Client device authentication using contactless legacy magnetic stripe data

Information

  • Patent Grant
  • 11638148
  • Patent Number
    11,638,148
  • Date Filed
    Wednesday, May 6, 2020
    4 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
A technique for generating a diversified encryption key for a contactless legacy magnetic stripe card is disclosed. The diversified key can be generated using a master key, a key diversification value and an encryption algorithm. In one example embodiment, the key diversification value can be provided by the user as a fingerprint, numeric code or photo. The user can provide the key diversification value to the card or a cellphone. The card can generate the diversified key using the user provided key diversification value. The card or the cellphone can transmit the user provided diversification value to the server and the server can regenerate the diversified key using the user provided diversification value.
Description
BACKGROUND

Data security and transaction integrity are of critical importance to businesses and consumers. This need continues to grow as electronic transactions constitute an increasingly large share of commercial activity. Contactless cards can be an invaluable resource in providing data security and transaction integrity. While the growing use of chip-based financial cards (e.g., EMV cards) provides certain secure features over the legacy magnetic stripe cards (MSD), the majority of contactless-accepting merchants still utilize MSD cards and MSD technology. Therefore, many card issuers still choose to support both MSD cards and EMV cards.


SUMMARY

Because many card issuers still choose to support MSD cards in this country, technologies that facilitate transaction security and user authentication for these cards are desirable. In particular, it is important to enhance card security for contactless legacy magnetic stripe cards when it comes to interactions with cellphones or similar client devices. Example interactions can include activation, authentication or step-up authentication using mobile devices, cellphones and tablets.


In an example embodiment, a secure data transmission system including an MSD compliant card (“card”), a cellphone and a server are disclosed. The cellphone can receive protected data from the card and transmit the protected data to the server for further analysis or action. The card can have a processor and memory, and the memory of the card can store a master key (or derived key), transmission data and a counter value (and/or a key diversification value). The server can have a processor and memory, and the memory of the server can store the master key. The card and the server can be in data communication using the cellphone. The card can be configured to generate a diversified key using the master key, the counter value (and/or the key diversification value) and one or more cryptographic algorithms and store the diversified key in the memory of the card. The card can also encrypt the transmission data using one or more cryptographic algorithms and the diversified key to yield encrypted transmission data, and transmit the encrypted transmission data to the server using the cellphone. The server is configured to generate the diversified key based on the master key and the counter value (and/or the key diversification value), and store the diversified key in the memory of the server. The server can independently maintain the counter value (and/or the key diversification value) or it can receive it from the card along with or separate from the encrypted transmission data. The server can decrypt the encrypted transmission using the replicated diversified key and take further action, e.g., authorize an authentication step.


In one example embodiment, the key diversification value can be provided by the user as a fingerprint, numeric code or photo. The user can provide the key diversification value to the card or the cellphone. In this embodiment, the card can create the diversified key using the user provided key diversification value. The card or the cellphone can transmit the user provided diversification value to the server and the server can recreate the diversified key using the user provided diversification value.


In an example embodiment, the card can include a derived key and a cryptographic algorithm. The card can generate a cryptogram using the derived key and the cryptographic algorithm (e.g., dCVV in Visa or CVC3 in MasterCard). The card can transmit the cryptogram to the cellphone and the cellphone can transmit the cryptogram to the server. The server can validate the cryptogram and authorize a transaction if the cryptogram is validated. In this example embodiment, the derived key is specific to each card. For example, at BIN level, there can be a primary key (or Master Key). The derive key can be generated using an algorithm leveraging the primary key, a PAN, and a PAN Sequence Number.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a contactless card according to an example embodiment.



FIG. 1B illustrates an exemplary contact pad including an NFC tag behind the contact pad.



FIG. 2 illustrates a cellphone according to an example embodiment.



FIG. 3 illustrates a data transmission system according to an example embodiment.



FIG. 4 illustrates a flow chart for encryption and transmission of sensitive data from the card to the server through the cellphone.



FIG. 5 illustrates exemplary hardware components for a server.





DETAILED DESCRIPTION

An objective of some embodiments of the present disclosure is to build one or more keys into a contactless legacy magnetic stripe card. The contactless card can perform authentication and numerous other functions that can otherwise require the user to carry a separate physical token in addition to the contactless card. By employing a contactless interface, contactless cards can interact with a client device (such as a mobile phone). The client device can relay any encrypted data provided by the card to a backend server, which can in turn authorize various transactions, e.g., authentication of the user.


In one example embodiment, an MSD card or a contactless legacy magnetic stripe card (hereinafter “card”) can be compliant with one or more of the following standard: ISO/IEC 7810, ISO/IEC 7811, ISO/IEC 7812, ISO/IEC 7813, ISO 8583, and ISO/IEC 4909. These standards can define the physical properties of the card, including size, flexibility, location of the magnetic stripe, magnetic characteristics, and data formats.


The size of a card can be the same as the size of a payment card, credit card or a debit card. According to ID-1 of the ISO/IEC 7810 standard, the dimensions of a card can be 85.60 by 53.98 millimeters (3.37 in×2.13 in). However, a card according to these disclosures can have a different size, and it is not necessary for a card to be implemented in a payment card.


In an example embodiment, the card can include a magnetic stripe which can store data by modifying the magnetism of the iron-based magnetic particles on a band of magnetic material on the card. The magnetic stripe can be read by swiping past a magnetic reading head. In an example embodiment, there can be up to three tracks on magnetic cards known as tracks 1, 2, and 3. Point-of-sale card readers almost always read track 1, or track 2, and sometimes both, in case one track is unreadable. The minimum cardholder account information needed to complete a transaction can be present on both tracks.


In one example embodiment, track 1 can include information such as primary account number (“PAN”), name, expiration date, service code and discretionary data (e.g., Pin Verification Key Indicator (PVKI), PIN Verification Value (PVV), Card Verification Value or Card Verification Code (CVV or CVC)). In one example embodiment, track 2 can include PAN, expiration date, service code and discretionary data (e.g., same as track 1).


A card can include processing circuitry for storing and processing information. The processing circuitry can include processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware.


The storage of information can take place in a memory of the processing circuitry, which can be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM and EEPROM. A card can include one or more of these memories which can store information including the information stored on any one of the tracks of card. The contactless card can transfer the information stored on these memories of the contactless card using the NFC technology. A read-only memory can be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory can be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it cannot be rewritten, but it can be read many times. A read/write memory can be programmed and re-programed many times after leaving the factory. It can also be read many times.


The memory of a card can be divided into several zones, each provided with a different level of security. The card processor can keep track of which memory addresses belong to which zones and the circumstances under which each zone can be accessed. A card processor can also process information and store the information onto the memory. In an example embodiment, a card memory can be divided into four zones: a secret zone, a confidential zone, a usage zone, and a public zone.


A secret zone can be used for storage of information which can be used only by the processor itself, e.g., passwords, cryptographic keys. The information stored in this zone is not readable outside of the card. In an embodiment, the secret zone can be implemented with a separate processor that is capable of performing cryptographic functions. Cryptographic keys can be passed into the secret zone or can be generated in the secret zone, and in either case the keys can be stored in the secret zone and used to support cryptographic services. If necessary, cryptographic keys can be exported from the secret zone.


In an example embodiment, the card can be a JavaCard which can include one or more applets. The applets can be firewalled, and data can be allocated to the applet for storage. The data can be stored transactionally in an EEPROM flash memory, e.g., if the write isn't complete when the power is removed, the contents remain the same as before.


A confidential zone can be used to store a list of all transactions made with the card. The confidential zone can have password protection. In an example embodiment, the password is known only to the card issuer, who can examine the history of the card for evidence of misuse of the system. The confidential zone can have a read-only access restriction so that the information stored in this zone could not be modified, e.g., transaction list could not be modified. A usage zone could be used for storage of information which can be periodically updated or modified. Depending on the sensitivity of the data, a password can be implemented for this zone. The usage zone can have both read and write access protected by a password. A public zone can be used for keeping nonsensitive information, such as the card issuer's name and address. The public zone can have read-only access, without a password.


In an example embodiment, the card can store one or more key diversification values. The card can use these key diversification values to create a diversified key. For example, the card can store a counter value. The counter value can be derived from a counter module, and the counter module can increment the counter value each time the card interacts with the cellphone or server. As another example, the card can store a plurality of fingerprints and store a diversification value in association with each fingerprint. The card can include a fingerprint reader, and when the user scans a finger at the fingerprint reader, the card can determine if any of the stored fingerprints is scanned at the fingerprint reader. The card can also choose the diversification value that is associated with the scanned fingerprint. The chosen diversification value can be used to generate the diversified key. As yet another example, the card can store a set of random diversification values. As yet another example, the card can receive a diversification value from an input device installed on the card (e.g., keypad or fingerprint reader) or through a contactless transmission from the cellphone.


Some cards can require physical contact with a client device (or reader/writer, reader, or scanner) to provide the information stored on the card to the client device or to write information on the card. Other cards can be contactless, i.e., the cards can wirelessly communicate with the client device. A contactless card can be a credit card including a magnetic tape or a radio-frequency identification (“RFID”) tag. Some contactless cards can include both the magnetic tape and the RFID tag. Some cards can be compatible with wireless communication technologies such as NFC, Bluetooth, Wi-Fi, etc.


A terminal can communicate with a contact card by establishing electrical contact between the card and the terminal. As such, a contact card can have a contact area comprising several contact pads. The area can be approximately 1 square centimeter (0.16 sq in). Establishing contact between the pads and the terminal can be achieved by inserting (or dipping) the contact card into the terminal. Using the electrical connection, the terminal can transmit signals to the card, and in response, the card can transmit its information to the terminal. Generally, contact cards do not contain a battery. However, in some embodiments, contact cards can include batteries.


A client device can communicate with a contactless card if the contactless card is held in proximity to the client device. The client device can read the contactless card over a short distance using near-field communication (“NFC”) technology, which uses radio frequency induction. A contactless card can include an inductor to capture some of the incident radio-frequency interrogation signal transmitted by the terminal, rectify it, and use it to power the card's processing circuitry. As such, contactless cards can function without an internal power source. However, in some embodiments, contactless cards can include an internal power source.



FIG. 1A illustrates a contactless card 100 according to an example embodiment. In this embodiment, the card 100 can be a payment card issued by a service provider 101 which can be displayed on the front or back of the card 100. The size of the card 100 can be compliant with ID-1 of the ISO/IEC 7810 standard, i.e., 85.60 by 53.98 millimeters. The card 100 can include a contact pad 102 for establishing contact with a contact terminal. The card 100 can also include processing circuitry, antenna and other components not displayed in FIG. 1A. These components can be located behind the contact pad 102. The card 100 can also include various identification information 103 displayed on front or back of the card. The card 100 can also include a magnetic stripe or tape, which can be located on the back of the card.


In an example embodiment, the card is provided with a near field communication (“NFC”) tag. In some embodiments, the NFC tag can include processing circuitry for storing and processing information that modulates and demodulates a radio-frequency signal (usually received from a client device, reader/writer or scanner). The NFC tag can also include an anticollision algorithm, authentication and cryptographic mechanism, RF interface circuit, and RF antenna operating at 13.56 MHz. The RF antenna can receive and transmit a signal. Additionally, an RFID tag can include a power source or means for collecting DC power from the incident terminal signal. These means can include modulators, voltage regulators, resets, and connections to an antenna. The antenna can be an electric dipole antenna or a coil antenna.


There can be several kinds of NFC tags, e.g., active tags, battery-assisted passive tags and passive tags. An active tag can be electrically coupled to a power source, such as a battery, which can power the integrated circuit. As a result, an active tag can periodically transmit as a signal the information stored on the tag. A battery-assisted passive tag can have an activateable power source electrically coupled to it, and the power source can be activated when the tag is exposed to a signal from a terminal. A passive tag is not powered by a power source. Rather, the tag is energized by the radio energy transmitted to the tag by the terminal.


In an example embodiment of a passive NFC tag, the tag relies on a signal from the client device to power up. The tag can include modulators, voltage regulators, resets, and connections to an antenna. The antenna can be an electric dipole antenna or a coil antenna, and the processing circuitry of the tag can be connected to the antenna. The type of the antenna can be determined based on the frequency band used by the tag. Typically, an electric dipole antenna is used with an ultra-high frequency tag, but high frequency tags use a coil antenna. For example, the antennas for an NFC tag can be a simple dipole if the tag uses 915-MHz frequency, but the antenna can be a complex coiled shape if the tag uses 13.56-MHz frequency. The antenna captures and transmits signals to and from the terminal. The coupling from the terminal to the tag provides both the transmission data and the power to operate the passive NFC tag.



FIG. 1B illustrates an exemplary contact pad 102 including an NFC tag behind the contact pad 102. In this example embodiment, the contact pad 102 can include several gold-plated pads. Behind the contact pad 102, there can be processing circuitry 104 and an NFC tag. The NFC tag can include an antenna 105. In this example embodiment, the processing circuitry 104 is part of the NFC tag.


In some embodiments, the antenna of the NFC tag of the card can be placed within the card and around the contact pad 102. In other embodiments, the NFC tag of the card can include several antennas. For example, in addition to antenna 105, the card can include an antenna which extends around the contact pad 102 and throughout the card 100. Other combinations are also possible. In some embodiments, the antenna can be external to the contact pad and the processing circuitry. In some other embodiments, there can be an antenna integral with the processing circuitry and the antenna can be used with an external booster coil.


In an example embodiment, the coil of a card can act as the secondary of an air core transformer. The terminal can communicate with the card by cutting power or amplitude modulation. The card can infer the data transmitted from the terminal using the gaps in the card's power connection, which is functionally maintained through capacitors. The card can communicate back by switching a load on the card's coil or load modulation. Load modulation can be detected in the terminal's coil through interference.


In an example embodiment, the card can include a keypad and/or fingerprint reader. Using the keypad and/or fingerprint reader, the user can provide input to the card. For example, using the keypad, the user can provide a code to the card, which the card can use as a key diversification value. Similarly, the user can scan and store the user's fingerprint on the card. The card can associate each fingerprint scanned and stored on the card with an encryption algorithm (or a key diversification value). By scanning the user's fingerprint, the user can specify which encryption code the card can use.


A client device can be a cellphone, a mobile phone or a tablet. A client device can read information from a card and write information onto the card. In some embodiments, the client device can pass information from the card to a host computer and write information from the host computer into the card. In some embodiments, the host computer can be the client device. The client device can provide power to the card and link the card's hardware interface to the host computer. Since the card's processor can control the actual flow of information into and out of the card's memories, the client device can operate with only minimal processing capabilities for sending the information to the host computer.


In some embodiments, the client device can include a processor and a transceiver. The transceiver can send and receive data from the card using the NFC protocol. The processor of the client device can decode any data received from the card. The client device can also update, delete or modify the information stored on the card.


A client device can write data on the card by passing the data to the processor of the card. The processor can process the data and store it in the card's memory. A client device can have a two-way communication with a card as described in ISO 14443. The card can include an NFC tag. The two-way communication can be digitally encoded. There can be several frequency ranges, and several proprietary formats for the two-way communication. The 13.56 Mhz frequency range (NFC) is dominated by ISO 14443 compatible cards.


A client device and a card can exchange messages, which can include commands or data. For example, a client device can send a command message to the card, the card can process the command message in its processor and the card can send back a response message to the client device. Each of the command message and the response message can include data. A message can include TLV (Type, Length and Value) data and a command such as STORE_DATA command which prompts storage of the data included in the message in the card.



FIG. 2 illustrates a cellphone 200 according to an example embodiment. In this example embodiment, the cellphone 200 can include a display screen 201, camera 202 and fingerprint scanner 203. The display screen 201 can be any type of display screen, e.g., a touchpad LCD display screen. Using the touchscreen 201, for example, a customer can enter information into the cellphone 200. As another example, by pressing a graphical user interface button, the user can command the camera 202 to take a photo of the user. The camera can store the photo and/or transmit the photo to a backend server. As yet another example, the user can command the cellphone 200 to scan the user's fingerprint using the fingerprint scanner 203. The cellphone 200 can store the fingerprint and/or transmit the fingerprint to the card or backend server.


In an example embodiment, the cellphone can be an NFC compatible cellphone, which can include antennas for sending and receiving signals, a transceiver, and a processor to decode data. For a passive NFC tag, the cellphone can transmit an energy field that can wake up the tag (or card) and power its chip, enabling it to transmit or store data. In turn, the tag converts the radio signal into usable power, and responds to the cellphone in the form of a radio signal. The signal can include the tag's identity and other information. Once the cellphone receives the response, the cellphone converts the response and extracts any information included in the radio signal. The information collected from the tag is then transferred through a communications interface to a backend server, where the data can be stored in a database or analyzed by the server. The cellphone can also update, delete or modify the information stored on the card.


In the example embodiment of FIG. 2, the cellphone 200 is provided with one or more antennas (not displayed), which enable the device to read information from a contactless card and write information on the contactless card.


In these disclosures, the terms client device, cellphone, reader/writer, scanner and terminal have been used interchangeably, and they all refer to a device which can scan a card and/or write information on the card. In some embodiments, the cellphone can be connected to a backend server. In other embodiments, the cellphone can be integrated in the backend server.


In an example embodiment, the cellphone can include one or more of the following: a fingerprint reader, a camera, and an application for receiving input from the user (e.g., a PIN code, key diversification value, or identification number). The cellphone can transmit any input provided by the user to a backend server and the card for, e.g., key diversification purposes. For example, the backend server can store a plurality of fingerprints for the user and the server can associate an encryption algorithm with each one of the fingerprints. When scanning the card at the cellphone, the cellphone can also receive the user's fingerprint (or other information, e.g., a photo or PIN number) and transmit this information to the backend server. Using this information, the backend server can determine which encryption algorithm was used in the key diversification process.


When using symmetric cryptographic algorithms, such as encryption algorithms, hash-based message authentication code (HMAC) algorithms, and cipher-based message authentication code (CMAC) algorithms, it is important that the key remain secret between the party that originally processes the data that is protected using a symmetric algorithm and the key, and the party who receives and processes the data using the same cryptographic algorithm and the same key.


It is also important that the same key is not used too many times. If a key is used or reused too frequently, that key may be compromised. Each time the key is used, it provides an attacker an additional sample of data which was processed by the cryptographic algorithm using the same key. The more data an attacker has which was processed with the same key, the greater the likelihood that the attacker may discover the value of the key. A key used frequently may be comprised in a variety of different attacks.


Moreover, each time a symmetric cryptographic algorithm is executed, it can reveal information, such as side-channel data, about the key used during the symmetric cryptographic operation. Side-channel data can include minute power fluctuations which occur as the cryptographic algorithm executes while using the key. Sufficient measurements can be taken of the side-channel data to reveal enough information about the key to allow it to be recovered by the attacker. Using the same key for exchanging data would repeatedly reveal data processed by the same key.


However, by limiting the number of times a particular key will be used, the amount of side-channel data which the attacker is able to gather is limited and thereby reduce exposure to this and other types of attack. As further described herein, the parties involved in the exchange of cryptographic information (e.g., sender and recipient) can independently generate keys from an initial shared master symmetric key in combination with a counter value, and thereby periodically replace the shared symmetric key being used with needing to resort to any form of key exchange to keep the parties in sync. By periodically changing the shared secret symmetric key used by the sender and the recipient, the attacks described above are rendered impossible.



FIG. 3 illustrates a data transmission system according to an example embodiment. System 300 can include a card 100 and a cellphone 200 in communication, for example via a network, with one or more servers 500. The system 300 can be configured to implement a key diversification algorithm. For example, a sender (e.g., card) and recipient (e.g., backend server) can desire to exchange data (e.g., sensitive data) via the cellphone 200.


In some examples, the card 100 and the server 500 can be provisioned with the same master symmetric key. The symmetric key can be kept secret from all parties other than the card 100 and the server 500 involved in exchanging the secure data. It is further understood that part of the data exchanged between the card 100 and server 500 comprises at least a portion of data which may be referred to as sensitive data, counter value, or other types of data (e.g., a key diversification value). The counter value may comprise a number that changes each time data is exchanged between the card 100 and the server 500. In this disclosure, the counter value and the key diversification value can be used as referring to the same value or a different value, both of which are within the scope of this disclosure.



FIG. 4 illustrates a flow chart for encryption and transmission of sensitive data from the card 100 to the server 500 through the cellphone 200. At step 410, when the card 100 is preparing to process the sensitive data with symmetric cryptographic operation, the card 100 can update a counter. Both the card 100 and the server 500 can store a value representing the counter. This value can be updated each time the card 100 and the server 500 interact.


At step 420, the card 100 can select an appropriate symmetric cryptographic algorithm, which can include at least one of a symmetric encryption algorithm, HMAC algorithm, and a CMAC algorithm. The algorithm selection of the card 100 can be based on an input, which can be provided by data stored on the card 100 (e.g., counter value), data received from the user (e.g., input pad of the card 100), or data provided by the cellphone 200 or server 500.


In some examples, the symmetric algorithm can comprise any symmetric cryptographic algorithm used to generate a desired length diversified symmetric key. Non-limiting examples of the symmetric algorithm can include a symmetric encryption algorithm such as 3DES or AES128; a symmetric HMAC algorithm, such as HMAC-SHA-256; and a symmetric CMAC algorithm such as AES-CMAC. It is understood that if the output of the selected symmetric algorithm does not generate a sufficiently long key, techniques such as processing multiple iterations of the symmetric algorithm with different input data and the same master key may produce multiple outputs which can be combined as needed to produce sufficient length keys.


At step 430, the card 100 can generate a diversified key. For example, the diversified key can be generated by encrypting the counter value (i.e., key diversification value) with the selected symmetric encryption algorithm using the master symmetric key, thereby creating a diversified symmetric key. As another example, the master key and the key diversification value can be provided as an input to an encryption algorithm and the output can be the diversified (symmetric) key. The diversified symmetric key can be used to process the sensitive data before transmitting the result to the server 500 through the cellphone 200.


At step 440, the sensitive data can be protected using one or more cryptographic algorithms and one or more diversified keys. The diversified key, which was created in step 430, can be used with one or more cryptographic algorithms to protect the sensitive data. In some examples, a plurality of cryptographic operations may be performed using the diversified symmetric keys prior to transmittal of the protected data. For example, the data can be processed by a MAC using a first diversified session key, and the resulting output can be encrypted using a second diversified session key producing the protected data. The cryptographic algorithms can be selected using an algorithm selection technique.


In one example embodiment, the sensitive data can include data similar to data stored in track 1 or track 2 of a magnetic stripe card. In another example embodiment, the sensitive data can include the counter value. In yet another example embodiment, the sensitive data can include other data provided by the card 100 or cellphone 200, e.g., a number inputted by a keypad of the card 100 or a photo captured by the cellphone 200.


At step 450, the protected data (i.e., the sensitive data that was protected in step 430) can be transmitted to the cellphone 200 and the cellphone 200 can transmit the protected data to the server 500. At step 460, the server 500 can perform the same symmetric encryption using the counter value as input to the encryption and the master symmetric key as the key for the encryption. The output of the encryption can be the same diversified symmetric key value that was created by the card 100. For example, the server 500 can replicate the diversified key created at the card 100 and using the replicated diversified key, decrypt the protected data. As another example, the server 500 can independently create its own copies of the first and second diversified session keys using the counter value. Then, the server 500 can decrypt the protected data using the second diversified session key to reveal the output of the MAC created by the card. The server 500 can then process the resultant data through the MAC operation using the first diversified session key.


In one embodiment, at step 470, the server 500 can use the diversified key to decrypt the protected sensitive data. In another embodiment, at step 470, the server 500 can use the diversified keys with one or more cryptographic algorithms to validate the protected data, and at step 480, the original data may be validated. For example, if the output of the MAC operation matches the MAC output revealed by decryption, then the data may be deemed valid.


The next time sensitive data needs to be sent from the card 100 to the server 500 via the cellphone 200, a different counter value can be selected producing a different diversified symmetric key. By processing the counter value with the master symmetric key and same symmetric cryptographic algorithm, both the card 100 and the server 500 can independently produce the same diversified symmetric key. This diversified symmetric key, not the master symmetric key, is used to protect the sensitive data.


Both the card 100 and the server 500 each initially possess the shared master symmetric key. The shared master symmetric key is not used to encrypt the original sensitive data. Because the diversified symmetric key is independently created by both the card 100 and the server 500, it is never transmitted between the two parties. Thus, an attacker cannot intercept the diversified symmetric key and the attacker never sees any data which was processed with the master symmetric key. As a result, reduced side-channel data about the master symmetric key is revealed. Moreover, the operation of the card 100 and the server 500 can be governed by symmetric requirements for how often to create a new diversification value, and therefore a new diversified symmetric key. In an embodiment, a new diversification value and therefore a new diversified symmetric key can be created for every exchange between the card 100 and the server 500.


In some examples, the key diversification value can comprise the counter value. Other non-limiting examples of the key diversification value include: a random nonce generated each time a new diversified key is needed, the random nonce sent from the card 100 to the server 500; the full value of a counter value sent from the card 100 to the server 500; a portion of a counter value sent from the card 100 to the server 500; a counter independently maintained by the card 100 and the server 500 but not sent between the two devices; a one-time-passcode exchanged between the card 100 and the server 500; and a cryptographic hash of the sensitive data. In some examples, one or more portions of the key diversification value can be used by the parties to create multiple diversified keys. For example, a counter may be used as the key diversification value. Further, a combination of one or more of the exemplary key diversification values described above can be used.


In another example, a portion of the counter can be used as the key diversification value. If multiple master key values are shared between the parties, the multiple diversified key values can be obtained by the systems and processes described herein. A new diversification value, and therefore a new diversified symmetric key, can be created as often as needed. In the most secure case, a new diversification value can be created for each exchange of sensitive data between the card 100 and the server 500. In effect, this can create a one-time use key, such as a single-use session key.


In one example embodiment, the key diversification value can be the counter value. However, in other example embodiments, in addition to or instead of the counter value, the key diversification value can be determined based on an input provided by the user.


For example, the user can use the keypad on a screen of a cellphone to specify a numeric code. The cellphone can transmit this numeric code to the card and the server as the key diversification value. As another example, the user can use the keypad on the card to specify a numeric code. The card can use this numeric code as the key diversification value. The card can also transmit this diversification value to the cellphone which can in turn transmit this code to the server. The numeric code can be encrypted when it is transmitted to the cellphone. As another example, the user can provide a fingerprint on a fingerprint reader of the card or cellphone. Using the fingerprint, the card or the cellphone can determine a key diversification value. For example, if the user sets up the fingerprint on the cellphone, at the time of setup, for each finger the user scans, the user specifies an alphanumeric value. The cellphone can store each fingerprint and the alphanumeric value in an association. Subsequently, when the user desires to authorize a transaction, the user can scan the user's finger and tap the card on the cellphone. The cellphone can transmit the key diversification value associated with the fingerprint to the card and the server. Both the card and the server can use the key diversification value to create the diversified key.


As another example, the user can scan the user's finger on the card. In this example, when the user scans the user's finger, using the keypad of the card, the user can specify a key diversification value associated with each fingerprint provided by the user. Subsequently, when the user scans the user's finger at the card, the card uses the associated key diversification value in the encryption operation. The card can transmit the encrypted data and the key diversification value to the cellphone, which can in turn transmit the key diversification value to the server. In one example, at the time of setup, the user can scan the user's fingers on the card (or the cellphone). Once the setup is done, the user can scan the card at the cellphone. The card (or the cellphone) can transmit the association of fingerprints and the key diversification values to the cellphone (or the card). In this example, when the user desires to authorize a transaction, the user can scan the user's fingerprint at the card and the cellphone, and there will be no need for transmission of the diversification value between the cellphone and the card.


In one example embodiment, the card and the server can use fingerprint associations for selection of the encryption algorithm. For example, a user can define a relationship between each fingerprint and an encryption algorithm. When the user scans the user's finger at the cellphone (or the card), either the cellphone or the card can determine a defined encryption algorithm for the scanned fingerprint.


In one example embodiment, the cellphone is configured to take a photo of the user and transmit the photo of the user to the server. The server can determine a key diversification value and/or an encryption algorithm based on the photo. In one embodiment, when the server receives the user's photo, as a threshold matter, the server can perform a facial recognition function to determine whether the photo belongs to the user of the card. If the server determines that the photo belongs to the user, the server can determine a facial expression of the user in the photo. For example, if the user smiles, the server can associate the user's facial expression with a first diversification value and/or a first encryption algorithm. However, if the user closes his or her eyes, the server can associate the user's facial expression with a second diversification value and/or a second decryption algorithm. Subsequently, the server can transmit the diversification value and/or decryption algorithm associated with the facial expression to the cellphone and the cellphone can transmit the diversification value and/or decryption algorithm to the card. The card can generate a diversified key using the associated diversification value and/or select the associated decryption algorithm for encryption of the sensitive data. In another embodiment, the server can determine a color of an outfit of the user and determine the diversification value and/or encryption algorithm based on the color of the outfit.


In one example embodiment, the cellphone can transmit the user's photo to the server and the server can transmit a hash of the photo to the cellphone. The cellphone can transmit the hash of the photo to the card. The card can use the hash of the photo as the diversification value.


In one example embodiment, the diversification value can be selected based on a fingerprint input provided by the user and the encryption algorithm can be selected based on a photo submitted by the cellphone to the server. For example, using the fingerprint, the cellphone can determine a diversification value and transmit the value to both the card and the server. Additionally, using the photo, the server can determine an encryption algorithm. The server can transmit the selected encryption algorithm to the cellphone and the cellphone can transmit the selected encryption algorithm to the card.


In one example embodiment, the diversification value can be a combination of multiple diversification values. For example, the diversification value can be a cryptographic combination of a diversification value derived using a fingerprint and a diversification value derived using a photo of the user.



FIG. 5 illustrates exemplary hardware components of a server. A computer system 500, or other computer systems similarly configured, may include and execute one or more subsystem components to perform functions described herein, including the steps of various flow processes described above. Likewise, a mobile device, a cell phone, a smartphone, a laptop, a desktop, a notebook, a tablet, a wearable device, a server, etc., which includes some of the same components of the computer system 500, may run an application (or software) and perform the steps and functionalities described above. Computer system 500 may connect to a network 514, e.g., Internet, or other network, to receive inquiries, obtain data, and transmit information and incentives as described above.


The computer system 500 typically includes a memory 502, a secondary storage device 504, and a processor 506. The computer system 500 may also include a plurality of processors 506 and be configured as a plurality of, e.g., bladed servers, or other known server configurations. The computer system 500 may also include a network connection device 508, a display device 510, and an input device 512.


The memory 502 may include RAM or similar types of memory, and it may store one or more applications for execution by processor 506. Secondary storage device 504 may include a hard disk drive, floppy disk drive, CD-ROM drive, or other types of non-volatile data storage. Processor 506 executes the application(s), such as those described herein, which are stored in memory 502 or secondary storage 504, or received from the Internet or other network 514. The processing by processor 506 may be implemented in software, such as software modules, for execution by computers or other machines. These applications preferably include instructions executable to perform the system and subsystem component functions and methods described above and illustrated in the FIGS. herein. The applications preferably provide graphical user interfaces (GUIs) through which users may view and interact with subsystem components.


The computer system 500 may store one or more database structures in the secondary storage 504, for example, for storing and maintaining the information necessary to perform the above-described functions. Alternatively, such information may be in storage devices separate from these components.


Also, as noted, processor 506 may execute one or more software applications to provide the functions described in this specification, specifically to execute and perform the steps and functions in the process flows described above. Such processes may be implemented in software, such as software modules, for execution by computers or other machines. The GUIs may be formatted, for example, as web pages in HyperText Markup Language (HTML), Extensible Markup Language (XML) or in any other suitable form for presentation on a display device depending upon applications used by users to interact with the computer system 500.


The input device 512 may include any device for entering information into the computer system 500, such as a touch-screen, keyboard, mouse, cursor-control device, microphone, digital camera, video recorder or camcorder. The input and output device 512 may be used to enter information into GUIs during performance of the methods described above. The display device 510 may include any type of device for presenting visual information such as, for example, a computer monitor or flat-screen display (or mobile device screen). The display device 510 may display the GUIs and/or output from sub-system components (or software).


Examples of the computer system 500 include dedicated server computers, such as bladed servers, personal computers, laptop computers, notebook computers, palm top computers, network computers, mobile devices, or any processor-controlled device capable of executing a web browser or other type of application for interacting with the system.


Although only one computer system 500 is shown in detail, system 500 may use multiple computer systems or servers as necessary or desired to support the users and may also use back-up or redundant servers to prevent network downtime in the event of a failure of a particular server. In addition, although computer system 500 is depicted with various components, one skilled in the art will appreciate that the system can contain additional or different components. In addition, although aspects of an implementation consistent with the above are described as being stored in a memory, one skilled in the art will appreciate that these aspects can also be stored on or read from other types of computer program products or computer-readable media, such as secondary storage devices, including hard disks, floppy disks, or CD-ROM; or other forms of RAM or ROM. The computer-readable media may include instructions for controlling the computer system 500, to perform a particular method, such as methods described above.


The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as may be apparent. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, may be apparent from the foregoing representative descriptions. Such modifications and variations are intended to fall within the scope of the appended representative claims. The present disclosure is to be limited only by the terms of the appended representative claims, along with the full scope of equivalents to which such representative claims are entitled. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.

Claims
  • 1. A contactless card comprising: a memory, a processor and a transmitter, wherein: the memory stores a master key, transmission data and a counter value;using the transmitter, the contactless card is configured to be in data communication with a client device; andthe contactless card is an MSD compliant contactless card;wherein the contactless card is configured to: receive a key diversification value from the client device, wherein the key diversification value includes a biometric input;generate a diversified key using the master key, the counter value, the key diversification value and a cryptographic algorithm;encrypt the transmission data using the cryptographic algorithm and the diversified key to yield the encrypted transmission data; andtransmit the encrypted transmission data to the client device.
  • 2. The contactless card of claim 1, wherein the transmitter is configured to transmit the encrypted transmission data in compliance with one or more of the following standards: ISO/IEC 7810, ISO/IEC 7811, ISO/IEC 7812, ISO/IEC 7813, ISO 8583, or ISO/IEC 4909.
  • 3. The contactless card of claim 1, wherein the biometric input includes data associated with a photo.
  • 4. The contactless card of claim 1, wherein the biometric input includes data associated with a fingerprint.
  • 5. The contactless card of claim 1, wherein the biometric input includes an alphanumeric code.
  • 6. The contactless card of claim 1, wherein the transmission data includes an account number.
  • 7. A contactless card comprising: a memory, a processor and a transmitter, wherein: the memory stores a master key, transmission data and a counter value;using the transmitter, the contactless card is configured to be in data communication with a client device; andthe contactless card is an MSD compliant contactless card;wherein the contactless card is configured to: receive a key diversification value and an algorithm selection value from the client device, wherein the key diversification value includes a biometric input;select a cryptographic algorithm using the algorithm selection value;generate a diversified key using the master key, the counter value, the key diversification value and the cryptographic algorithm;encrypt the transmission data using the cryptographic algorithm and the diversified key to yield the encrypted transmission data; andtransmit the encrypted transmission data to the client device.
  • 8. The contactless card of claim 7, wherein the transmitter is configured to transmit the encrypted transmission data in compliance with one or more of the following standards: ISO/IEC 7810, ISO/IEC 7811, ISO/IEC 7812, ISO/IEC 7813, ISO 8583, or ISO/IEC 4909.
  • 9. The contactless card of claim 7, wherein the biometric input includes data associated with a photo, data associated with a fingerprint or an alphanumeric code.
  • 10. A computer readable non-transitory medium comprising computer-executable instructions that are executed on a client device comprising a processor, a memory, and a transmitter, the instructions comprising the steps of: receiving a first input and, based on the first input, derive a key diversification value;receiving a second input and, based on the second input, derive an algorithm selection value;transmitting the key diversification value and the algorithm selection value to a contactless card;receiving encrypted transmission data from the contactless card, wherein the encrypted transmission data represents transmission data encrypted by a cryptographic algorithm and a diversified key which is generated using a master key, a counter value, the key diversification value and the cryptographic algorithm associated with the algorithm selection value; andtransmitting the encrypted transmission data, the key diversification value and the algorithm selection value to a server.
  • 11. The computer-readable medium of claim 10, wherein the encrypted transmission data received from the contactless card is in compliance with one or more of the following standards: ISO/IEC 7810, ISO/IEC 7811, ISO/IEC 7812, ISO/IEC 7813, ISO 8583, or ISO/IEC 4909.
  • 12. The computer-readable medium of claim 10, wherein the first input is a fingerprint value received from a scanner of the client device and the second input is an alphanumeric value received from a touchscreen of the client device.
  • 13. The computer-readable medium of claim 12, wherein the memory respectively stores a plurality of key diversification values in association with a plurality of fingerprint values.
  • 14. The computer-readable medium of claim 13, wherein the instructions further comprise the steps of: transmitting the key diversification value associated with the fingerprint value received from the scanner of the client device to the contactless card and the server; andtransmitting the alphanumeric value as the algorithm selection value to the contactless card and the server.
  • 15. The computer-readable medium of claim 10, wherein the first input is a photo received through a camera of the client device.
  • 16. The computer-readable medium of claim 15, further comprising the step of transmitting the photo to the server.
  • 17. The computer-readable medium of claim 10, wherein the memory respectively stores a plurality of key diversification values in association with a plurality of fingerprint values.
  • 18. A computer readable non-transitory medium comprising computer-executable instructions that are executed on a client device comprising a processor, a memory, and a transmitter, the instructions comprising the steps of: receiving a first input and, based on the first input, derive a key diversification value;receiving a second input and, based on the second input, derive an algorithm selection value;transmitting the key diversification value and the algorithm selection value to a contactless card;receiving encrypted transmission data from the contactless card, wherein the encrypted transmission data represents transmission data encrypted by a cryptographic algorithm and a diversified key which is generated using a master key, a counter value, the key diversification value and the cryptographic algorithm associated with the algorithm selection value; andtransmitting the encrypted transmission data, the key diversification value and the algorithm selection value to a server;wherein the memory respectively stores a plurality of algorithm selection values in association with a plurality of fingerprint values.
  • 19. The computer-readable medium of claim 18, wherein the memory respectively stores a plurality of key diversification values in association with a plurality of alphanumeric values.
  • 20. The computer-readable medium of claim 18, wherein the memory respectively stores a plurality of algorithm selection values in association with a plurality of alphanumeric values.
CROSS REFERENCE TO RELATED APPLICATION

The subject application is a Continuation of U.S. application Ser. No. 16/590,536 filed Oct. 2, 2019, the complete disclosure of which is incorporated herein by reference.

US Referenced Citations (551)
Number Name Date Kind
4683553 Mollier Jul 1987 A
4827113 Rikuna May 1989 A
4910773 Hazard et al. Mar 1990 A
5036461 Elliott et al. Jul 1991 A
5363448 Koopman, Jr. et al. Nov 1994 A
5377270 Koopman, Jr. et al. Dec 1994 A
5533126 Hazard Jul 1996 A
5537314 Kanter Jul 1996 A
5592553 Guski et al. Jan 1997 A
5616901 Crandall Apr 1997 A
5666415 Kaufman Sep 1997 A
5764789 Pare, Jr. et al. Jun 1998 A
5768373 Lohstroh et al. Jun 1998 A
5778072 Samar Jul 1998 A
5796827 Coppersmith et al. Aug 1998 A
5832090 Raspotnik Nov 1998 A
5883810 Franklin et al. Mar 1999 A
5901874 Deters May 1999 A
5929413 Gardner Jul 1999 A
5960411 Hartman et al. Sep 1999 A
6021203 Douceur et al. Feb 2000 A
6049328 Vanderheiden Apr 2000 A
6058373 Blinn et al. May 2000 A
6061666 Do et al. May 2000 A
6105013 Curry et al. Aug 2000 A
6199114 White et al. Mar 2001 B1
6199762 Hohle Mar 2001 B1
6216227 Goldstein et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6282522 Davis et al. Aug 2001 B1
6324271 Sawyer et al. Nov 2001 B1
6342844 Rozin Jan 2002 B1
6367011 Lee et al. Apr 2002 B1
6402028 Graham, Jr. et al. Jun 2002 B1
6438550 Doyle et al. Aug 2002 B1
6501847 Helot et al. Dec 2002 B2
6631197 Taenzer Oct 2003 B1
6641050 Kelley et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6662020 Aaro et al. Dec 2003 B1
6721706 Strubbe et al. Apr 2004 B1
6731778 Oda et al. May 2004 B1
6779115 Naim Aug 2004 B1
6792533 Jablon Sep 2004 B2
6829711 Kwok et al. Dec 2004 B1
6834271 Hodgson et al. Dec 2004 B1
6834795 Rasmussen et al. Dec 2004 B1
6852031 Rowe Feb 2005 B1
6865547 Brake, Jr. et al. Mar 2005 B1
6873260 Lancos et al. Mar 2005 B2
6877656 Jaros et al. Apr 2005 B1
6889198 Kawan May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6910627 Simpson-Young et al. Jun 2005 B1
6971031 Haala Nov 2005 B2
6990588 Yasukura Jan 2006 B1
7006986 Sines et al. Feb 2006 B1
7085931 Smith et al. Aug 2006 B1
7127605 Montgomery et al. Oct 2006 B1
7128274 Kelley et al. Oct 2006 B2
7140550 Ramachandran Nov 2006 B2
7152045 Hoffman Dec 2006 B2
7165727 de Jong Jan 2007 B2
7175076 Block et al. Feb 2007 B1
7202773 Oba et al. Apr 2007 B1
7206806 Pineau Apr 2007 B2
7232073 de Jong Jun 2007 B1
7246752 Brown Jul 2007 B2
7254569 Goodman et al. Aug 2007 B2
7263507 Brake, Jr. et al. Aug 2007 B1
7270276 Vayssiere Sep 2007 B2
7278025 Saito et al. Oct 2007 B2
7287692 Patel et al. Oct 2007 B1
7290709 Tsai et al. Nov 2007 B2
7306143 Bonneau, Jr. et al. Dec 2007 B2
7319986 Praisner et al. Jan 2008 B2
7325132 Takayama et al. Jan 2008 B2
7373515 Owen et al. May 2008 B2
7374099 de Jong May 2008 B2
7375616 Rowse et al. May 2008 B2
7380710 Brown Jun 2008 B2
7424977 Smets et al. Sep 2008 B2
7453439 Kushler et al. Nov 2008 B1
7472829 Brown Jan 2009 B2
7487357 Smith et al. Feb 2009 B2
7568631 Gibbs et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7597250 Finn Oct 2009 B2
7628322 Hohmanns et al. Dec 2009 B2
7652578 Braun et al. Jan 2010 B2
7689832 Talmor et al. Mar 2010 B2
7703142 Wilson et al. Apr 2010 B1
7748609 Sachdeva et al. Jul 2010 B2
7748617 Gray Jul 2010 B2
7748636 Finn Jul 2010 B2
7762457 Bonalle et al. Jul 2010 B2
7789302 Tame Sep 2010 B2
7793851 Mullen Sep 2010 B2
7796013 Murakami et al. Sep 2010 B2
7801799 Brake, Jr. et al. Sep 2010 B1
7801829 Gray et al. Sep 2010 B2
7805755 Brown et al. Sep 2010 B2
7809643 Phillips et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7828214 Narendra et al. Nov 2010 B2
7848746 Juels Dec 2010 B2
7882553 Tuliani Feb 2011 B2
7900048 Andersson Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7933589 Mamdani et al. Apr 2011 B1
7949559 Freiberg May 2011 B2
7954716 Narendra et al. Jun 2011 B2
7954723 Charrat Jun 2011 B2
7962369 Rosenberg Jun 2011 B2
7993197 Mamdani et al. Aug 2011 B2
8005426 Huomo et al. Aug 2011 B2
8010405 Bortolin et al. Aug 2011 B1
RE42762 Shin Sep 2011 E
8041954 Plesman Oct 2011 B2
8060012 Sklovsky et al. Nov 2011 B2
8074877 Mullen et al. Dec 2011 B2
8082450 Frey et al. Dec 2011 B2
8095113 Kean et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8103249 Markison Jan 2012 B2
8108687 Ellis et al. Jan 2012 B2
8127143 Abdallah et al. Feb 2012 B2
8135648 Oram et al. Mar 2012 B2
8140010 Symons et al. Mar 2012 B2
8141136 Lee et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150767 Wankmueller Apr 2012 B2
8186602 Itay et al. May 2012 B2
8196131 von Behren et al. Jun 2012 B1
8215563 Levy et al. Jul 2012 B2
8224753 Atef et al. Jul 2012 B2
8232879 Davis Jul 2012 B2
8233841 Griffin et al. Jul 2012 B2
8245292 Buer Aug 2012 B2
8249654 Zhu Aug 2012 B1
8266451 Leydier et al. Sep 2012 B2
8285329 Zhu Oct 2012 B1
8302872 Mullen Nov 2012 B2
8312519 Bailey et al. Nov 2012 B1
8316237 Felsher et al. Nov 2012 B1
8332272 Fisher Dec 2012 B2
8365988 Medina, III et al. Feb 2013 B1
8369960 Tran et al. Feb 2013 B2
8371501 Hopkins Feb 2013 B1
8381307 Cimino Feb 2013 B2
8391719 Alameh et al. Mar 2013 B2
8417231 Sanding et al. Apr 2013 B2
8439271 Smets et al. May 2013 B2
8475367 Yuen et al. Jul 2013 B1
8489112 Roeding et al. Jul 2013 B2
8511542 Pan Aug 2013 B2
8559872 Butler Oct 2013 B2
8566916 Vernon et al. Oct 2013 B1
8567670 Stanfield et al. Oct 2013 B2
8572386 Takekawa et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8583454 Beraja et al. Nov 2013 B2
8589335 Smith et al. Nov 2013 B2
8594730 Bona et al. Nov 2013 B2
8615468 Varadarajan Dec 2013 B2
8620218 Awad Dec 2013 B2
8667285 Coulier et al. Mar 2014 B2
8723941 Shirbabadi et al. May 2014 B1
8726405 Bailey et al. May 2014 B1
8740073 Shankar et al. Jun 2014 B2
8750514 Gallo et al. Jun 2014 B2
8752189 De Jong Jun 2014 B2
8794509 Bishop et al. Aug 2014 B2
8799668 Cheng Aug 2014 B2
8806592 Ganesan Aug 2014 B2
8807440 Von Behren et al. Aug 2014 B1
8811892 Khan et al. Aug 2014 B2
8814039 Bishop et al. Aug 2014 B2
8814052 Bona et al. Aug 2014 B2
8818867 Baldwin et al. Aug 2014 B2
8850538 Vernon et al. Sep 2014 B1
8861733 Benteo et al. Oct 2014 B2
8880027 Darringer Nov 2014 B1
8888002 Chesney et al. Nov 2014 B2
8898088 Springer et al. Nov 2014 B2
8934837 Zhu et al. Jan 2015 B2
8977569 Rao Mar 2015 B2
8994498 Agrafioti et al. Mar 2015 B2
9004365 Bona et al. Apr 2015 B2
9038894 Khalid May 2015 B2
9042814 Royston et al. May 2015 B2
9047531 Showering et al. Jun 2015 B2
9069976 Toole et al. Jun 2015 B2
9081948 Magne Jul 2015 B2
9104853 Venkataramani et al. Aug 2015 B2
9118663 Bailey et al. Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9129280 Bona et al. Sep 2015 B2
9152832 Royston et al. Oct 2015 B2
9203800 Izu et al. Dec 2015 B2
9209867 Royston Dec 2015 B2
9251330 Boivie et al. Feb 2016 B2
9251518 Levin et al. Feb 2016 B2
9258715 Borghei Feb 2016 B2
9270337 Zhu et al. Feb 2016 B2
9306626 Hall et al. Apr 2016 B2
9306942 Bailey et al. Apr 2016 B1
9324066 Archer et al. Apr 2016 B2
9324067 Van Os et al. Apr 2016 B2
9332587 Salahshoor May 2016 B2
9338622 Bjontegard May 2016 B2
9373141 Shakkarwar Jun 2016 B1
9379841 Fine et al. Jun 2016 B2
9413430 Royston et al. Aug 2016 B2
9413768 Gregg et al. Aug 2016 B1
9420496 Indurkar Aug 2016 B1
9426132 Alikhani Aug 2016 B1
9432339 Bowness Aug 2016 B1
9455968 Machani et al. Sep 2016 B1
9473509 Arsanjani et al. Oct 2016 B2
9491626 Sharma et al. Nov 2016 B2
9553637 Yang et al. Jan 2017 B2
9619952 Zhao et al. Apr 2017 B1
9635000 Muftic Apr 2017 B1
9665858 Kumar May 2017 B1
9674705 Rose et al. Jun 2017 B2
9679286 Colnot et al. Jun 2017 B2
9680942 Dimmick Jun 2017 B2
9710804 Zhou et al. Jul 2017 B2
9740342 Paulsen et al. Aug 2017 B2
9740988 Levin et al. Aug 2017 B1
9763097 Robinson et al. Sep 2017 B2
9767329 Forster Sep 2017 B2
9769662 Quern Sep 2017 B1
9773151 Mil'shtein et al. Sep 2017 B2
9780953 Gaddam et al. Oct 2017 B2
9891823 Feng et al. Feb 2018 B2
9940571 Herrington Apr 2018 B1
9953323 Candelore et al. Apr 2018 B2
9961194 Wiechman et al. May 2018 B1
9965756 Davis et al. May 2018 B2
9965911 Wishne May 2018 B2
9978058 Wurmfeld et al. May 2018 B2
10043164 Dogin et al. Aug 2018 B2
10075437 Costigan et al. Sep 2018 B1
10129648 Hernandez et al. Nov 2018 B1
10133979 Eidam et al. Nov 2018 B1
10217105 Sangi et al. Feb 2019 B1
20010010723 Pinkas Aug 2001 A1
20010029485 Brody et al. Oct 2001 A1
20010034702 Mockett et al. Oct 2001 A1
20010054003 Chien et al. Dec 2001 A1
20020078345 Sandhu et al. Jun 2002 A1
20020093530 Krothapalli et al. Jul 2002 A1
20020100808 Norwood et al. Aug 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20020152116 Yan et al. Oct 2002 A1
20020153424 Li Oct 2002 A1
20020165827 Gien et al. Nov 2002 A1
20030023554 Yap et al. Jan 2003 A1
20030034873 Chase et al. Feb 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030078882 Sukeda et al. Apr 2003 A1
20030167350 Davis et al. Sep 2003 A1
20030208449 Diao Nov 2003 A1
20040015958 Veil et al. Jan 2004 A1
20040039919 Takayama et al. Feb 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040215674 Odinak et al. Oct 2004 A1
20040230799 Davis Nov 2004 A1
20050044367 Gasparini et al. Feb 2005 A1
20050075985 Cartmell Apr 2005 A1
20050081038 Arditti Modiano et al. Apr 2005 A1
20050138387 Lam et al. Jun 2005 A1
20050156026 Ghosh et al. Jul 2005 A1
20050160049 Lundholm Jul 2005 A1
20050195975 Kawakita Sep 2005 A1
20050247797 Ramachandran Nov 2005 A1
20060006230 Bear et al. Jan 2006 A1
20060040726 Szrek et al. Feb 2006 A1
20060041402 Baker Feb 2006 A1
20060044153 Dawidowsky Mar 2006 A1
20060047954 Sachdeva et al. Mar 2006 A1
20060085848 Aissi et al. Apr 2006 A1
20060136334 Atkinson et al. Jun 2006 A1
20060173985 Moore Aug 2006 A1
20060174331 Schuetz Aug 2006 A1
20060242698 Inskeep et al. Oct 2006 A1
20060280338 Rabb Dec 2006 A1
20070033642 Ganesan et al. Feb 2007 A1
20070050303 Schroeder Mar 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070116292 Kurita et al. May 2007 A1
20070118745 Buer May 2007 A1
20070197261 Humbel Aug 2007 A1
20070224969 Rao Sep 2007 A1
20070239622 Routhenstein Oct 2007 A1
20070241182 Buer Oct 2007 A1
20070256134 Lehtonen et al. Nov 2007 A1
20070258594 Sandhu et al. Nov 2007 A1
20070278291 Rans et al. Dec 2007 A1
20080008315 Fontana et al. Jan 2008 A1
20080011831 Bonalle et al. Jan 2008 A1
20080014867 Finn Jan 2008 A1
20080035738 Mullen Feb 2008 A1
20080071681 Khalid Mar 2008 A1
20080072303 Syed Mar 2008 A1
20080086767 Kulkarni et al. Apr 2008 A1
20080103968 Bies et al. May 2008 A1
20080109309 Landau et al. May 2008 A1
20080110983 Ashfield May 2008 A1
20080120711 Dispensa May 2008 A1
20080156873 Wilhelm et al. Jul 2008 A1
20080162312 Sklovsky et al. Jul 2008 A1
20080164308 Aaron et al. Jul 2008 A1
20080201264 Brown et al. Aug 2008 A1
20080207307 Cunningham, II et al. Aug 2008 A1
20080209543 Aaron Aug 2008 A1
20080215887 Hart et al. Sep 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080285746 Landrock et al. Nov 2008 A1
20080308641 Finn Dec 2008 A1
20090037275 Pollio Feb 2009 A1
20090048026 French Feb 2009 A1
20090132417 Scipioni et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090171682 Dixon et al. Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090235339 Mennes et al. Sep 2009 A1
20090249077 Gargaro et al. Oct 2009 A1
20090282264 Amiel et al. Nov 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100023455 Dispensa et al. Jan 2010 A1
20100029202 Jolivet et al. Feb 2010 A1
20100033310 Narendra et al. Feb 2010 A1
20100036769 Winters et al. Feb 2010 A1
20100078471 Lin et al. Apr 2010 A1
20100082491 Rosenblatt et al. Apr 2010 A1
20100094754 Bertran et al. Apr 2010 A1
20100095130 Bertran et al. Apr 2010 A1
20100100480 Altman et al. Apr 2010 A1
20100114731 Kingston et al. May 2010 A1
20100192230 Steeves et al. Jul 2010 A1
20100207742 Buhot et al. Aug 2010 A1
20100211797 Westerveld et al. Aug 2010 A1
20100240413 He et al. Sep 2010 A1
20100257357 McClain Oct 2010 A1
20100312634 Cervenka Dec 2010 A1
20100312635 Cervenka Dec 2010 A1
20110028160 Roeding et al. Feb 2011 A1
20110035604 Habraken Feb 2011 A1
20110060631 Grossman et al. Mar 2011 A1
20110068170 Lehman Mar 2011 A1
20110084132 Tofighbakhsh Apr 2011 A1
20110101093 Ehrensvard May 2011 A1
20110113245 Varadrajan May 2011 A1
20110125638 Davis et al. May 2011 A1
20110131415 Schneider Jun 2011 A1
20110153437 Archer et al. Jun 2011 A1
20110153496 Royyuru Jun 2011 A1
20110208658 Makhotin Aug 2011 A1
20110208965 Machani Aug 2011 A1
20110211219 Bradley Sep 2011 A1
20110218911 Spodak Sep 2011 A1
20110238564 Lim et al. Sep 2011 A1
20110246780 Yeap et al. Oct 2011 A1
20110258452 Coulier et al. Oct 2011 A1
20110280406 Ma et al. Nov 2011 A1
20110282785 Chin Nov 2011 A1
20110294418 Chen Dec 2011 A1
20110312271 Ma et al. Dec 2011 A1
20120024947 Naelon Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120030121 Grellier Feb 2012 A1
20120047071 Mullen et al. Feb 2012 A1
20120079281 Lowenstein et al. Mar 2012 A1
20120109735 Krawczewicz et al. May 2012 A1
20120109764 Martin et al. May 2012 A1
20120143754 Patel Jun 2012 A1
20120150737 Rottink Jun 2012 A1
20120178366 Levy et al. Jul 2012 A1
20120185397 Levovitz Jul 2012 A1
20120196583 Kindo Aug 2012 A1
20120207305 Gallo et al. Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120238206 Singh et al. Sep 2012 A1
20120239560 Pourfallah et al. Sep 2012 A1
20120252350 Steinmetz et al. Oct 2012 A1
20120254394 Barras Oct 2012 A1
20120284194 Liu et al. Nov 2012 A1
20120290472 Mullen et al. Nov 2012 A1
20120296818 Nuzzi et al. Nov 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru et al. Dec 2012 A1
20120317628 Yeager Dec 2012 A1
20130005245 Royston Jan 2013 A1
20130008956 Ashfield Jan 2013 A1
20130026229 Jarman et al. Jan 2013 A1
20130048713 Pan Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130065564 Conner et al. Mar 2013 A1
20130080228 Fisher Mar 2013 A1
20130080229 Fisher Mar 2013 A1
20130099587 Lou Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130106576 Hinman et al. May 2013 A1
20130119130 Braams May 2013 A1
20130130614 Busch-Sorensen May 2013 A1
20130144793 Royston Jun 2013 A1
20130171929 Adams et al. Jul 2013 A1
20130179351 Wallner Jul 2013 A1
20130185772 Jaudon et al. Jul 2013 A1
20130191279 Caiman et al. Jul 2013 A1
20130216108 Hwang et al. Aug 2013 A1
20130226791 Springer et al. Aug 2013 A1
20130226796 Jiang et al. Aug 2013 A1
20130232082 Krawczewicz et al. Sep 2013 A1
20130238894 Ferg et al. Sep 2013 A1
20130282360 Shimota et al. Oct 2013 A1
20130303085 Boucher et al. Nov 2013 A1
20130304651 Smith Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130314593 Reznik et al. Nov 2013 A1
20130344857 Berionne et al. Dec 2013 A1
20140002238 Taveau et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140027506 Heo et al. Jan 2014 A1
20140032409 Rosano Jan 2014 A1
20140032410 Georgiev et al. Jan 2014 A1
20140040120 Cho et al. Feb 2014 A1
20140040139 Brudnicki et al. Feb 2014 A1
20140040147 Varadarakan et al. Feb 2014 A1
20140047235 Lessiak et al. Feb 2014 A1
20140067690 Pitroda et al. Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140074655 Lim et al. Mar 2014 A1
20140081720 Wu Mar 2014 A1
20140122340 Flitcroft et al. May 2014 A1
20140138435 Khalid May 2014 A1
20140171034 Aleksin et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140172700 Teuwen et al. Jun 2014 A1
20140180851 Fisher Jun 2014 A1
20140208112 McDonald et al. Jul 2014 A1
20140214674 Narula Jul 2014 A1
20140229375 Zaytzsev et al. Aug 2014 A1
20140245391 Adenuga Aug 2014 A1
20140256251 Caceres et al. Sep 2014 A1
20140258099 Rosano Sep 2014 A1
20140258113 Gauthier et al. Sep 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140274179 Zhu et al. Sep 2014 A1
20140279479 Maniar et al. Sep 2014 A1
20140337235 Van Heerden et al. Nov 2014 A1
20140339315 Ko Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140365780 Movassaghi Dec 2014 A1
20140379361 Mahadkar et al. Dec 2014 A1
20150012444 Brown et al. Jan 2015 A1
20150032635 Guise Jan 2015 A1
20150071486 Rhoads et al. Mar 2015 A1
20150088757 Zhou et al. Mar 2015 A1
20150089586 Ballesteros Mar 2015 A1
20150134452 Williams May 2015 A1
20150140960 Powell et al. May 2015 A1
20150154595 Collinge et al. Jun 2015 A1
20150170138 Rao Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150186871 Laracey Jul 2015 A1
20150205379 Mag et al. Jul 2015 A1
20150302409 Malek Oct 2015 A1
20150312041 Choi Oct 2015 A1
20150317626 Ran et al. Nov 2015 A1
20150332266 Friedlander et al. Nov 2015 A1
20150339474 Paz et al. Nov 2015 A1
20150371234 Huang et al. Dec 2015 A1
20160012465 Sharp Jan 2016 A1
20160026997 Tsui et al. Jan 2016 A1
20160048913 Rausaria et al. Feb 2016 A1
20160055480 Shah Feb 2016 A1
20160057619 Lopez Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160140545 Flurscheim May 2016 A1
20160148193 Kelley et al. May 2016 A1
20160232523 Venot et al. Aug 2016 A1
20160239672 Khan et al. Aug 2016 A1
20160253651 Park et al. Sep 2016 A1
20160255072 Liu Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160277383 Guyomarc'h et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160307187 Guo et al. Oct 2016 A1
20160307189 Zarakas et al. Oct 2016 A1
20160314472 Ashfield Oct 2016 A1
20160330027 Ebrahimi Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160379217 Hammad Dec 2016 A1
20170004502 Quentin et al. Jan 2017 A1
20170011395 Pillai et al. Jan 2017 A1
20170011406 Tunnell et al. Jan 2017 A1
20170017957 Radu Jan 2017 A1
20170017964 Janefalkar et al. Jan 2017 A1
20170024716 Jiam et al. Jan 2017 A1
20170039566 Schipperheijn Feb 2017 A1
20170041759 Gantert et al. Feb 2017 A1
20170068950 Kwon Mar 2017 A1
20170103388 Pillai et al. Apr 2017 A1
20170104739 Lansler et al. Apr 2017 A1
20170109509 Baghdasaryan Apr 2017 A1
20170109730 Locke et al. Apr 2017 A1
20170116447 Cimino et al. Apr 2017 A1
20170124568 Moghadam May 2017 A1
20170140379 Deck May 2017 A1
20170154328 Zarakas et al. Jun 2017 A1
20170154333 Gleeson et al. Jun 2017 A1
20170180134 King Jun 2017 A1
20170230189 Toll et al. Aug 2017 A1
20170237301 Elad et al. Aug 2017 A1
20170289127 Hendrick Oct 2017 A1
20170295013 Claes Oct 2017 A1
20170316696 Bartel Nov 2017 A1
20170317834 Smith et al. Nov 2017 A1
20170330173 Woo et al. Nov 2017 A1
20170374070 Shah et al. Dec 2017 A1
20180034507 Wobak et al. Feb 2018 A1
20180039986 Essebag et al. Feb 2018 A1
20180068316 Essebag et al. Mar 2018 A1
20180129945 Saxena et al. May 2018 A1
20180160255 Park Jun 2018 A1
20180191501 Lindemann Jul 2018 A1
20180205712 Versteeg et al. Jul 2018 A1
20180240106 Garrett et al. Aug 2018 A1
20180254909 Hancock Sep 2018 A1
20180268132 Buer et al. Sep 2018 A1
20180270214 Caterino et al. Sep 2018 A1
20180294959 Traynor et al. Oct 2018 A1
20180300716 Carlson Oct 2018 A1
20180302396 Camenisch et al. Oct 2018 A1
20180315050 Hammad Nov 2018 A1
20180316666 Koved et al. Nov 2018 A1
20180322486 Deliwala et al. Nov 2018 A1
20180359100 Gaddam et al. Dec 2018 A1
20190014107 George Jan 2019 A1
20190019375 Foley Jan 2019 A1
20190036678 Ahmed Jan 2019 A1
20190238517 D'Agostino et al. Aug 2019 A1
Foreign Referenced Citations (38)
Number Date Country
3010336 Jul 2017 CA
101192295 Jun 2008 CN
103023643 Apr 2013 CN
103417202 Dec 2013 CN
1 085 424 Mar 2001 EP
1 223 565 Jul 2002 EP
1 265 186 Dec 2002 EP
1 783 919 May 2007 EP
2 852 070 Jan 2009 EP
2 139 196 Dec 2009 EP
1 469 419 Feb 2012 EP
2 457 221 Aug 2009 GB
2 516 861 Feb 2015 GB
2 551 907 Jan 2018 GB
101508320 Apr 2015 KR
WO 0049586 Aug 2000 WO
WO 2006070189 Jul 2006 WO
WO 2008055170 May 2008 WO
WO 2009025605 Feb 2009 WO
WO 2010049252 May 2010 WO
WO 2011112158 Sep 2011 WO
WO 2012001624 Jan 2012 WO
WO 2013039395 Mar 2013 WO
WO 2013155562 Oct 2013 WO
WO 2013192358 Dec 2013 WO
WO 2014043278 Mar 2014 WO
WO 2014170741 Oct 2014 WO
WO 2015179649 Nov 2015 WO
WO 2015183818 Dec 2015 WO
WO 2016097718 Jun 2016 WO
WO 2016160816 Oct 2016 WO
WO 2016168394 Oct 2016 WO
WO 2017042375 Mar 2017 WO
WO 2017042400 Mar 2017 WO
WO 2017157859 Sep 2017 WO
WO 2017208063 Dec 2017 WO
WO 2018063809 Apr 2018 WO
WO 2018137888 Aug 2018 WO
Non-Patent Literature Citations (43)
Entry
Haykin M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control,” Computer Science and Technology NIST Special Publication 500-157:1-60 (1988).
Lehpamer, Harvey, “Component of the RFID System,” RFID Design Principles, 2nd edition pp. 133-201 (2012).
Pourghomi, Pardis et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, vol. 4, No. 8, 2013.
Author Unknown, “CardrefresherSM from American Express®,” [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages.
Author Unknown, “Add Account Updater to your recurring payment tool,” [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages.
Author Unknown, “Visa® Account Updater for Merchants,” [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages.
Author Unknown, “Manage the cards that you use with Apple Pay,” Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages.
Author Unknown, “Contactless Specifications for Payment Systems,” EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages.
Author Unknown, “EMV Integrated Circuit Card Specifications for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https ://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages.
Author unknown, “NFC Guide: All You Need to Know About Near Field Communication” Square Guide [online] 2018[retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages.
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages.
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup” CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages.
Kevin, Android Enthusiast, “How to copy text suing from nfc tag” StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-suing-from-nfc-tag, 11 pages.
Author unknown, “Tap & Go Device Setup” Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page.
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages.
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages.
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages.
Katz, J., and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages.
Adams, D., and Maier, A-K, “Goldbug BIG SEVEN open source crypto-messengers to be compared—: or Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages.
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages.
Song, F., and Yun, A.l, “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages.
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modem Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: littp://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages.
Berg, Guy, “Fundamentals of EMV” Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieved from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages.
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages.
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages.
Van den Breekel, J., et al., “EMV inanutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages.
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages.
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co-GENIE.Platform%3DDesktop&hl-en, 3 pages.
Author unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: littps://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages.
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems” 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id-576a7b910d2d6&location-browse, 135 pages.
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone” Conference paper (2013) IEEE Africon At Mamitius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages.
Davison, A., et al., “MonoSLAM: Real-Time Single Camera Slam”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007).
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages.
Author unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages.
Vu et al., (2012). “Distinguishing users with capacitive touch communication” Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM. 10.1145/2348543.2348569.
EMVCo (EMV Card Personalization Specification, version 1.0, Jun. 2003, 81 pages).
Ullmann et al., (2012). “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, LNI, 223-234, 12 pages.
Faraj et al. (2008). “Investigation of Java Smart Card Technology for Multi-Task Applications” J. of Al-Anbar University for Pure Science, vol. 2: No. 1: 2008, 11 pages.
Dhamdhere (2017) “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages.
ISO/IEC 7813, Retrieved from Internet URL: https://en.wikipedia.org/wiki/ISO/IEC_7813, 3 pages.
“EMV Contactless Specifications for Payment Systems”, EMVCo LLC, Book C-6, Kernel 6 Specification, Feb. 2016, 122 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority issued in PCT/US2019/054312, dated Jan. 2, 2020.
Notification Concerning Transmittal of International Preliminary Report on Patentability from related PCT Application No. PCT/US2019/054312 dated Apr. 14, 2022.
Related Publications (1)
Number Date Country
20210105621 A1 Apr 2021 US
Continuations (1)
Number Date Country
Parent 16590536 Oct 2019 US
Child 16867736 US