The present invention relates to fitness equipment, more particularly to climbing exercise apparatus where the exercise paths are substantially vertical and parallel to each other.
Climbing exercise machines permit a user to simulate climbing activities where two coordinated body movements are generally possible. A first motion may be referred to as homolateral movement where an asymmetrical movement of the upper limb and the lower limb on the same side occurs, and a second motion referred to as contralateral movement where diagonal movement of an upper limb with the opposite lower limb occurs. The first motion of homolateral movement or straight climbing is more closely correlated with martial arts where martial arts typically employ homolateral movements, whereas the second motion of asymmetrical or cross climbing action is more closely correlated with oppositional exercises such as swimming and walking. In homolateral motion the body halves do not cooperate but move separately, and in contralateral motion both sides of the brain function at the same time in a coordinated manner.
A climbing exercise apparatus having homolateral and contralateral modes of operation may include a frame supporting movable generally vertically oriented members in spaced apart relationship to one another. The vertically oriented members may include foot supports secured at the lower distal ends thereof and handlebars in adjustable telescopic relationship with the vertically oriented members. Handgrips may be rotatably mounted proximate the upper distal ends of the handlebars. The handgrips may be rotatable about canted axes which are canted relative to the longitudinal axis of the handlebars. The handgrips may be selectively locked for homolateral and contralateral operation of the climbing exercise apparatus.
So that the manner in which the above recited features, advantages and objects of the present invention are attained can be understood in detail, a more particular description of the invention briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
FIG. is an exploded partial perspective view of an alternate configuration of a handlebar of the climbing exercise apparatus shown in
Referring first to
The left and right guide members 118, 120 may movably support left and right tubular slide members 124,126, respectively. The guide members 118, 120 and slide members 124, 126 are depicted in the drawings as having a substantially rectangular cross section. It will be appreciated, however, that the guide members 118, 120 and slide members 124, 126 may include other cross-sectional shapes, such as, but not by way of limitation, circular, cylindrical, triangular and the like cross-sectional shapes. The slide members 124, 126 may be linearly reciprocated relative to the guide members 118, 120. Rollers 128 and the like may provide a linear bearing surface in a manner known in the art. Foot platforms 130 may be secured proximate the lower distal ends of the reciprocating members 124, 126, generally in a non-adjustable manner. A cover or shroud may be secured to the frame 110 to cover or enclose the central portion of the climbing exercise apparatus 100.
The rollers 128 may be disposed between front and rear plates of the bracket 122. The rollers 128 may be rotatable about shafts 132 fixedly securing the bracket 122 to the left and rights guide members 118, 120. The bracket 122 may include a center block 134 secured between the front and rear plates thereof. The center block 134, in cooperation with the rollers 128, may provide lateral constraint to the reciprocal movement of the slide members 124, 126.
Foot platforms 130 may be fixedly secured proximate the lower ends of the slide members 124, 126 in a generally non-adjustable manner. In some instances, the foot platforms 130 may be configured for pivoting movement. The foot platforms 130 may be secured to generally C-shaped foot brackets 138 fixedly secured proximate the lower ends of the slide members 124, 126. Rollers 140 may be rotatably secured to the foot brackets 138 providing lateral constraint at the lower ends of the slide members 124, 126.
The slide members 124, 124 are generally vertically oriented and may be linearly reciprocated by a user a distance which corresponds to the maximum desired stepping height of the user. A pulley 142 may be rotatably secured to the bracket 122. A flexible member or cable 144 may be utilized to provide reciprocal or oppositional dependent action of the slide members 124, 126. The cable 144 may be routed over the pulley 142 and the distal ends thereof secured to respective slide members 124, 126.
Left and right handlebars 146, 148 may be adjustably secured to the slide members 124, 126. The handlebars 146, 148 may include elongated handlebar leg members 150 in telescopic relationship with a respective slide member 124, 126. The handlebars 146, 148 may be selectively adjusted relative to the slide members 124, 126. The handlebars 146, 148 may releasably engage with detent adjustment holes 152 formed in the slide members 124, 126 to set the handlebars 146, 148 to the expected arm reach of a user of the climbing exercise apparatus 100.
The left and right handlebars 146, 148 may include left and right handgrips 154, 156 secured to the upper distal ends of the handlebar leg members 150. The left and rights handgrips 154, 156 may be rotatably secured to mounting stubs 158 projecting from the handlebar leg members 150. The mounting stubs 158 may extend outwardly from the handlebar leg members 150 defining an axis A perpendicular to the longitudinal axis of the handlebar leg members 150. The mounting stubs 158 may include a stub boss 160 at the distal ends thereof having an outwardly facing generally flat or planar face 162 which is slanted rearward from the top edge to the bottom edge of the planar face 162. The stub boss 160 may include a threaded borehole 164 defining an axis B perpendicular to the face 162 of the stub boss 160. The axes A and B may define a canted angle θ between five to thirty degrees (5° to 30°). The handgrips 154, 156 may be coupled to the handlebar leg members 150 by threading the threaded shaft 166 of a knob 168 through a hole 155 extending through the handgrips 154, 156 proximate the distal ends thereof into the borehole 164 of the stub boss 160 so that the handgrips 154, 156 are rotatable about the canted axis B.
Referring now to
The handgrips 154, 156 may be secured to the handlebar leg members 150 for a user to operate the climbing exercise apparatus 100 in both a homolateral (straight) or a contralateral (cross) exercise mode. Changing the mode of operation of the climbing exercise apparatus 100 from a homolateral mode to a contralateral mode or vice versa may be performed by loosing the knob 168 and rotating the handgrips 154, 156 about the axis B to the opposite lateral side of the climbing exercise apparatus 100. The canted axes B permit rotation of the handgrips 154, 156 about the axes B without colliding, as depicted in
Referring now to
An alternate configuration for locking the handgrips 154, 156 to the handlebar leg members 150 is shown in
Referring now to
The climbing exercise apparatus 200 may include a frame comprising a base 210 and a stanchion 212 extending generally vertically upward from the base 210 angled generally forward at an acute angle θ of about fifteen (15°) degrees, shown in
The pulley 142 may be disposed between the slide members 224, 226 below the bracket 270. The pulley 142 may be rotatably supported by support arms 225, 227 which are secured to and extend downward from opposite sides of the bracket 270. The frame 210 may include fixed handles 119 that a user may grasp to steady himself or while reciprocating only his legs in an up and down motion.
As with the climbing exercise apparatus 100, the canted axes B prevent collision of the handgrips 154, 156 upon rotation about the axes B.
Referring now to
The handgrips 354, 356 may be releasably secured to the leg members 350 of the handlebars 346, 348 for homolateral or contralateral exercise modes. For purposes of illustration, but not by way of limitation, bolts or pins 358 and the like may be utilized to secure the handgrips 354, 356 to the leg members 350. Alternatively, pins may project from the distal ends of the handgrips 346, 348 (not shown in the drawings) that may be inserted into the hole 352 to secure the handgrips 354, 356 to the leg members 350. Other means and methods may be employed to secure the handgrips 354, 356 to the leg members 350, such as frictions clamps. Geometric shapes (male or female) such as a square, rectangle or triangle may be formed on the leg members 350 and a corresponding square, rectangle or triangle formed on the handgrips 354, 356 for mating engagement therewith.
While preferred embodiments of the invention have been shown and described, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims which follow.
This application claims priority to and the benefit of the filing dates of U.S. Provisional Application Ser. No. 62/917,028, filed Nov. 16, 2018, and U.S. Provisional Application Ser. No. 62/919,562, filed Mar. 18, 2019, which applications are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62917028 | Nov 2018 | US | |
62919562 | Mar 2019 | US |