Elevator systems have proven useful for carrying passengers among various levels within a building. There are various types of elevator systems. For example, some elevator systems are considered hydraulic and include a piston or cylinder that expands or contracts to cause movement of the elevator car. Other elevator systems rely on suspending ropes or belts between the elevator car and a counterweight. A machine includes a traction sheave that causes movement of the ropes or belts to achieve the desired movement and positioning of the elevator car. Hydraulic systems are generally considered useful in buildings that have a few stories while roped systems are typically used in taller buildings.
Each of the known types of elevator systems has features that present challenges for some implementations. For example, although roped elevator systems are useful in taller buildings, in ultra-high rise installations the ropes or belts are so long that they introduces appreciable mass and expense. The added mass of long ropes requires more power and that results in added power consumption cost. Sag due to stretch and bounce of the elevator car are other issues associated with longer ropes or belts. Additionally, longer ropes or belts and taller buildings are more susceptible to sway and drift, each of which requires additional equipment or modification to the elevator system.
An illustrative example embodiment of an elevator includes an elevator car and a drive mechanism connected with the elevator car. The drive mechanism moves with the elevator car in a vertical direction. The drive mechanism includes at least one drive member that is configured to engage a vertical structure near the elevator car, climb along the vertical structure to selectively cause movement of the elevator car, and selectively prevent movement of the elevator car when the drive member remains in a selected position relative to the vertical structure. A biasing mechanism urges the drive member in a direction to engage the vertical structure. The biasing mechanism applies a biasing force based upon a condition of the elevator car. The biasing force changes based upon a change in the condition.
In an example embodiment having at least one feature of the elevator of the previous paragraph, the vertical structure includes a traction surface that the at least one drive member engages, the at least one drive member rotates while engaging the traction surface, and the biasing force is normal to the traction surface.
In an example embodiment having at least one feature of the elevator of either of the previous paragraphs, the biasing mechanism comprises an actuator that applies the biasing force, and the actuator varies the biasing force based on the change in the condition.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the condition comprises a load of the elevator car, and comprising a sensor that provides an output indicating the load of the elevator car. A controller determines the load in the elevator car based on the output of the sensor. The actuator is controlled by the controller to change the biasing force for urging the at least one rotatable drive member to engage the vertical structure based on the change in the load in the elevator car.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the actuator increases the biasing force for urging the at least one rotatable drive member in a direction to engage the vertical surface based on an increase in the load of the elevator car and decreases the biasing force for urging the at least one rotatable drive member in the direction to engage the vertical surface based on a decrease in the load in the elevator car.
An example embodiment having at least one feature of the elevator of any of the previous paragraphs includes a feedback sensor that provides an indication of the biasing force between the at least one rotatable drive member and the vertical structure. The controller uses the indication from the feedback sensor to selectively adjust the biasing force applied by the actuator.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the at least one drive member comprises a plurality of rotatable drive members, the biasing mechanism comprises a plurality of beams supported for movement in a first direction to urge the at least one rotatable drive member into engagement with the vertical structure, the at beams move at least partially in a first direction based upon a force in a second, different direction, and the load of the elevator car is in the second direction.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the plurality of beams that are supported for pivotal movement relative to each other to change the biasing force.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the biasing mechanism includes an actuator that causes movement of the beams based on a change in the load of the elevator car and the actuator is one of electrical, electromagnetic, hydraulic or pneumatic.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the at least one drive member comprises a plurality of rotatable drive members, the drive members are supported by flexible mounts, and the biasing mechanism includes at least one actuator that changes a condition of the flexible mounts to change the biasing force.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the actuator imposes a force on the flexible mounts to change the condition.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the actuator causes deflection of the flexible mounts to change the biasing force.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the biasing mechanism includes deflectors that are moveable by the actuator to deflect the flexible mounts in a manner that changes the biasing force.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the biasing mechanism includes a chamber configured to contain a fluid, the biasing force is based on an amount of fluid in the chamber or a pressure of the fluid in the chamber, the biasing mechanism includes a plunger that is moveable relative to the chamber based on a change in the load of the elevator car, and movement of the plunger changes the biasing force.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the biasing mechanism includes a vacuum chamber that establishes an at least partial vacuum to apply the biasing force.
In an example embodiment having at least one feature of the elevator of any of the previous paragraphs, the vacuum chamber includes a flexible seal that is received against a surface of the vertical structure, the flexible seal is moveable in a vertical direction along the surface as the elevator car moves, and vacuum pressure of the vacuum chamber urges the at least one rotatable drive member into engagement with the vertical structure.
An illustrative example embodiment of a method of controlling movement of an elevator car includes connecting a drive mechanism with the elevator car. The drive mechanism includes at least one drive member that is configured to engage a vertical structure near the elevator car. The drive mechanism moves with the elevator car in a vertical direction as the drive member climbs along the vertical structure. Movement of the elevator car is prevented by maintaining the drive member in a selected position relative to the vertical structure. The drive member is selectively urged in a direction to engage the vertical structure by a biasing mechanism that applies a biasing force based upon a condition of the elevator car and changes the biasing force based upon a change in the condition.
In an example embodiment having at least one feature of the method of the previous paragraph, the condition comprises at least one of a load of the elevator car and an status of the elevator car.
In an example embodiment having at lest one feature of the method of either of the previous paragraphs, the status includes an active status in which the elevator car is providing elevator service or an inactive status in which the elevator car is parked in a designated position.
An example embodiment having at least one feature of the method of any of the previous paragraphs includes releasing the biasing force when the inactive status includes the elevator car parked in the designated position and vertically supported independent of the at least one drive member engaging the vertical structure.
The various features and advantages of at least one disclosed example embodiment will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
Disclosed example embodiments include controlling a force associated with establishing traction for a drive member that climbs a vertical structure to move an elevator car. The force control is based on a condition of the elevator car, such as the load of the elevator car or if it is currently providing service. The force control system may apply different forces and be active under only selected conditions. The disclosed embodiments prolong the useful life of the drive mechanism components. In some embodiments, a sensor that detects the force can be used as a safety device.
The drive mechanism 26 includes at least one rotatable drive member 28 that is configured to engage a vertical structure. The rotatable drive member 28 selectively causes vertical movement of the elevator car 22 as the rotatable drive member 28 rotates and moves along the vertical structure. The rotatable drive member 28 maintains a desired vertical position of the elevator car 22 when the rotatable drive member 28 engages the vertical structure remains stationary and does not rotate.
As can be seen in
The vertical structure in the example embodiment of
In the illustrated example embodiment, the structural member 30 is secured by mounting brackets 36 to one side of a hoistway 38. Other embodiments include a structural member that is made as part of the hoistway 38 or a corresponding portion of the building in which the elevator system 20 is installed. There are a variety of ways of providing a vertical structure including a traction surface 32 that can be engaged by one or more rotatable drive members 28 for purposes of propelling and supporting the elevator car.
In the example of
As shown schematically in
The biasing mechanism 50 applies the biasing force depending on a condition of the elevator car 22. For example, the biasing force depends on or is in response to a load of the elevator car 22. The biasing force changes based on changes in the load of the elevator car 22. In some embodiments, the biasing mechanism 50 has a default condition that applies a maximum biasing force available from the biasing mechanism 50. The biasing mechanism 50 reduces the biasing force in such embodiments by an amount that is based on the load of the elevator car 22. The default condition in such embodiments ensures sufficient traction to hold the elevator car 22 in a stable position during a power failure, for example.
The biasing mechanism 50 in other embodiments has a default condition that applies a relatively low biasing force when the elevator car 22 is empty. The biasing mechanism in such embodiments increases the biasing force from that of the default condition based on changes in the load of the elevator car 22.
In some embodiments, when the elevator car 22 is parked and supported vertically, such as by a buffer beneath the elevator car 22, the biasing mechanism 50 releases any normal force. This allows for reducing any unnecessary load on the drive members 28 and associated components. When the drive members 28 include rubber tires, for example, releasing the biasing force entirely avoids developing flat spots on the tires.
The example configurations shown in
One example type of passive biasing mechanism 50 that is useful with a cantilevered elevator car 22 is schematically shown in
At least one actuator 60 selectively changes a distance D between the second ends of the beams 52 to change the engagement force FN with which the rotatable drive members 28 engage the vertical surfaces of the web 32 of the I-beam structural member 30. The actuator 60 changes the distance D in response to a change in the load in the elevator cab 24. The load in the cab 24 imposes a downward force FL. The actuator 60 urges the distal ends of the beams 52 away from each other to urge the rotatable drive members 28 in a direction to engage the vertical surfaces on the web 32 of the I-beam structural member 30. In the illustrated example embodiment, the movement of the beams 52 is in a first direction, which is horizontal, and the force FL associated with the load in the elevator cab 24 is in a second direction, which is vertical. In the illustrated example embodiment, the first direction is perpendicular to the second direction.
The actuator 60 facilitates changing the amount of engagement force or normal force FN to accommodate differences in load in the elevator car 24. Such an arrangement facilitates maintaining adequate traction between the drive mechanism 26 and the structural member 30 without maintaining forces or conditions that would tend to introduce additional wear on the components of the drive mechanism 26 or the structural member 30, for example.
In this example embodiment, the wedge-shaped actuator portion 62 engages a ramped surface 68 on the intermediate members 64. The outer surface of the actuator portion 62 and the ramped surfaces 68 are coated with a low friction material in some embodiments. The wedge-shaped actuator portion 62 includes an angled surface that has a first profile 70 along a portion of the angled surface and a second profile 72 along another portion of the angled surface. The first profile 70 includes a steeper angle than an angle of the second profile 72. Additionally, the second profile 72 includes a curvature. The second profile 72 reduces the frictional load associated with engaging the angled surfaces 68 as the force FL increases. The second profile 72 compensates for an increase in the co-efficient of friction by reducing the effect of the normal force at the interface of the second profile 72 and the angled surfaces 68 under higher loads in the elevator cab 24.
As can be appreciated from
As shown in
While not illustrated in
Some embodiments include active control over the biasing mechanism 50 and the biasing force based on the load of the elevator car 22.
A feedback sensor 83 provides an indication of the force applied by the biasing mechanism 50. The controller 25 in this example uses the indication from the feedback sensor 83 to adjust the biasing force if needed. One way in which the feedback sensor 83 is useful is to provide an indication of the biasing force at each drive member 28 so that the controller 25 can adjust the biasing force at each drive member 28 individually to ensure a desired distribution of the traction forces among the drive members 28.
Only one set of drive members 28 and a single actuator is shown in
Other embodiments include an electromechanical actuator 60 that has a ball screw configuration or a self-locking worm gear. Some such actuators 60 have a feature that avoids back-driving so the actuator is capable of maintaining the positions of the components to apply a selected biasing force without requiring a constant supply of electrical energy.
In
The biasing mechanism 50 in
In
The arrangement shown in
The example embodiment of
The example shown in
Although not illustrated in
The illustrated example embodiments include various features that can be advantageous. For example, in a cantilevered arrangement, situating the drive mechanism 26 on only one side of the elevator car 22 leaves more room in the hoistway 38 to accommodate a larger sized elevator cab 24 or a variety of car configurations. Additionally, it is possible to position a door 200 (
Other features of example embodiments include reduced installation time, which is due for example to the requirement for only one structural member on only one side of the elevator car. Additionally, the structural member may be more strategically placed where load rated attachment points are more easily or more effectively accommodated inside the hoistway.
Another feature of the illustrated example embodiments is the ability to change the biasing force based on the condition or state of the elevator car. Changing the biasing force responsive to the load of the elevator car 22 allows for avoiding unnecessary wear on the drive members 28 and the surfaces 32 while consistently providing a sufficient biasing force under different conditions, such as those mentioned above.
Another feature of example embodiments is that it becomes more straightforward to incorporate more than one elevator car in a single hoistway. Multiple cars can use the same structural member without complicated arrangements to avoid interference between the operative components of the drive mechanisms for each car. Some embodiments include the ability to transfer elevator cars among different hoistways. The United States Patent Application Publications US 2109/0077636 and US 2109/0077637 each show ways of transferring elevator cars among hoistways and having more than one car in a hoistway. The teachings of those two published applications are incorporated by reference into this description.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
This application is a divisional of U.S. patent application Ser. No. 16/945,831, filed on Aug. 1, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/747,845, which was filed on Jan. 21, 2020 (now U.S. Pat. No. 11,390,490).
Number | Date | Country | |
---|---|---|---|
Parent | 16945831 | Aug 2020 | US |
Child | 17986993 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16747845 | Jan 2020 | US |
Child | 16945831 | US |