The technology disclosed herein relates generally to automatic nailer tools and is particularly directed to an automatic adapter of the type which mounts to the tools, and which extends behind a two-layer workpiece so as to curl (bend) the tip of a driven nail behind a multiple-layer workpiece. Embodiments are specifically disclosed that provide a relatively large anvil that will curl the tip of the nail behind the workpiece, so that the nail itself clenches the two substrate layers of the workpiece together.
None.
Clenching a fastener is well known in the art when the fastener is a staple. The two prongs of the staple can be bent inward—the most standard method—or they can be bent outward to distribute the load to a greater area of the workpiece.
In general, placing a nail into a wood workpiece at a precise angle and position does not result in an exact position, as would be desired. Since wood products have a grain, the path the nail travels can be altered, and when that happens, the exit point of the tip of the nail often is changed from its original “planned” position. This indeterminate nail path is not repetitive, and it is a definite problem for manufacturing or construction applications in which the tip of the nail is to be curled, so that the two substrate layers of the workpiece become clenched together.
The manufacturers of wood pallets sometimes use a separate, stationary (non-portable) fixture that positions a type of target, or anvil, beneath the bottom wood frame during the initial assembly steps for making a pallet assembly, and then use a nail gun to shoot nails through the multiple-layer workpiece. The tip of the nail, after passing through the multiple layers of the workpiece, will then curl beneath the bottom surface of the workpiece to clench the multiple layers together. Such a process is expensive and slow, since it is unwieldy to provide such large target fixtures and to work with them for the large number of nail-driving positions that must be made in the workpieces.
One improvement in such nailing systems would be to attach a movable anvil to a portable nail driving tool, so that the anvil is always positioned that the correct location beneath the nail driving region, as determined by the human user of the portable nail driving tool. This allows the human user to “fire” as many, or as few, nails as he or she desires at a particular position on the workpiece (e.g., a pallet), and the user will easily be able to see the exact position where the nail is to be driven. By having a portable clenching anvil attached to the tool, the user is able to concentrate on a particular location for placing multiple nails while being assured that the anvil is securely gripping against the bottom of the pallet at that precise location where the nails are being driven.
Accordingly, it is an advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool, so that a nail-curling anvil is always placed beneath the workpiece at an appropriate position as the nail is driven.
It is another advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool, in which the clenching mechanism automatically grasps the workpiece just before a nail is fired by the tool, by use of a single actuation of the tool's triggering mechanism.
It is yet another advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool, which includes an anvil of a sufficient size and shape that tends to re-direct the tip of a nail that impacts the anvil, thereby creating a curl in the nail to cause it to clench together at least two layers of substrate material that make up the workpiece.
It is a further advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position that is sufficiently small to fit within a gap in the boards of a target workpiece, to an actuated “ready” position that is sufficiently large to receive the nail for clenching a multi-substrate workpiece.
It is yet a further advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil of a sufficient size that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position to an actuated “ready” position, such that the rotating mechanism causes the anvil to complete its rotation before the clenching mechanism physically contacts the workpiece at the anvil's location.
It is still a further advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil of a sufficient size that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position to an actuated “ready” position, in which a flexible reach link is part of the clenching mechanism, to allow for variation in the thickness of the multi-substrate workpiece while still ensuring a good clenching action of the anvil against the workpiece.
It is still another advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil of a sufficient size that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position to an actuated “ready” position, in which an extendable link without any rubber parts is part of the clenching mechanism, to allow for variation in the thickness of the multi-substrate workpiece while still ensuring a good clenching action of the anvil against the workpiece.
It is yet another advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil of a sufficient size that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position to an actuated “ready” position, in which an extendable link that includes travel stops to prevent overtravel is part of the clenching mechanism, to allow for variation in the thickness of the multi-substrate workpiece while still ensuring a good clenching action of the anvil against the workpiece.
It is yet a further advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil of a sufficient size that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position to an actuated “ready” position, in which there is an extension arm with an air-operated anvil actuation cylinder, and has internal air passages only throughout the “reach” members of the extension arm, with no external air lines or cable on the extension arm.
It is still a further advantage to provide a small, light-weight, clenching mechanism that directly mounts to a portable automatic nailer tool and which includes an anvil of a sufficient size that tends to re-direct the tip of a nail that impacts the anvil, and for the anvil mechanism to be able to rotate from a non-extended “relaxed” position to an actuated “ready” position, in which the sequencing of the major moving components is controlled automatically, so that the first event of a firing sequence will always be the rotation of the anvil, then the second event of a firing sequence will always be the actuation of the extending “clench arm,” and the third event of a firing sequence will always be the actuation of the main driving components to drive a fastener.
Additional advantages and other novel features will be set forth in part in the description that follows and in part will become apparent to those skilled in the art upon examination of the following or may be learned with the practice of the technology disclosed herein.
To achieve the foregoing and other advantages, and in accordance with one aspect, a clenching adapter is provided for use with automatic portable nailer tools, which comprises: (a) a base support that mounts to a nailer tool; (b) an actuator that causes mechanical movement during a nail firing sequence, the actuator being attached to the base support, the actuator having a proximal mounting location, and the actuator having a first operating state and a second operating state; (c) a movable extension arm which extends from the proximal mounting location of the actuator to a distal end of the extension arm; and (d) an anvil that is mounted proximal to the distal end of the movable extension arm; (e) wherein: (i) the anvil is sized and shaped to not contact a workpiece, if the actuator is placed into the first operating state; (ii) the anvil is sized and shaped to contact a distal side of the workpiece, if the actuator is placed into the second operating state; (iii) the movable extension arm is sized and shaped so as to position the anvil at a nail receiving location on the distal side of the workpiece from where the nailer tool is positioned, such that when a nail is fired by the nailer tool, the nail will penetrate through the workpiece and then impact against the anvil; and (iv) the anvil is movable between a first orientation and a second orientation, such that: (A) if the actuator is in the first operating state, then the anvil is maintained in the first orientation and exhibits a first cross-section footprint that is relatively small and allows the anvil to pass through a gap between two adjacent members of the workpiece; and (B) if the actuator is in the second operating state, then the anvil is transitioned to the second orientation and now exhibits a second cross-section footprint that is significantly larger and will not allow the anvil to pass through the gap, but when in the second orientation the anvil is sized and shaped to receive the nail that is fired by the nailer tool, and to cause the nail to be curled, such that the workpiece becomes clenched after the nail becomes curled.
In accordance with another aspect, a clenching adapter for use with automatic portable nailer tools is provided, which comprises: (a) a base support that mounts to a nailer tool; (b) an actuator that causes mechanical movement during a nail firing sequence, the actuator being attached to the base support, the actuator having a proximal mounting location, and the actuator having a first operating state and a second operating state; (c) a movable extension arm which extends from the proximal mounting location of the actuator to a distal end of the extension arm; (d) an anvil that is mounted proximal to the distal end of the movable extension arm; and (e) a flexible reach link that is mounted proximal to the movable extension arm; (f) wherein: (i) the anvil is sized and shaped to not contact a workpiece, if the actuator is placed into the first operating state; (ii) the anvil is sized and shaped to contact a distal side of the workpiece, if the actuator is placed into the second operating state; (iii) the movable extension arm is sized and shaped so as to position the anvil at a nail receiving location on the distal side of the workpiece from where the nailer tool is positioned, such that when a nail is fired by the nailer tool, the nail will penetrate through the workpiece and then impact against the anvil; (iv) the anvil is movable between a first orientation and a second orientation, the first orientation occurring if the actuator is in the first operating state and the second orientation occurring if the actuator is in the second operating state; and (v) the flexible reach link provides a range of movement that allows the anvil to successfully contact a predetermined range of thicknesses of the workpiece.
In accordance with still another aspect, a clenching adapter for use with automatic portable nailer tools is provided, which comprises: (a) a base support that mounts to a nailer tool; (b) an actuator that causes mechanical movement during a nail firing sequence, the actuator being attached to the base support, the actuator having a proximal mounting location, and the actuator having a first operating state and a second operating state; (c) a movable extension arm which extends from the proximal mounting location of the actuator to a distal end of the extension arm; and (d) an anvil that is mounted proximal to the distal end of the movable extension arm; (e) wherein: (i) the anvil is sized and shaped to not contact a workpiece, if the actuator is placed into the first operating state; (ii) the anvil is sized and shaped to contact a distal side of the workpiece, if the actuator is placed into the second operating state; (iii) the movable extension arm is sized and shaped so as to position the anvil at a nail receiving location on the distal side of the workpiece from where the nailer tool is positioned, such that when a nail is fired by the nailer tool, the nail will penetrate through the workpiece and then impact against the anvil; and (iv) the anvil is movable between a first orientation and a second orientation, such that: (A) if the anvil is not in contact with the distal side of the workpiece, then the anvil is maintained in the first orientation and exhibits a first cross-section footprint that is relatively small and allows the anvil to pass through a gap between two adjacent members of the workpiece; and (B) if the anvil contacts the distal side of the workpiece, then the anvil is transitioned to the second orientation and now exhibits a second cross-section footprint that is significantly larger and will not allow the anvil to pass through the gap, but when in the second orientation the anvil is sized and shaped to receive the nail that is fired by the nailer tool, and to cause the nail to be curled, such that the workpiece becomes clenched after the nail becomes curled.
In accordance with a further aspect, a clenching adapter having a support structure for mounting to an external fastener driving tool is provided, the clenching adapter comprising: (a) a first actuator that causes mechanical movement during a fastener firing sequence, the first actuator having a mounting location proximal to a support structure, and the first actuator having a first operating state and a second operating state; (b) a movable extension arm which extends from the first actuator to a distal end of the extension arm; and (c) an anvil that is mounted proximal to the distal end of the movable extension arm; (d) wherein: (i) the anvil is sized and shaped to not contact a workpiece, if the first actuator is placed into the first operating state; (ii) the anvil is sized and shaped to contact a distal side of the workpiece, if the first actuator is placed into the second operating state; (iii) the movable extension arm is sized and shaped so as to position the anvil at a fastener receiving location on the distal side of the workpiece from where the support structure is positioned, such that when a fastener is fired by an external fastener driving tool, the fastener will penetrate through the workpiece and then impact against the anvil; and (iv) the anvil is movable between a first orientation and a second orientation, such that: (A) if the first actuator is in the first operating state, then the anvil is maintained in the first orientation and exhibits a first cross-section footprint that is relatively small and allows the anvil to pass through a gap between two adjacent members of the workpiece; and (B) if the first actuator is in the second operating state, then the anvil is transitioned to the second orientation and now exhibits a second cross-section footprint that is larger and will not allow the anvil to pass through the gap, but when in the second orientation the anvil is sized and shaped to receive the fastener that is fired by an external fastener driving tool, and to cause the fastener to be curled, such that the workpiece becomes clenched after the fastener becomes curled.
In accordance with a yet further aspect, a clenching adapter having a support structure for mounting to an external fastener driving tool is provided, the clenching adapter comprising: (a) a first actuator that causes mechanical movement during a fastener firing sequence, the first actuator having a mounting location proximal to a support structure, and the first actuator having a first operating state and a second operating state; (b) a movable extension arm which extends from the first actuator to a distal end of the extension arm; (c) an anvil that is mounted proximal to the distal end of the movable extension arm; and (d) an extendable link that is mounted proximal to the movable extension arm; (e) wherein: (i) the anvil is sized and shaped to not contact a workpiece, if the first actuator is placed into the first operating state; (ii) the anvil is sized and shaped to contact a distal side of the workpiece, if the first actuator is placed into the second operating state; (iii) the movable extension arm is sized and shaped so as to position the anvil at a fastener receiving location on the distal side of the workpiece from where an external fastener driving tool is positioned, such that when a fastener is fired by an external fastener driving tool, the fastener will penetrate through the workpiece and then impact against the anvil; (iv) the anvil is movable between a first orientation and a second orientation, the first orientation occurring if the first actuator is in the first operating state and the second orientation occurring if the first actuator is in the second operating state; and (v) the extendable link provides a range of movement that allows the anvil to successfully contact a predetermined range of thicknesses of the workpiece.
In accordance with a still further aspect, a clenching adapter having a support structure for mounting to an external fastener driving tool is provided, the clenching adapter comprising: (a) a first actuator that causes mechanical movement during a fastener firing sequence, the first actuator having a mounting location proximal to a support structure, and the first actuator having a first operating state and a second operating state; (b) a movable extension arm which extends from the first actuator to a distal end of the extension arm; and (c) an anvil that is mounted proximal to the distal end of the movable extension arm; (d) wherein: (i) the anvil is sized and shaped to not contact a workpiece, if the first actuator is placed into the first operating state; (ii) the anvil is sized and shaped to contact a distal side of the workpiece, if the first actuator is placed into the second operating state; (iii) the movable extension arm is sized and shaped so as to position the anvil at a fastener receiving location on the distal side of the workpiece from where an external fastener driving tool is positioned, such that when a fastener is fired by the an external fastener driving tool, the fastener will penetrate through the workpiece and then impact against the anvil; and (iv) the anvil is movable between a first orientation and a second orientation, such that: (A) if the anvil is not in contact with the distal side of the workpiece, then the anvil is maintained in the first orientation and exhibits a first cross-section footprint that is relatively small and allows the anvil to pass through a gap between two adjacent members of the workpiece; and (B) if the anvil contacts the distal side of the workpiece, then the anvil is transitioned to the second orientation and now exhibits a second cross-section footprint that is larger and will not allow the anvil to pass through the gap, but when in the second orientation the anvil is sized and shaped to receive the fastener that is fired by an external fastener driving tool, and to cause the fastener to be curled, such that the workpiece becomes clenched after the fastener becomes curled.
Still other advantages will become apparent to those skilled in this art from the following description and drawings wherein there is described and shown a preferred embodiment in one of the best modes contemplated for carrying out the technology. As will be realized, the technology disclosed herein is capable of other different embodiments, and its several details are capable of modification in various, obvious aspects all without departing from its principles. Accordingly, the drawings and descriptions will be regarded as illustrative in nature and not as restrictive.
The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the technology disclosed herein, and together with the description and claims serve to explain the principles of the technology. In the drawings:
Reference will now be made in detail to the present preferred embodiment, an example of which is illustrated in the accompanying drawings, wherein like numerals indicate the same elements throughout the views.
It is to be understood that the technology disclosed herein is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The technology disclosed herein is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
The terms “first” and “second” preceding an element name, e.g., first inlet, second inlet, etc., are used for identification purposes to distinguish between similar or related elements, results or concepts, and are not intended to necessarily imply order, nor are the terms “first” and “second” intended to preclude the inclusion of additional similar or related elements, results or concepts, unless otherwise indicated.
Referring now to
The remaining description of the nailer tool 2 with adapter 10 applies to each drawing in the range
There is a separate air-operated cylinder 30, which mounts to a rear clevis 32 at mounting point 52, and which mounts to a rod clevis 36 at a mounting point 50. The cylinder's extension rod 34 either pushes or pulls against a pair of toggle links 42 and 44, at the pivotable mounting point 50. Depending upon which operating state the nailer tool is in, the geometry of the two toggle links 42 and 44 will be a straight line (see
The adapter 10 also has a clench extension arm subassembly 40 that extends from a pivot point 46 toward a second mounting (and pivotable) point at 48, and further extends toward a distal end 62. An anvil 60 is mounted to the clench extension arm 40, at its distal end 62. Essentially, the clench extension arm 40 runs from a proximal mounting location at 46 to the distal end at 62. The anvil 60 and its actuating mechanism is described below in greater detail, and is illustrated in
The combination of the cylinder support base 20, the cylinder 30, the two toggle links 42 and 44, and the clench extension arm 40 make up an “extending structure” that is relatively light weight, but yet is strong enough to withstand the mechanical grasping forces and shock forces that are encountered for this engineering application. It is important to make the clench link of a sufficient length from its proximal end at the pivot point 46 to its distal end 62, so that it extends below the workpiece without interfering with that workpiece, but at the same time it must extend to the correct location so as to have the anvil 60 positioned directly in the path of the nail when it is fired by the nailer tool 2. The anvil material should be hardened, since its upper surface (in these views) will be directly impacted by the sharp tips of the nails as they penetrate the (typically wood) substrates of the workpiece. In essence, the anvil will be subjected to the role of armor plate, attempting to deflect a bullet.
Referring now to
In
Referring now to
The operator must use one hand on the trigger 12 and the other hand on the safety arm 16 to fire a fastener. Pressurized air is brought into the tool 2 via one of the air fittings 80 or 82. An air hose (not shown) takes this pressurized air over to the clench valve 26 at one of its input fittings, such as the air fitting 84. When the clench valve 26 changes state, pressurized air will travel through its output port (not shown) through another air hose (not shown) to an air fitting 86. The valve's vent is at port 85. The air port 86 then pressurizes the clenching air cylinder 30 and causes it to actuate. When that occurs, the clench extension arm subassembly 40 will then go into its extended mode to move the extension arm 40 to its clenching position.
In
In the opposite side view of
The actuating cable 92 in this embodiment is a “pull” cable, and is associated with a tensioning spring 94. (The spring 94 takes up excess travel of the air cylinder 30.) The cable 92 is a flexible mechanical cable, used only for producing a pulling motion. It will be understood that alternative embodiments could, for example, use a “push-pull” more rigid cable without a return spring (to induce both tension and compression movements), or perhaps an additional air cylinder to actuate the rotatable anvil 60. Yet another alternative embodiment could provide a rotary air valve having a rotational output that could cause the anvil to pivot, without need for a linear-to-rotary travel conversion device, such as a cam; however, it must be kept in mind that the clenching extension arm must be made to fairly small dimensions, or it will not be useful in reaching into and through relatively small gaps between top deckboards in pallets, for example.
Referring now to
Referring now to
The flat surface of anvil 60 is now facing the front end of the tool at 14, and is prepared to receive a nail that will be shot by the tool 2 through a target workpiece. That clenching effect is better seen
There are two mechanisms in the clench adaptor 10 that provide some “play” in the mechanism to allow for variations in the thickness of the target boards. In general terms, these two expandable mechanisms involve the anvil actuator subassembly 100 and the toggle link 44. The devices will now be discussed in detail, in connection with
Referring now to
The rotational movement of the cam 110 causes the anvil 60 to rotate 90 degrees, as will be discussed immediately below. The cam limiter pin 118 acts as a guide pin in a curved, blind slot 136 (see
On the back side of the anvil 60 is a cam block 120, which in one mode of this embodiment is made of a nylon material. The cam block 120 has a “sliding cam surface” at 122, which will contact another sliding surface on the cam 110 to create an actuating area or interface at 134 (see
Other details depicted on
Referring now to
Referring now to
The overall operation of the extending mechanism that causes the anvil to be pressed against the bottom of the target workpiece is actuated in two phases. The first phase rotates the anvil about 90 degrees. The second phase forces the (already rotated) anvil to be moved upward until it contacts the workpiece. This operating cycle could be performed by two separate manual movements, if desired. However, it is desired to have only a single manual movement be the impetus for both phases. The illustrated embodiment requires only a single manual impetus, although both hands are required, one for the trigger 12 and one for the safety lever 16. Both must be actuated before anything happens on the tool 2; once both are actuated together, the anvil is completely rotated automatically before the clench extension arm is fully moved to force the anvil upward and into contact with the workpiece. This preferably is a function of tool operation, not because of any particular actuation sequence or timing by the human operator.
Referring now to
Referring now to
In
Referring now to
Referring now to
It will be understood that the nailer tool 2 and the anvil 60, described above, are both designed for use with rather large nails in mind. In addition, the preferred nails are not standard diamond tip nails; instead, they exhibit a chisel tip at about a 45-degree angle. Other types of nails also might work well with the nailer tool 2 with clenching adapter 10.
The cross-section footprint of the anvil 60 and its associated actuator subassembly components must be small enough to fit within the gap 212 while in its first orientation, i.e., when the anvil has not yet been pivoted, such as that viewed in
In one mode of this technology disclosed herein, the smaller cross-section footprint (the “first footprint”) of the anvil 60 is about one inch in size; and the larger cross-section footprint (the “second footprint”) of the anvil 60 is about two inches in outer diameter. Note that this smaller cross-section footprint does not necessarily create a circular perimeter; it is more of a longitudinal shape—it includes the anvil itself, in its non-pivoted (first) orientation, but also includes the distal member 68, which also must pass through the gap 212. It will be understood that the sizes for the first and second footprints are completely driven by the size of the expected gaps in the target workpieces, and such cross-section footprint sizes of the nailer tool's clenching adapter can be significantly changed to be larger or smaller, if desired. For designing with the one-inch and two-inch footprint sizes for the illustrated embodiment described above, the anticipated dimension for the gap 212 is about 1.08 inches in size.
An alternative embodiment for a clenching extension arm, generally designated by the reference numeral 150, is illustrated in
The pivotable anvil 160, as a subassembly, includes a translation link 170, a biasing spring 172, the shoulder bolt 174, and a cam ramp structure at 182; there are also some through-holes at 184 for the shoulder bolt. There are hex nuts 186 for adjusting the translation link 170, for proper actuation of the cam ramp 182. There is a bolt 188 that limits the translation link 170 to two-dimensional travel; it lightly clamps the link 170 to the face of the arm 168, allowing only travel axially with the cylinder 152, when combined with other limiting features cut into the clench arm member 168, and the slotted through hole 171 in the link 170.
The translation link 170 contacts the cam ramp 182 at an interface area 190. When the translation link 170 is moved by action of the piston rod 154, it forces the anvil 160 to pivot because of the shape of the cam ramp 182, at the interface 190. After the nail has been driven, the human user releases the tool's trigger 12, and the air cylinder 152 becomes de-actuated. The return spring 153 moves the air cylinder's piston 156 away from the cam interface 190, and the biasing spring 172 then returns the anvil 160 to its “vertical” (non-clenching) orientation.
Referring now to
In yet another alternative embodiment for the clenching extension arm 40, the anvil 60 can be caused to rotate without a separate “driving” mechanism. The anvil would be spring-loaded to automatically be maintained in its first orientation, which is the non-actuated position. The distal end 62 of the clenching extension arm 40 first is inserted through the gap 212 in the pallet workpiece. Then, to rotate the anvil 60, the upper portion 61 of the anvil 60 is dragged by the operator across the underside of the board to be fastened (i.e., at the distal side 73 of the workpiece). This dragging action causes friction between the board and the upper face 61 of the anvil when it is in the (non-rotated) position as shown in
In this alternative embodiment, there would be no need for the pull cable 92, its tubular housing 90, or the spring 94. The cam mechanism 100 would also not be needed. Some type of spring-loading mechanism would still be required, as noted above, which could be supplied by the return spring 128.
It is to be noted that anvil 60 will rotate in one direction only, because the anvil 60 is constrained by the confines of the geometry of the support structure, the distal end 62 of the clench extension arm 40. This may most clearly be seen in
Referring now to
The remaining description of the nailer tool 302 with adapter 310 applies to each drawing in the range
There is a separate “clenching extension arm” air-operated cylinder 330, which mounts to a rear clevis 332 at mounting point 352, and which mounts to a rod clevis 336 at a mounting point 350. The cylinder's extension rod 334 either pushes or pulls against a pair of toggle links 342 and 344, at the pivotable mounting point 350. Depending upon which operating state the nailer tool is in, the geometry of the two toggle links 342 and 344 will be a straight line (see
An air line 451 is connected to the clench cylinder 430. The actuation of cylinder 430 is controlled by certain pneumatic control valves, and that actuation is initiated by a hand-operated safety arm 316 that is attached to the guide body 304. The sequencing of events is controlled by the pneumatic control devices (sometimes referred to herein as the “air logic”), which will be discussed below in greater detail.
The adapter 310 also has a clench extension arm subassembly 340 that extends from a pivot point 346 toward a second mounting (and pivotable) point at 348, and further extends toward a distal end 362. An anvil 360 is mounted to the clench extension arm 340, at its distal end 362. Essentially, the clench extension arm 340 runs from a proximal mounting location at 346 to the distal end at 362. The anvil 360 and its actuating mechanism are described below in greater detail, and is illustrated in
The combination of the cylinder support base 320, the cylinder 330, the two toggle links 342 and 344, and the clench extension arm 340 make up an “extending structure” that is relatively light weight, but yet is strong enough to withstand the mechanical grasping forces and shock forces that are encountered for this engineering application. It is important to make the clench link of a sufficient length from its proximal end at the pivot point 346 to its distal end 362, so that it extends below the workpiece without interfering with that workpiece, but at the same time it must extend to the correct location so as to have the anvil 360 positioned directly in the path of the nail when it is fired by the nailer tool 302. The anvil material should be hardened, since its upper surface (in these views) will be directly impacted by the sharp tips of the nails as they penetrate the (typically wood) substrates of the workpiece, as described hereinabove.
Referring now to
The operator must use one hand on the trigger 312 and the other hand on the safety arm 316 to fire a fastener. Pressurized air is brought into the tool 302 via the air fittings 380. An air hose 455 takes this pressurized air over to the clench valve 326 at one of its input fittings, such as the air fitting 384. When the clench valve 326 changes state, pressurized air will travel through its output port through other air hoses (and air logic control devices) to an air fitting 387. The air port 387 then pressurizes the clenching air cylinder 330 and causes it to actuate. When that occurs, the clench extension arm subassembly 340 will then go into its extended mode to move the extension arm 340 to its clenching position.
In
There is an anvil actuator subassembly 400 located near the distal end 362 along the third (distal) member 368 of the extension arm 340. Anvil actuator subassembly 400 includes another air cylinder 390, which operates to rotate the anvil 360 at the appropriate time during an actuation cycle that ultimately fires a nail or other type of fastener from the tool 302.
Referring now to
The alternative embodiment tool 302 and clench adapter 310 includes an alternative clenching extension arm design, generally designated by the reference numeral 340, illustrated in
Referring now to
The clench arm air cylinder 330 has two attachment points at 350 and 352, and a rear clevis at 332, a rod clevis at 336, and a cylinder extension rod 334 that attaches to the rod clevis 336. The pivot point 350 also acts as a mounting point for the rod clevis of the clench arm cylinder, and additionally is the pivot point between the two toggle links 342 and 344. The point 352 is also the mounting point for the rear clevis of the clench cylinder, while the point 354 is the mounting point for the toggle link to the housing, as noted above.
Finally,
As noted above,
Referring now to
The anvil cylinder 390 is actuated by air pressure, and that air pressure arrives from an external source through an air fitting 388. This air pressure, when it arrives, is directed down a first air passage 412, and then a second air passage 414, which are both part of the overall internal air pathway 410. When these passageways are pressurized, the piston 406 of anvil cylinder 390 will be actuated, which will then extend and force the push rod 396 to actuate the rotation of the anvil 360. There are several air plugs in this system, as illustrated at 420, 422, and 424.
In the view of
In
As discussed above,
In
Referring to
By this arrangement, as illustrated in
In
As noted above, it must be kept in mind that the clenching extension arm must be made to fairly small dimensions, or it will not be useful in reaching into and through relatively small gaps between top deckboards in pallets, for example. These fairly small dimensions are mainly in the transverse direction of the extension arm, in a horizontal plane. In other words, it is allowable for the extension arm 340 to be larger in the vertical direction than in the horizontal direction, and this alternative embodiment extension arm 340 takes advantage of that fact. For example, the distal member 368 is larger in the vertical direction than in the horizontal direction, which can be seen by viewing
There is a mechanism in the clench adaptor 310 that provides some “play” to allow for variations in the thickness of the target boards. In general terms, the extendable mechanism involves the toggle link 344, which will now be discussed in detail. Referring now to
Toggle link 342 is actually made of a few different pieces: there is an outer link 374, a moveable link 376, a pre-load screw 370, and a spring 372.
The pre-load screw 370 does not necessarily need to be tightened within its tapped hole, however, for this design, it is intentionally tightened until the distal end of the screw (which is indicated by reference numeral 371) becomes flush with a wall face 378 of the outer link 374. This can be readily seen in
In essence, the views shown in
On the other hand, the views of
The extendable toggle link 342 is considered to be an improvement over the earlier version described above because it has no wearing rubber parts, and therefore, should be more robust and also probably stronger in overall mechanical tension and compression capabilities. And it can be seen that virtually any range of distances could be accommodated in this design, merely by making the pre-load screw 370 to a different length, and also by either expanding or contracting the size of the internal space 373 and the overall length of the Belleville stack 372.
The overall operation of the extending mechanism that causes the anvil to be pressed against the bottom of the target workpiece is actuated in two phases. The first phase rotates the anvil about 90 degrees. The second phase forces the (already rotated) anvil to be moved upward until it contacts the workpiece. This operating cycle could be performed by two separate manual movements, if desired. However, it is desired to have only a single manual movement be the impetus for both phases. The illustrated embodiment requires only a single manual impetus, although both hands are required, one for the trigger 312 and one for the safety lever 316. Both must be actuated before anything happens on the tool 302; once both are actuated together, the anvil is completely rotated automatically before the clench extension arm is fully moved to force the anvil upward and into contact with the workpiece. This preferably is a function of tool operation, not because of any particular actuation sequence or timing by the human operator.
In more general terms, the outer link 374 can be referred to as a “first link member,” the movable link 376 can be referred to as a “second link member,” the screw 370 can be referred to as an “alignment member” or a “tightenable fastener,” and the Belleville stack 372 can be referred to as a “spring member” that is mechanically compressible. The first link member 374 has a first open area at one end (e.g., the space 373) that is larger in size than the facing end of the second link member 376, and the second link member also has a second open area at one end, which receives the alignment member 370. The facing end of the second link member 376 is smaller than the first open area 373 of the first link member 374. Each link 374 and 376 has its own longitudinal axis and, once assembled, the alignment member 370 is positioned along the longitudinal axis of the first link member 374 and is attached thereto, and protrudes through an opening in the spring member 372, and protrudes through an opening in the second link member 376, and thereby causes longitudinal axes of the first and second link members to become substantially co-linear.
As discussed above, the safety lever 316 is actuated manually to first rotate the anvil and then actuate the clenching arm mechanism. The coil nailer tool 302 also has a trigger 312 that is manually operated, and once the trigger is pulled, a nail or other type of fastener will be driven from the canister 308 out the front end of the tool at 314. Driving the fastener is a third phase of operation of the coil nailer tool 302. However, this third phase could potentially take place before the first and second phases if the trigger 312 is pulled before the safety lever 316 is actuated. Therefore, in this alternative embodiment, the actuation of the fastener to be driven is also performed in an automatic sequencing operation, which will not allow the fastener to be driven until after the anvil has been rotated and the clench arm has been actuated. This sequential operation is performed by pneumatic logic, using pilot operated directional valves, which will also be referred to herein as “pilot operated valves” or “POVs”. The pneumatic logic of the tool 302 is provided schematically on
Referring now to
POV1, when actuated, also controls the downstream actuation of POV2, and when POV2 is actuated, it controls the operation of a nailer remote valve 446. Once that has occurred, a pneumatic firing valve 448 is actuated, and that in turn actuates the nailing tool main piston 450.
On
At the beginning of a firing sequence, the roller actuator drives the 3-way valve into actuation, and then output pressurized air travels along an air line L6 (456) to another tee (T3), and that pressurized air is then directed along two separate air lines, L7 (457) and L8 (458). The line L7 actuates the anvil turn cylinder 390, while the line L8 acts as a “pilot line 1,” which is directed to the POV1 pilot operated valve. Once pressurized air arrives along pilot line 1, then POV1 will be actuated and will then send pressurized air through an air line L3 (453) to yet another tee, designated T1. This now provides pressurized air along two separate air lines, L1 (451) and L2 (452).
Once pressurized air reaches line L1, that pressurized air will drive the clench arm air cylinder 330 into actuation, thereby tightening the clenching arm mechanism. At the same time, an air signal will be directed down L2 until it arrives at the second pilot valve, POV2. Once that occurs, the second pilot operated valve, POV2, will actuate, which will ultimately allow the nailing tool main piston 450 to actuate. This actuation is performed in a clever manner, taking advantage of the physical realities of the main air valves and other valves used in most coil nailer tools.
The physical orientation of the nailing tool's firing valve 448 and the nailing tool's main valve (with its piston 450) is such that there is a pressure chamber above the firing valve which must be exhausted before the tool will fire a fastener. The “output” air line from POV2 is a line designated LX (also reference numeral 459) on
In an exemplary embodiment of the tool 302, using the air logic depicted on the schematic of
The drawings of
It will be understood that the precise logical operations depicted in the schematic diagram of
It will be further understood that, if desired by the system designer, electronic controls could partially, or entirely, replace the pneumatic logic system components depicted in
As used herein, the term “proximal” can have a meaning of closely positioning one physical object with a second physical object, such that the two objects are perhaps adjacent to one another, although it is not necessarily required that there be no third object positioned therebetween. In the technology disclosed herein, there may be instances in which a “male locating structure” is to be positioned “proximal” to a “female locating structure.” In general, this could mean that the two male and female structures are to be physically abutting one another, or this could mean that they are “mated” to one another by way of a particular size and shape that essentially keeps one structure oriented in a predetermined direction and at an X-Y (e.g., horizontal and vertical) position with respect to one another, regardless as to whether the two male and female structures actually touch one another along a continuous surface. Or, two structures of any size and shape (whether male, female, or otherwise in shape) may be located somewhat near one another, regardless if they physically abut one another or not; such a relationship could still be termed “proximal.” Or, two or more possible locations for a particular point can be specified in relation to a precise attribute of a physical object, such as being “near” or “at” the end of a stick; all of those possible near/at locations could be deemed “proximal” to the end of that stick. Moreover, the term “proximal” can also have a meaning that relates strictly to a single object, in which the single object may have two ends, and the “distal end” is the end that is positioned somewhat farther away from a subject point (or area) of reference, and the “proximal end” is the other end, which would be positioned somewhat closer to that same subject point (or area) of reference.
It will be understood that the various components that are described and/or illustrated herein can be fabricated in various ways, including in multiple parts or as a unitary part for each of these components, without departing from the principles of the technology disclosed herein. For example, a component that is included as a recited element of a claim hereinbelow may be fabricated as a unitary part; or that component may be fabricated as a combined structure of several individual parts that are assembled together. But that “multi-part component” will still fall within the scope of the claimed, recited element for infringement purposes of claim interpretation, even if it appears that the claimed, recited element is described and illustrated herein only as a unitary structure.
It will be further understood that the term “fastener” applies to nails and other types of fastening devices, such as brads and staples, for example. Moreover, the term “nail” is used in a generic sense herein, and a “nail-driving tool” can also be used to drive other types of fasteners (such as brads and staples). In general, the clenching adapter embodiments described herein are mainly designed to drive fairly large nails, because (today) that is what commonly is used to build and repair pallets. Naturally, if the target workpiece is scaled down, then smaller types of fasteners (such as brads) can instead be used with the adapters described herein, without departing from the principles of the technology disclosed herein. And, in the opposite sense, if the target workpiece is scaled up, then larger types of fasteners (such as spikes) can instead be used with the adapters described herein, without departing from the principles of the technology disclosed herein. There will, of course, ultimately be a size that becomes too large to be handled easily by human beings—the lifting lug 305 depicted on
All documents cited in the Background and in the Detailed Description are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the technology disclosed herein.
The foregoing description of a preferred embodiment has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the technology disclosed herein to the precise form disclosed, and the technology disclosed herein may be further modified within the spirit and scope of this disclosure. Any examples described or illustrated herein are intended as non-limiting examples, and many modifications or variations of the examples, or of the preferred embodiment(s), are possible in light of the above teachings, without departing from the spirit and scope of the technology disclosed herein. The embodiment(s) was chosen and described in order to illustrate the principles of the technology disclosed herein and its practical application to thereby enable one of ordinary skill in the art to utilize the technology disclosed herein in various embodiments and with various modifications as are suited to particular uses contemplated. This application is therefore intended to cover any variations, uses, or adaptations of the technology disclosed herein using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this technology disclosed herein pertains and which fall within the limits of the appended claims.
The present application claims priority to provisional patent application Ser. No. 61/890,397, titled “CLENCHING ADAPTER FOR AUTOMATIC NAILERS,” filed on Oct. 14, 2013.
Number | Name | Date | Kind |
---|---|---|---|
2687522 | Juilfs | Aug 1954 | A |
2772415 | Jenny | Dec 1956 | A |
2943327 | Juilfs | Jul 1960 | A |
3397828 | Volkmann | Aug 1968 | A |
3734378 | Rice | May 1973 | A |
3900144 | Hamilton | Aug 1975 | A |
4129933 | Jureit | Dec 1978 | A |
4716813 | Prudencio | Jan 1988 | A |
4726504 | Halbert | Feb 1988 | A |
6237827 | Reckelhoff | May 2001 | B1 |
8998056 | Huang | Apr 2015 | B2 |
9724812 | Scabin | Aug 2017 | B2 |
20140076954 | Miller | Mar 2014 | A1 |
20170297188 | Huang | Oct 2017 | A1 |
Entry |
---|
Internet advertisement for CN-70CL pneumatic clinch nailer, four pages in all; Apach Industrial Co. Ltd. (Jun. 20, 2014). |
Number | Date | Country | |
---|---|---|---|
20150102086 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61890397 | Oct 2013 | US |