This invention relates generally to athletic shoes, and more particularly to releasable mounted cleats for the use on outsoles of athletic and golf shoes. More specifically, the cleats are of a four-component design with an inner rotating component swiveling within an outer stationary component.
Damage to golf greens, as well as to the wooded floors and carpets of golf clubhouses, caused by golfers wearing athletic shoes with metal spikes is a well-known phenomenon. The need for improved traction on turf surfaces must be tempered with the adverse affect that large metal spikes have upon the turf of golf courses, especially the putting green surface. The protruding metal spike common to golf shoes has systematically been replaced by alternative spike and traction cleats which provide less damage to golf courses. In fact, many golf courses have completely banned the use of metal spikes. Besides the aggravation that golfers feel when having to putt through spike marks left on the putting surface, metal spikes affect groundskeepers who at the end of the day must spend numerous hours repairing the putting greens.
In response to alleviating the foregoing problems which are intrinsic to metallic spikes, shoe manufacturers are providing golf shoes having non-metallic cleats (plastic spikes). The need for improved traction on turf surfaces is well known and it is often perceived by many users that plastic cleats are less proficient than metal spikes in ground gripping ability, thus there is a great need for a plastic cleat with superior traction, not just on a golf course, but safety traction on non-grass and non-sand terrain, such as steps, asphalt, tile oak and other types of flooring which golfers have to transverse. Plastic cleats generally have protrusions which are shorter than conventional metallic spikes and thereby provide wearers with improved comfort since such cleats absorb shocks from hard surfaces to a certain degree. Plastic cleats also provide improved stability because they are shorter and have a larger number of contact points than shoe soles with conventional metallic spikes. However, as previously stated, such conventional plastic cleats do not generally provide as good grip or bite on grass or turf as metallic spikes do, and providing good grip on grass is what is expected of cleats and spikes. Conventional plastic cleats especially fail against metal spikes in providing grip on wet grass, withered grass or slopes. The plastic cleats are known to be far more difficult to keep clean, which is a primary concern of golfers playing in adverse weather conditions. Some manufacturer's recognize this problem and supply special cleaning tools for keeping the spikes clean of debris. The present invention presents an improved plastic cleat that provides a solution for these problems.
In accordance with one aspect of this invention, a four-component cleat assembly is presented that includes a locking component, a stationary component, a rotating component and a connecting component. The locking component interlocks with an open receptacle located in the sole of an athletic shoe or more specifically a golf shoe. The rotating component is coupled to the stationary component and can swivel a predetermined distance (about 15°) both clockwise and counter-clockwise within the stationary component, which aids in keeping debris from piling up and clogging the cleat.
The invention includes a plurality of relatively hard and rigid posts that extend from the stationary component and firmly grip the turf, and also included are a plurality of resilient legs that extend outward in a radial direction from the rotating component and also grip the turf. Each leg rotates (swivels) in a distance determined by the fit of the rotating component to the stationary component, wherein the cleat assembly may provide a golfer with an improved translational range of motion while maintaining firm traction with the ground.
Another aspect of the invention is a connecting component having an elongated cylindrical body of a size to squeeze-fit through central openings that are defined in each of the rotating, stationary and locking components thus connecting all the components into a single operative cleat. The connecting component has a cam edge dimensioned to fit into a cam-shaped orifice defined in the rotating member. A slotted groove at the opposite end of the connecting component aids in squeeze-fitting through the components.
Another aspect of the invention provides for an interlocking of the cleat assembly to the open receptacle of the shoe by having an insertion element extend from the locking component. This insertion element screws into the receptacle while a plurality of spaced apart flexible frangible lock tongues, which extend downward about a bottom surface edge of the disk, compression-fit within the open receptacle of the shoe. When the locking component is rotated in a first direction within the open receptacle, each of the lock tongues are biased into a retracted position against the open receptacle and then re-extend themselves once the locking component has been rotated in the first direction through about 60 degrees. The lock tongues have a cam surface to aid in screwing the cleat into the receptacle and they have a vertical surface that insures that a greater force must be applied to remove the cleat assembly than to install it.
Referring now to the drawings, an improved cleat assembly (also referred to as “cleat”) is indicated generally by the reference numeral 100. The cleat assembly 100 comprises four components: a locking component 101, which is adapted for interlocking with an open receptacle on an athletic shoe, preferably a golf shoe (the attaching mechanism of the shoe is not shown but examples of the shoe and receptacle pattern are presented in U.S. Pat. Nos. 6,708,426 and 6,474,003, both of which are herein referenced in their entirety); an outer stationary component 102 having means discussed later for engaging the turf; an inner rotating component 103, which alternately reciprocates between elements of the stationary member 102; and
As is illustrated in FIGS. 1 to 7, the locking component 101 in the cleat assembly 100 may be engaged within one of a plurality of open receptacles (not shown) which are mounted in the sole of an athletic shoe, and for purposes of this disclosure the athletic shoe will herein be referred to as a golf shoe. The number of open receptacles in the golf shoe may vary, but a preferable number would be about five or seven in the forefoot section and about two or four in the heel section. For purposes of clarity, this specification denotes “bottom” as the side of the cleat assembly 100 that is attached to the sole of the shoe, and “top” as the side of the cleat assembly 100 that engages the turf.
The locking component 101 has a generally circular disk 106 with a bottom surface 107 and a flat top surface 108, and a round opening 109 defined approximately in the center of the disk 106 for receiving the connecting component 104 in a friction fit. Locking component 101 further has a cylindrically shaped insertion element 110 that contains a spiraling thread 111 for screwing into one of the open receptacles of the golf shoe. Insertion element 110 has a generally circular internal chamber 112 defined in the center section for housing the connecting component 104. The diameter of the chamber 112 is approximately the same size as the round opening 109 at the top surface which receives the connecting component 104. A golf cleat tool (well known in the industry and therefore not shown) is usually preferred for installing and removing of the cleat assembly 100 in the shoe receptacle. Once inserted into the receptacle, the cleat assembly 100 is rotated clockwise about a centerline of the insertion element 110 through to an angle of approximately 60 degrees wherein it is locked into position. The locking component 101 also includes a plurality of flexible lock tongues 105 that extend in a spaced manner outwardly about the outer edge of a bottom surface 107 of the disk 106. The original shape of each lock tongue 105 includes a cam surface 105a and a non-cam vertical surface 105b. When the cleat 100 is initially being screwed into the shoe receptacle, the lock tongues 105 are of a dimension and size that they just clear a side rib in the shoe receptacle (not shown). After cleat 100 has been screwed on a slight amount further, then the lower edge of the locking component 101 is just above the upper rim of the shoe receptacle, and the lock tongues 105 are then deformed by a cam action provided by the lock tongue cam surfaces 105a which “ride” over projections that are in the shoe receptacle. Upon being further turned, the lock tongues 105 pass the projections in the receptacle until a tight fit is achieved, they then restore themselves (to some extent) to their original shape. Each expendable tongue 105 will pass against, be deformed by, and pass over a number of receptacle projections. The interference between projections in the receptacle and the lock tongues 105 holds the cleat 100 in place during shoe use. When the insertion element 110 has been fully rotated, these lock tongues 105 re-extend themselves into appropriate pockets disposed in the shoe receptacle. The construction of these receptacles conforms to the dimensions of the lock tongues 105. The geometric construction and locking action provided by this interaction requires one to apply greater torque to remove the cleat assembly 100 than to install it.
The stationary component 102 has a generally rectangular base 114 with a generally rectangular slot 115 in the center of the base 114, and a smaller circular opening 116 penetrating through the center of the base 114. As with the locking component 101, the smaller circular opening 116 provides for a friction-fit with the connecting component 104, while the larger rectangular slot 115 is sized to receive the rotating component 103. Extending perpendicularly away from the bottom side 117 of the base 114 are a plurality of spaced apart cylindrically shaped dowels 119 of a size, shape and number to be friction-fitted into a like number of circular recesses 113 located about the edge of the top surface 108 of the locking component 101. This will prevent lateral movement between the locking component 101 and the stationary component 102. The base 114 also features a plurality of posts, preferably four, located at the corners of the base 114 and extending away from the top surface 118 so as to provide for rigid attachment to the turf. The posts include two larger posts 120a and two smaller posts 120b. The smaller posts 120b have more acutely pointed tips that start angling at the base 114. The larger posts 120a have an outer exterior generally perpendicular to the top surface 118 and a larger area for contacting the turf. Each larger post 120a also has an opening 135 for insertion of a tine of the cleat tool. The outermost exteriors of the posts, 120a and 120b, do not extend beyond the dimensions of the base 114 and the posts are quite rigid and generally non-deflecting.
A major improvement provided by the present invention is the construction of the inner rotating component 103. This component includes a pair of heel-shaped plates 121 having flat bottom faces 123 of a size and shape for fitting into the rectangular slot 115 of the outer stationary component 102, such that the inner rotating component 103 may swivel in both clockwise and counter-clockwise directions to about 15° in each direction when in relationship to the stationary component 102. Defined in the center of the plate 121 is an opening 122 of a size for friction-fitting the connecting component 104. Also defined in the top face 126 of the plate 121 is a cam-shaped orifice 125 for housing and securing the connecting component 104. Extending radially outward from the top face 126 are a plurality of arcuately shaped resilient legs 124, preferably four, for contacting the turf. The legs 124 have a freedom of movement whereby they may translate reciprocally a distance of about 15° within the outer stationary component 102, and they may rotate in either a clockwise or a counterclockwise direction. Each leg 124 has a wing-shaped spoiler 127 to aid in the debris removing process. The translating movement allows a golfer an increased range of motion and also helps to prevent a build-up of turf that clogs the cleat assemble 110.
The connecting component 104 has an elongated cylindrical body 130 of a size and shape configured to friction-fit through the rotating, stationary and locking components 103, 102, and 101, respectively to secure all components into a unitary cleat assembly 100. The top end 128 of the connecting component 104 has a cam-shaped edge 131, which is dimensioned to fit within the cam-shaped orifice 125 of the rotating component 103, yet still not impede any translating movement of the rotating component 103. Also at the top end 128 are a plurality of slots 133, preferably four, which may provide an additional measure of traction. At the top center 132 of connecting component 104 an area for placement of a logo or other indicia is provided. A slotted groove 134 is formed in the insertion end of the connecting component 104 to aid in the friction-fitting through the other components 103, 102, and 101. A lip 129 is located at the insertion end to secure the components when the connection component 104 is fully extended through the cleat assembly 100.
It is understood that those skilled in the art may conceive other applications, modifications and/or changes in the invention described above. Any such applications, modifications or changes which fall within the purview of the description are intended to be illustrative and not intended to be limitative. The scope of the invention is limited only by the scope of the claims appended hereto.