the originator of the request. The banking regulations require that the originator be a financial institution and is typically called the ODFI (Originating Depository Financial Institution) and the receiver is called the RDFI (Requesting Depository Financial Institution).
5. In most cases (but not always), the risk is higher on the ODFI as it is the originator of the request.
Problems with Rejections in Payments
The steps needed to validate a bank account as a funding source are discussed above, as well as the attempt to do a debit-pull. During the attempt to pull funds, there can be failures which can lead to a direct economic loss for the companies. The following is an illustrative example using an example company brokerage firm ABC-Trading Inc.
1. A customer of ABC Trading adds a bank account as a funding source for their trades and allows ABC Trading to pull and push funds based on their trading activity with the brokerage firm.
2. The customer instructs ABC Trading to buy $5,000 worth of a stock and does not have sufficient balance in their brokerage account to cover the purchase.
3. ABC Trading makes the stock purchase and then must initiate a “pull” of $5,000 from the customer's bank account.
4. ABC Trading initiates a debit-pull by issuing ACH debit instructions to its ODFI. In some cases, ABC Trading may be a bank and can be the ODFI. In other cases, the firm may choose one or more banks where it has a banking relationship to originate the ACH request for them. This can happen on T+0 or T+1 days depending on the cut off time for the ODFI.
5. The ACH debit instructions can be rejected anywhere from T+0 to T+4 days.
6. If at any point, the ACH transfer is rejected, ABC Trading will need to undo the transaction and may be subject to losses if the stock has lost value. There are also operational costs associated with tracking down the funds from the customer.
The steps above may be repeated many thousands of times per day depending on the size of the broker. The process is similar for other companies that offer services such as bill payments, mortgage payments, or online peer-to-peer payment. The firm takes the risk of an unsuccessful debit from point T+0 to T+4 days when the request is complete. The rejections, despite the successful validation of the account, are due to the following:
On Demand Payments
The systems and methods discussed herein include a hardware and/or software platform that facilitates the movement of assets between principals. In some embodiments, the participants are large financial institutions in capital markets that trade multiple financial products. Trades in capital markets can be complex and involve large asset movements (also referred to as “settlements”). The clearing and settlement gateway discussed herein can integrate to financial institutions and central settlement authorities such as the U.S. Federal Reserve, DTC, and the like to facilitate the final settlement of assets.
In some embodiments, the systems and methods described herein have the following core components:
1. Clearing and Settlement Gateway: This is used to integrate to the core ledgers of the banks and settlement agencies to initiate and execute clearing and settlement.
2. Permissioned Shared Ledger: When an asset is cleared or settled, it goes through several “state changes.” The permissioned shared ledger records the state changes and makes it available to the permissioned parties in substantially real time.
3. Workflows: Parties in a trade can execute complex settlement instructions that determine the sequence of steps that must be followed to effect the movement of assets between participants. The described systems and methods facilitate this with various workflows. In some embodiments, execution of a workflow will result in multiple instructions that are sent and received through the clearing and settlement gateway and multiple records in the permissioned shared ledger.
The payments platform discussed herein provides a practical solution to solve the problems mentioned above.
In some embodiments, the number of funding sources and the amounts of monies moved from these funding sources follows a 80-20 rule. That is, 80% of the money movement happens from 10 or fewer banks. A solution that addresses 80% of the problem will significantly reduce the risks for companies.
The systems and methods described herein describe the components and operation of the data ingestion engine. In particular implementations, the data ingestion engine is able to consume the trades, the events associated with the trade, and the metadata associated with the events. The data ingestion engine is a reliable high throughput pipe with idempotency (e.g., replaying same events should not alter the trade data). The data ingestion engine also supports the ability to ingest data in different formats from different participants. The systems and methods can start with an XML format. It is important that the systems and methods have the ability to normalize the message formats as each principal's data format is likely to be different. Additionally, the data ingestion engine has the ability to execute downstream modules such as matching, real time counts, netting, liquidity projections, liquidity optimizers, anomaly detection, and the like.
In some embodiments, trades have the following characteristics:
1. All parties of the trade (principles, broker-dealers, exchanges, etc.) need to get access the information in near real time.
2. A trade has a life cycle from the point of entry into the system, the execution, the augmentation of the data in the middle and back offices all the way through to the point where the trade is cleared/settled. Sometimes, the trades may be reversed before it is settled. During this lifecycle, trade metadata is being augmented.
3. The parties of the trade as well as the banks that act as the custodians of the assets of the principals follow a protocol of confirmations and affirmations that are similar to an ACK set in a TCP protocol (with the noted difference that these are asynchronous systems).
4. Trades are of different types and the metadata of the trade can change depending on the type of trade. Metadata can be thought of as columns to a row in a csv or fields of attributes in XML or JSON. The Financial Information eXchange (FIX) protocol (and the xml version of it—Fixml) have become standards for the messages to capture the trade metadata between parties.
5. The following can be thought of as a pseudo set theory representation of the problem. There are multiple stages to the problem.
a. Data Ingestion
i. A Node N(i) can trade with parties M(1) . . . M(N) for various products P(1) . . .
P(N)
ii. A Trade notation T{(Mi, Ni), Pi} can be used to say that parties Mi and Ni have traded a product Pi.
iii. Partial Trade: It is possible that a trade submitted by Ni to Mi may be executed by Mi in separate batches that aggregate to the whole trade. The examples below show the case of the partial trade and how matching will work in that case.
iv. A trade will result in several events to be recorded by each party of the trade. Each event is associated with a set of attributes. By association, these attributes are associated with the trade. Although these attributes are for the trade T{(Mi, Ni), Pi}, Mi and Ni may not have all the attributes as some attributes may be internal tracking attributes for either Mi or Ni.
v. The data ingestion engine will need to ingest these events and the associated metadata for an event from both Mi and Ni.
b. Matching
i. The systems and methods will identify these attributes by a(1), a(2) . . . a(n). Similar to databases, some of these attributes (or columns) may be primary keys or candidate keys to uniquely identify a trade. Examples of these are counter-party-id, cusip, trade-id, etc.
ii. The systems and methods refer to the E(Tx Mi)⇒{a1, a2 . . . an} as the events for trade ‘Tx’ ingested from Mi. Likewise the systems and methods will also refer to E(Tx, Ni)
iii. A trade is said to be ‘Matched to Trade x’ when all the candidate keys from E(Tx Mi) match those from E(Tx, Ni).
iv. The inverse constitutes to an unmatched trade. That occurs when all the candidate keys of E(Tx, Mi) do not match E(Tx Ni).
c. Settlement Cycles
i. Settling is the act of closing out the obligations between principals of a trade. The settlement is the act that involves the movement of assets. The parties of the trade agree on a point in time in the future to settle the trades. The systems and methods refer to that as the ‘settlement date’.
ii. Note: Not all trades will be settled. Some types of trades are never settled and just roll forward.
iii. Principals may decide to run multiple settlement cycles on a settlement date.
iv. The systems and methods discussed herein support settlement cycles.
d. Netting
i. Trades may need to be settled in net or in gross. One or more of the attributes of the trades E(Tx Mi)⇒{a1, a2 . . . an} , will indicate the settlement mode (gross vs net). In addition, the attributes will also include other important fields such as ‘value date’, ‘value amount’, ‘settlement date’, ‘settlement cycle’, and the like.
ii. The act of netting will be the following:
1. Group all the matched trades between parties based on the following join criteria (with an AND clause):
2. Compute the sum of the ‘value amounts for each of the groups. This is the netted amount.
In some situations, problems may exist in cleared markets, such as both cleared and OTC/bilateral clearing and settlements. In a particular example, at T+0, a CCP in the United States closes its trading books for a day at approximately 4:00 PM PST. This allows the firms on west coast of the United States to close their trading and trade allocations at the end of the day. The CCP then runs a compute cycle to determine the Initial Margins and Variation Margins that need to be applied for the FCMs.
At T+1, the computed amounts are then applied on the next morning between 6:00-9:00 AM CST. The CCPs have debit authorization from the FCMs. If the FCMs owe IM (Initial Margins) or VM (Variation Margins) to the CCPs, the amounts are auto debited by CCP in cash from the accounts at the settlement banks. An IM is, for example, a percentage of a purchase price of a security. A VM is, for example, an adjustment based on price fluctuations of the security. CCPs accept IMs in cash or securities (subject to haircuts and concentration risks by asset type). FCMs would prefer to pay in securities rather than cash because cash is limited, most liquid, and can be used to meet other payment obligations. CCPs will typically auto debit cash when the FCMs owe IM.
The FCMs now pledge securities to get the cash back. At this point, they are pre-funding on behalf of the clients. In parallel with the previous step, the FCM computes the IMs and VMs that it needs to pull and push to its clients. It raises IM or VM calls to clients. Clients have the rest of the day to pay. If a client is excess in VM, the FCM cannot push the excess to the clients until the next day due to CFTC (Commodity Futures Trading Commission) regulations. Clients send the IMs (in cash or securities) to the FCM throughout the day.
At T+2, in the most common situation, the FCMs books are reconciled by now and they can put the IM/VM amounts to use. If the Client has excess VM, the FCM wires them the money.
The situations described above may present specific problems. For the FCM, with respect to the pre-funding window, the FCMs have to pre-fund their clients in cash for large periods of time. They would prefer to pay in collateral on T+0 rather than have cash pulled out on T+1 at the start of day and get that cash back later in the day following a pledge.
The described situations may also result in suboptimal asset allocation. For example, FCMs typically leave the IM accounts over-collateralized to reduce the auto debit pulls by the CCP. This is suboptimal since they can be used to generate yields with securities lending.
With respect to clients, the VM payments are between 24 and 48 hours late. Making this faster requires, for example, a CFTC regulatory relief
With respect to CCPs, in the above situations, the CCPs require higher guarantee funds from all participants since there is a risk of default between the time of IM computes and the time of the margin pull. The guarantee funds increase the costs for everyone in the ecosystem.
The systems and methods described herein utilize the financial management system, and other systems discussed herein, to allow securities or other assets to be moved and/or cleared within a specified time period, such as 24 hours. The systems and methods described herein work with CCPs, settlement banks, custody banks, and FCMs to facilitate 24 hour clearing. In some embodiments, the described systems and methods will not need to coordinate with the central banks and CSDs. In some embodiments, the systems and methods discussed herein can be expanded to work with central banks and CSDs.
The systems and methods described herein, and an associated entity, will act as the settlement agent for all parties. The described systems and methods will facilitate the movement of securities at the custody bank between the CCP and FCM, and further from the FCM and clients. These systems and methods will also facilitate the settlement in currencies (e.g., USD) between the above parties at a settlement bank. In some embodiments, the systems and methods facilitate this with book entry transfers combined with settlement finality on the platform discussed herein. A ledger, such as ledger 118 discussed herein, will record all transactions in real time and provide visibility and notifications of the asset transfers and ownership changes. In some embodiments, the ledger is a shared ledger as discussed herein.
The systems and methods described herein provide faster clearing of transactions, such as clearing within 24 hours or less. This is a significant improvement over the current clearing systems and procedures that can take 48-72 hours to fully clear the transactions.
The described systems and methods will have a clearing group that contains participant nodes and banking nodes. In some embodiments, each node has pre-configured cash and securities accounts from where assets shall be credited or debited. In some embodiments, a workflow and/or smart contract “24HourClearing” will facilitate this.
Method 700 continues as the IM securities are pledged 706 to the CCPs. For example, the workflow may trigger a request for securities for the amounts to the treasury team. Treasury teams in banks are typically global and can provide the list back in short order back to the platform. The systems and methods described herein will run the checks 708 to ensure that the securities meet the haircuts and concentration risks for the CCPs.
The described systems and methods can facilitate the movement from the treasury account to the FCM accounts, such as in a collateral workflow. Additionally, the described systems and methods will submit the securities list to the CCP. Since it would have already passed the CCP rules, it may be set to auto accept. The systems and methods will synchronize the ‘expect to deliver’ and ‘expect to receive’ messages between the CCP and FCMs. These messages will be sent to the custody bank. When the custody bank receives it, the custody bank makes a book entry transfer and moves the securities from the FCM account to the CCP account. In some embodiments, the ledger records the asset transfer and ownership change. The IM obligations have now been met.
If the FCM is in deficit, a debit pull of the VMs is initiated 710 from the FCM account. For example, this may be a VM debit from the FCM to the CCP. In some situations, a debit pull is not an optimal solution. As an alternative, the systems and methods may be able to facilitate a credit push giving the treasury teams at FCMs more control. The platform will raise a real time notification with the reconciled amounts and accounts from where the monies need to be debited. The treasury team can approve and the deficit can be pushed to the CCPs.
If the FCM has VM excess for the day, a credit push from the CCP to the FCM is initiated 712. At this point, the FCM has met both the IM and VM obligation. Method 700 continues by initiating 714 the pledge of securities (e.g., IM and VM) from the client to the FCM. This will follow similar steps as discussed above. When this is completed, the client's IM obligations are met.
The systems and methods described herein initiate 716 a credit push from the client to the FCM at the settlement bank. In some situations, this is a book entry transfer, so the FCM's cash accounts will be credited immediately. The described systems and methods may also line up the payment to the point where the treasury team can push the credit to the clients. Method 700 continues as the ledger and workflow record 718 all approvals, all the stages of the asset transfers, and the ownership changes. In some embodiments, the ledger follows the GMT clock. The ledger also has an offset feature, so the systems and methods can to CST time to translate all transactions to T+0.
In some embodiments, method 700 is performed at least partially by the financial management system discussed herein. The financial management system supports the clearing of financial transactions within a specific time period, such as 24 hours. For example, the financial management system may use a shared ledger, shared settlement account, suspense account, and the like to facilitate or support the clearing activities and processes discussed herein.
Each transaction and the associated transaction states may have additional metadata. The shared ledger (e.g., ledger 118 in
In some embodiments, the transactions and the metadata recorded in the shared permissioned ledger contain information that are very sensitive and confidential to the businesses initiating the instructions. The systems and methods described herein maintain the security of this information by encrypting data for each participant using a symmetric key that is unique to the participant. In some embodiments, the keys also have a key rotation policy where the data for that node is rekeyed. The keys for each node are bifurcated and saved in a secure storage location with role-based access controls. In some embodiments, only a special service called a cryptographic service can access these keys at runtime to encrypt and decrypt the data.
As shown in
Each transaction can have two or more participants. In addition to the multiple parties involved in the transaction, there can be one or more “observers” to the transaction. The observer status is important from a compliance and governance standpoint. For example, the Federal Reserve or the CFTC is not a participant of the transaction, but may have observer rights on certain type of transactions in the system. In some embodiments the participants can subscribe to certain types of events. The transaction state in the state diagram above changes trigger events in the described systems.
Computing device 1000 includes one or more processor(s) 1002, one or more memory device(s) 1004, one or more interface(s) 1006, one or more mass storage device(s) 1008, and one or more Input/Output (I/O) device(s) 1010, all of which are coupled to a bus 1012. Processor(s) 1002 include one or more processors or controllers that execute instructions stored in memory device(s) 1004 and/or mass storage device(s) 1008. Processor(s) 1002 may also include various types of computer-readable media, such as cache memory.
Memory device(s) 1004 include various computer-readable media, such as volatile memory (e.g., random access memory (RAM)) and/or nonvolatile memory (e.g., read-only memory (ROM)). Memory device(s) 1004 may also include rewritable ROM, such as Flash memory.
Mass storage device(s) 1008 include various computer readable media, such as magnetic tapes, magnetic disks, optical disks, solid state memory (e.g., Flash memory), and so forth. Various drives may also be included in mass storage device(s) 1008 to enable reading from and/or writing to the various computer readable media. Mass storage device(s) 1008 include removable media and/or non-removable media.
I/O device(s) 1010 include various devices that allow data and/or other information to be input to or retrieved from computing device 1000. Example I/O device(s) 1010 include cursor control devices, keyboards, keypads, microphones, monitors or other display devices, speakers, printers, network interface cards, modems, lenses, CCDs or other image capture devices, and the like.
Interface(s) 1006 include various interfaces that allow computing device 1000 to interact with other systems, devices, or computing environments. Example interface(s) 1006 include any number of different network interfaces, such as interfaces to local area networks (LANs), wide area networks (WANs), wireless networks, and the Internet.
Bus 1012 allows processor(s) 1002, memory device(s) 1004, interface(s) 1006, mass storage device(s) 1008, and I/O device(s) 1010 to communicate with one another, as well as other devices or components coupled to bus 1012. Bus 1012 represents one or more of several types of bus structures, such as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so forth.
For purposes of illustration, programs and other executable program components are shown herein as discrete blocks, although it is understood that such programs and components may reside at various times in different storage components of computing device 1000, and are executed by processor(s) 1002. Alternatively, the systems and procedures described herein can be implemented in hardware, or a combination of hardware, software, and/or firmware. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein.
In the above disclosure, reference has been made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific implementations in which the disclosure may be practiced. It is understood that other implementations may be utilized and structural changes may be made without departing from the scope of the present disclosure. References in the specification to “one embodiment,” “an embodiment,” “an example embodiment,” “selected embodiments,” “certain embodiments,” etc., indicate that the embodiment or embodiments described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Additionally, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Implementations of the systems, devices, and methods disclosed herein may comprise or utilize a special purpose or general-purpose computer including computer hardware, such as, for example, one or more processors and system memory, as discussed herein. Implementations within the scope of the present disclosure may also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that may be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are computer storage media (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, implementations of the disclosure can include at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.
Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory (“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
An implementation of the devices, systems, and methods disclosed herein may communicate over a computer network. A “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired and wireless) to a computer, the computer properly views the connection as a transmission medium. Transmissions media can include a network and/or data links, which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
Computer-executable instructions include, for example, instructions and data which, when executed at a processor, cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. The computer-executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the described features or acts described above. Rather, the described features and acts are disclosed as example forms of implementing the claims.
Those skilled in the art will appreciate that the disclosure may be practiced in network computing environments with many types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, tablets, pagers, routers, switches, various storage devices, and the like. The disclosure may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.
Further, where appropriate, functions described herein can be performed in one or more of: hardware, software, firmware, digital components, or analog components. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein. Certain terms are used throughout the description and claims to refer to particular system components. As one skilled in the art will appreciate, components may be referred to by different names. This document does not intend to distinguish between components that differ in name, but not function.
It should be noted that the sensor embodiments discussed above may comprise computer hardware, software, firmware, or any combination thereof to perform at least a portion of their functions. For example, a module may include computer code configured to be executed in one or more processors, and may include hardware logic/electrical circuitry controlled by the computer code. These example devices are provided herein purposes of illustration, and are not intended to be limiting. Embodiments of the present disclosure may be implemented in further types of devices, as would be known to persons skilled in the relevant art(s).
At least some embodiments of the disclosure have been directed to computer program products comprising such logic (e.g., in the form of software) stored on any computer useable medium. Such software, when executed in one or more data processing devices, causes a device to operate as described herein.
While various embodiments of the present disclosure are described herein, it should be understood that they are presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the disclosure. Thus, the breadth and scope of the present disclosure should not be limited by any of the described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents. The description herein is presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. Many modifications and variations are possible in light of the disclosed teaching. Further, it should be noted that any or all of the alternate implementations discussed herein may be used in any combination desired to form additional hybrid implementations of the disclosure.
This application claims the priority benefit of U.S. Provisional Application Ser. No. 62/620,392, entitled “Clearing Systems and Methods,” filed on Jan. 22, 2018, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62620392 | Jan 2018 | US |