This application pertains generally to exercise machines, and specifically to climbing exercise machines that simulate a continuous vertical climbing motion for the user.
Many persons in different levels of physical condition and types of athletic ability desire to improve their overall physical fitness and cardiovascular capability. Prior exercise devices provide a wide range of motions and activities for increasing physical fitness. For example, known exercise devices may strengthen and condition individual muscles or various muscle groups of the user. Prior exercise devices may also exercise the entire body simultaneously to increase the overall physical fitness of the user.
Prior exercise devices frequently simulate different motions such as walking, running, and climbing. Climbing is particularly advantageous because it exercises the upper and lower body simultaneously, and it efficiently and effectively exercises all the major muscle groups of the body. Prior climbing devices emulate a climbing motion by having moveable handles and foot pedals which move in a generally predetermined pattern or range of motion.
U.S. Pat. No. 5,492,515 to Charnitski, the entirety of which is incorporated herein by reference, is generally representative of the state of the art of climbing exercise machines, which has not significantly advanced in many years and suffers from several drawbacks. Specifically, prior climbing exercise machines generally comprise a large and unstable base, which significantly increases the machine's weight, decreases its movability, and presents the risk of injury to the user or surrounding people and property should the instability of the base cause the machine to rock or tip. These problems are compounded by the provision in these machines of a single central track, interconnecting both handles and both foot pedals along a single axis, which further impedes the stability, movability, and safety of the machine and is generally aesthetically displeasing. Moreover, prior climbing exercise machines generally include at least one slide and/or belt that may fail or require frequent lubrication, and which typically shorten the useful life of the machine.
U.S. Pat. No. 5,490,818 to Haber, the entirety of which is incorporated herein by reference, represents a climbing exercise machine with two uprights such that each upright houses a handle and a foot pedal. This is an improvement that increases the stability and opens the central viewing area for the user. However, the shortcomings of this design include that the handle and foot pedal engaged with each upright are mounted on a singular carriage such that the left-side handle cannot move independently from the left-side foot pedal, and likewise for the right-side handle and foot pedal. This eliminates the ability of the user to use a natural-gait climbing motion, wherein a user's left foot and left hand move in opposite directions and the user's right foot and right hand likewise move in opposite directions. This design also uses a perimetrical linkage connection, wherein the left-side handle and foot pedal carriage and the right-side handle and foot pedal carriage are connected across the upper end and the lower end of the frame by reciprocating linear motion cables and pulleys. This type of interconnection of the handles and foot pedals requires the usage of a linear motion resistance mechanism, such as the piston-driven hydraulic resistance system claimed by Haber. This type of resistance mechanism has multiple shortcomings, including a “jerky” feel associated with the reversing motion of the piston and fluid. Hydraulic systems are also prone to leaks that can create a messy and hazardous situation in a user's home or fitness facility. The needle valves required to adjust hydraulic valves can also be very difficult to calibrate to create consistent resistance settings.
U.S. Pat. No. 5,803,880 to Allen, the entirety of which is incorporated herein by reference, presents a climbing exercise machine with two uprights such that each upright houses a handle and a foot pedal. This design also has a perimetrical linkage connection, wherein the left and right handle and foot pedal carriages are connected across the upper end of the uprights with a cable and pulleys and the lower end has a hydraulic fluid connection, which regulates the stroke length required to allow the user to move the handles and foot pedals in the opposite reciprocating direction and creates the resistance to the exercise motion. This hydraulic resistance system has many of the same shortcomings as the Haber design, but with the addition of many components that add substantial manufacturing cost and complexity to the design.
There is thus a need in the art for climbing exercise machines with improved stability, movability, safety, and aesthetics. It is further advantageous for such improved climbing exercise machines to reduce the need for maintenance of the machine or any of its components, and to extend the useful life of the machine.
In one aspect of the present invention, a climbing exercise machine comprises a frame, comprising two uprights disposed on opposing lateral sides of the climbing exercise machine, a base interconnected to at least one upright, and a crossbar interconnecting the uprights above the base; two handles; two foot pedals; four reciprocating, self-lubricating slides; two linear rails; at least two belts; and an axle, housed within the crossbar, wherein each handle and each foot pedal is mounted to a separate one of the reciprocating, self-lubricating slides, wherein each upright houses an assembly comprising one reciprocating, self-lubricating slide to which a handle is mounted, one reciprocating, self-lubricating slide to which a foot pedal is mounted, one linear rail, and at least one belt, wherein the reciprocating, self-lubricating slides of each assembly are mounted on the linear rail of the assembly and interconnected by the at least one belt of the assembly, wherein the belts of both assemblies are interconnected by the axle, and wherein, due to the interconnections of the reciprocating, self-lubricating slides by the belts and of the belts by the axle, travel of any reciprocating, self-lubricating slide along the rail to which it is mounted results in movement in a same direction or an opposing direction of each of the three other reciprocating, self-lubricating slides along the rails to which they are respectively mounted, thereby simulating a continuous vertical climbing motion for a user.
In embodiments, the climbing exercise machine may further comprise an electronic device or system enabling a user to perceive digital content while using the climbing exercise machine. The electronic device or system may, but need not, comprise a networked tablet computer mounted on a mounting apparatus associated with the frame.
In embodiments, the at least two belts may consist of four belts.
In embodiments, the climbing exercise machine may further comprise a braking feature configured to increases resistance encountered by the user during exercise. The braking feature may, but need not, comprise at least one selected from the group consisting of a hydraulic pump, a magnetic or electromagnetic device configured to retard rotation of the axle, and a friction brake. The climbing exercise machine may, but need not, further comprise a user input device operable to allow the user to selectively adjust a magnitude of a braking effect imparted by the braking feature.
In embodiments, the climbing exercise machine may further comprise a sensor or device configured to measure at least one parameter associated with a use of the machine that corresponds to a parameter of interest to the user. The parameter of interest to the user may, but need not, be selected from the group consisting of a length of the use, an effective distance climbed during the use, and a quantity of energy expended during the use. The parameter associated with a use of the machine may, but need not, be selected from the group consisting of a time of the use, a total distance traveled by one or more of the slides during the use, a number of rotations of the axle during the use, and/or a quantity of work done on the axle during the use.
In another aspect of the present invention, a climbing exercise machine comprises a base support frame configured to contact a floor or ground surface; a first elongate upright, rigidly connected to the base support frame at an obtuse angle relative to the floor or ground surface; a second elongate upright, horizontally spaced apart from and parallel to the first upright and rigidly connected to the base support frame at an obtuse angle relative to the floor or ground surface; a first movable handle and a first movable foot pedal, vertically spaced apart from each other and each being slidably engaged with the first upright to enable reciprocating linear movement along the first upright; a second movable handle and a second movable foot pedal, vertically spaced apart from each other and each being slidably engaged with the second upright to enable reciprocating linear movement along the second upright; an adjustable resistance mechanism, mounted on a stationary portion of the machine; and a linkage assembly, interconnecting and synchronizing the first movable handle, the first movable foot pedal, the second movable handle, the second movable foot pedal, and the adjustable resistance mechanism, wherein the interconnection and synchronization provided by the linkage assembly enables reciprocating concurrent movement of the first handle, the first foot pedal, the second handle, the second foot pedal, and the adjustable resistance mechanism to simulate a resisted continuous climbing motion for a user.
In embodiments, the linkage assembly may comprise multiple flexible components, each guided by pulleys.
In embodiments, the linkage assembly may comprise multiple gear racks, multiple drive gears, and at least one flexible component guided by pulleys.
In embodiments, movement of one handle or foot pedal may cause concurrent motion of all other handles and foot pedals. The concurrent motion of the handles and foot pedals may, but need not, simulate a contralateral climbing motion. The concurrent motion of the handles and foot pedals may, but need not, simulate an ipsilateral climbing motion.
In embodiments, the locations of the first handle and the first foot pedal relative to each other may be adjustable prior to operation of the machine and the locations of the second handle and the second foot pedal relative to each other may be adjustable prior to operation of the machine.
In embodiments, at least one foot pedal may be reconfigurable between a secured configuration and an unsecured configuration, wherein in the secured configuration an angle of a foot pedal relative to a corresponding foot pedal support axle is fixed and in the unsecured configuration the foot pedal may articulate about the corresponding foot pedal support axle.
In embodiments, the climbing exercise machine may further comprise an electronic device or system enabling a user to perceive digital content while using the climbing exercise machine. The electronic device or system may, but need not, comprise a tablet computer mounted on a mounting apparatus of the climbing exercise machine. The electronic device or system may, but need not, further comprise at least one sensor, disposed within or on a surface of the climbing exercise machine and configured to transmit data pertaining to the function of the climbing exercise machine to the tablet computer. The mounting apparatus may, but need not, be adjustable such that a user can adjust at least one of an angle of the tablet computer relative to the uprights and a height of the tablet computer above the floor or ground surface. The tablet computer may, but need not, be configured to allow a user to input data corresponding to the user's workout preferences and display to the user data corresponding to the user's exercise performance and experience.
In another aspect of the present invention, a climbing exercise machine comprises a base support frame configured to contact a floor or ground surface; a first elongate upright having a first end and second end, wherein the first end is rigidly connected to the base support frame at an obtuse angle relative to the floor or ground surface; an elongate or V-shaped crossbar having a first end and a second end, wherein a central portion of the crossbar is rigidly connected to the second end of the first upright to form a T or Y shape; a second elongate upright having a first end and a second end, wherein the first end is rigidly connected to the first end of the crossbar such that the first upright and the second upright are in substantially parallel planes on opposing vertical sides of the crossbar; a third elongate upright having a first end and a second end, wherein the first end is rigidly connected to the second end of the crossbar such that the first upright and the third upright are in substantially parallel planes on opposing vertical sides of the crossbar; first and second movable foot pedals, operatively engaged with opposing lateral sides of the first upright to enable reciprocating linear movement along the first upright; a first movable handle, operatively engaged with the second upright to enable reciprocating linear movement along the second upright; a second movable handle, operatively engaged with the third upright to enable reciprocating linear movement along the third upright; an adjustable resistance mechanism, mounted on a stationary portion of the machine; and a linkage assembly, interconnecting and synchronizing the first movable handle, the first movable foot pedal, the second movable handle, the second movable foot pedal, and the adjustable resistance mechanism, wherein the interconnection and synchronization provided by the linkage assembly enables reciprocating concurrent movement of the first handle, the first foot pedal, the second handle, the second foot pedal, and the adjustable resistance mechanism to simulate a resisted continuous climbing motion for a user.
In embodiments, the linkage assembly may comprise multiple flexible components, each guided by pulleys.
In embodiments, the linkage assembly may comprise multiple gear racks, multiple drive gears, and at least one flexible component guided by pulleys.
In embodiments, movement of one handle or foot pedal may cause concurrent motion of all other handles and foot pedals. The concurrent motion of the handles and foot pedals may, but need not, simulate a contralateral climbing motion. The concurrent motion of the handles and foot pedals may, but need not, simulate an ipsilateral climbing motion.
In embodiments, the locations of the first handle and the first foot pedal relative to each other may be adjustable prior to operation of the machine and the locations of the second handle and the second foot pedal relative to each other may be adjustable prior to operation of the machine.
In embodiments, at least one foot pedal may be reconfigurable between a secured configuration and an unsecured configuration, wherein in the secured configuration an angle of a foot pedal relative to a corresponding foot pedal support axle is fixed and in the unsecured configuration the foot pedal may articulate about the corresponding foot pedal support axle.
In embodiments, the climbing exercise machine may further comprise an electronic device or system enabling a user to perceive digital content while using the climbing exercise machine. The electronic device or system may, but need not, comprise a tablet computer mounted on a mounting apparatus of the climbing exercise machine. The electronic device or system may, but need not, further comprise at least one sensor, disposed within or on a surface of the climbing exercise machine and configured to transmit data pertaining to the function of the climbing exercise machine to the tablet computer. The mounting apparatus may, but need not, be adjustable such that a user can adjust at least one of an angle of the tablet computer relative to the uprights and a height of the tablet computer above the floor or ground surface. The tablet computer may, but need not, be configured to allow a user to input data corresponding to the user's workout preferences and display to the user data corresponding to the user's exercise performance and experience.
In another aspect of the present invention, a system for delivering digital content to a user comprises a climbing exercise machine as described herein; and a remote server, connected to the tablet computer of the climbing exercise machine via a network.
In embodiments, the digital content may comprise a climbing class or instructional video.
In embodiments, the digital content may comprise at least one type of entertainment content selected from the group consisting of television content, movie content, and music.
In embodiments, the network may be selected from the group consisting of an Ethernet network, a Token-Ring network, a wide-area network, a virtual network, the Internet, an intranet, an extranet, a Public Switched Telephone Network (PSTN), and an infrared network.
In embodiments, the network may be a wireless network.
In another aspect of the present invention, a method for delivering digital content to a remote user comprises providing a climbing exercise machine as described herein; and transmitting, via a network to which the tablet computer is connected, the digital content from a remote server to the tablet computer.
In embodiments, the digital content may comprise a live or archived climbing class or instructional video.
In embodiments, the digital content may comprise both video content and audio content and may be streamed to the tablet computer substantially in real time.
In embodiments, the digital content may comprise both video content and audio and may be archived content provided from a database.
In embodiments, the method may further comprise displaying at least a portion of the digital content on a display screen of the tablet computer.
In another aspect of the present invention, a climbing exercise machine comprises a base support frame, configured to contact a floor or ground surface; a first upright, wherein a first end of the first upright is rigidly connected to the base support frame at an angle of between about 45° and about 90° relative to the floor or ground surface; a second upright, laterally spaced apart from and parallel to the first upright, wherein a first end of the second upright is rigidly connected to the base support frame at an angle of between about 45° and about 90° relative to the floor or ground surface; a first handle mounted on a first linear motion carriage; a first foot pedal mounted on a second linear motion carriage; a second handle mounted on a third linear motion carriage; a second foot pedal mounted on a fourth linear motion carriage; a cross connector housing, wherein a first end of the cross connector housing is rigidly connected to the first upright at a middle, central, or intermediate portion of the first upright and a second end of the cross connector housing is rigidly connected to the second upright at a middle, central, or intermediate portion of the second upright; a cross connector drive axle, mounted on or within the cross connector housing; a first linkage assembly located on or within the first upright, interconnecting the first handle, the first foot pedal, and the first end of the cross connector drive axle; and a second linkage assembly located on or within the second upright, interconnecting the second handle, the second foot pedal, and the second end of the cross connector drive axle, wherein the first and second linear motion carriages are vertically spaced apart from each other and slidably engaged with the first upright to enable reciprocating linear movement of the first linear motion carriage, the first handle, the second linear motion carriage, and the first foot pedal along the first upright, wherein the third and fourth linear motion carriages are vertically spaced apart from each other and slidably engaged with the second upright to enable reciprocating linear movement of the third linear motion carriage, the second handle, the fourth linear motion carriage, and the second foot pedal along the second upright, and wherein the interconnection provided by the first linkage assembly, the second linkage assembly, and the cross connector drive axle synchronizes a reciprocating concurrent motion of the first handle, the first foot pedal, the second handle, and the second foot pedal to simulate a continuous climbing exercise motion for a user.
In embodiments, the first linkage assembly may comprise a first continuous-loop flexible component, a first drive pulley, a first guide pulley, and a first connector bar and the second linkage assembly may comprise a second continuous-loop flexible component, a second drive pulley, a second guide pulley, and a second connector bar. A first end of the cross connector drive axle may, but need not, be rigidly connected to the first drive pulley and a second end of the cross connector drive axle may, but need not, be rigidly connected to the second drive pulley. The first handle may, but need not, be operatively connected to the first drive pulley by the first continuous-loop flexible component and the first guide pulley and the second handle may, but need not, be operatively connected to the second drive pulley by the second continuous-loop flexible component and the second guide pulley. A first end of the first connector bar may, but need not, be rigidly connected to the second linear motion carriage, a second end of the first connector bar may, but need not, be rigidly connected to the first continuous-loop flexible component, a first end of the second connector bar may, but need not, be rigidly connected to the fourth linear motion carriage, and a second end of the second connector bar may, but need not, be rigidly connected to the second continuous-loop flexible component.
In embodiments, the climbing exercise machine may further comprise an adjustable resistance mechanism, operatively connected to the cross connector drive axle to provide adjustable resistance to the motion of the first handle, the first foot pedal, the second handle, and the second foot pedal. Movement of any handle or foot pedal may, but need not, cause concurrent motion of all other handles and foot pedals and the adjustable resistance mechanism. The adjustable resistance mechanism may, but need not, comprise at least one flywheel and at least one adjustable resistance component, and the at least one flywheel and the at least one adjustable resistance component may, but need not, be operatively engaged such that the at least one adjustable resistance component creates an adjustable resistance to the rotation of the at least one flywheel.
In embodiments, as a result of the interconnection provided by the first linkage assembly, the second linkage assembly, and the cross connector drive axle, the first handle and the first foot pedal may move in opposite directions, the second handle and the second foot pedal may move in opposite directions, the first handle and the second handle may move in opposite directions, and the first foot pedal and the second foot pedal may move in opposite directions.
In embodiments, the climbing exercise machine may further comprise a first foot pedal support axle rigidly mounted on the second linear motion carriage and a second foot pedal support axle rigidly mounted on the fourth linear motion carriage, wherein the first foot pedal is pivotally mounted on the first foot pedal support axle and the second foot pedal is pivotally mounted on the second foot pedal support axle.
In embodiments, the first handle may be adjustably mounted on the first linear motion carriage and the second handle may be adjustably mounted on the third linear motion carriage.
In embodiments, at least one of the following may be linearly adjustable: (i) a location of a connection point between the first handle and the first linear motion carriage; (ii) a location of a connection point between the first foot pedal and the first foot pedal support axle; (iii) a location of a connection point between the second handle and the third linear motion carriage; and (iv) a location of a connection point between the second foot pedal and the second foot pedal support axle.
In embodiments, at least one of an angular position of the first handle relative to the first upright and an angular position of the second handle relative to the second upright may be adjustable.
In embodiments, the climbing exercise machine may further comprise an electronic user interface display console, configured to cooperate with the function of the climbing exercise machine and mounted on a stationary component of the climbing exercise machine.
In embodiments, the climbing exercise machine may further comprise at least one stationary handle mounted on a stationary component of the climbing exercise machine.
These and other advantages will be apparent from the disclosure of the aspects, embodiments, and configurations contained herein.
For purposes of further disclosure and to comply with applicable written description and enablement requirements, the following references generally relate to exercise machines and are hereby incorporated by reference in their entireties:
U.S. Patent Application Publication 2018/0339189, entitled “Exercise machine,” published 29 Nov. 2018 to Luger et al.
U.S. Patent Application Publication 2019/0134456, entitled “Rock climbing machine,” published 9 May 2019 to Yeh.
U.S. Patent Application Publication 2020/0094106, entitled “Climbing machine,” published 26 Mar. 2020 to Liu.
U.S. Pat. No. 10,751,562, entitled “Climbing machine,” issued 25 Aug. 2020 to Chen.
U.S. Patent Application Publication 2021/0098126, entitled “Interactive athletic equipment system,” published 1 Apr. 2021 to Tchao et al.
As used herein, “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” “A, B, and/or C,” and “A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xn, Y1-Ym, and Z1-Z0, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Z0).
It is to be noted that the term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112 (f) and/or Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the disclosure, brief description of the drawings, detailed description, abstract, and claims themselves.
It should be understood that every maximum numerical limitation given throughout this disclosure is deemed to include each and every lower numerical limitation as an alternative, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this disclosure is deemed to include each and every higher numerical limitation as an alternative, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this disclosure is deemed to include each and every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein. By way of example, the phrase from about 2 to about 4 includes the whole number and/or integer ranges from about 2 to about 3, from about 3 to about 4 and each possible range based on real (e.g., irrational and/or rational) numbers, such as from about 2.1 to about 4.9, from about 2.1 to about 3.4, and so on.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label. The reference labels and their corresponding components are as follows:
In the following description, for the purposes of explanation, numerous specific details are set forth to provide a thorough understanding of various embodiments disclosed herein. It will be apparent, however, to one skilled in the art that various embodiments of the present disclosure may be practiced without some of these specific details. The ensuing description provides exemplary embodiments only and is not intended to limit the scope or applicability of the disclosure. Furthermore, to avoid unnecessarily obscuring the present disclosure, the preceding description omits several known structures and devices. This omission is not to be construed as a limitation of the scopes of the claims. Rather, the ensuing description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing an exemplary embodiment. It should however be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.
While the exemplary aspects, embodiments, and/or configurations illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined in to one or more devices or collocated on a particular node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switch network, or a circuit-switched network. It will be appreciated from the following description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
As used herein, the phrases “at least one,” “one or more,” “or,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” “A, B, and/or C,” and “A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
The term “automatic” and variations thereof, as used herein, refers to any process or operation done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material.”
The term “computer-readable medium” as used herein refers to any tangible storage and/or transmission medium that participate in providing instructions to a processor for execution. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, NVRAM, or magnetic or optical disks. Volatile media includes dynamic memory, such as main memory. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, magneto-optical medium, a CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, a solid state medium like a memory card, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read. A digital file attachment to e-mail or other self-contained information archive or set of archives is considered a distribution medium equivalent to a tangible storage medium. When the computer-readable media is configured as a database, it is to be understood that the database may be any type of database, such as relational, hierarchical, object-oriented, and/or the like. Accordingly, the disclosure is considered to include a tangible storage medium or distribution medium and prior art-recognized equivalents and successor media, in which the software implementations of the present disclosure are stored.
A “computer readable signal” medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electromagnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The terms “determine,” “calculate,” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation, or technique.
It shall be understood that the term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C. § 112(f). Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the disclosure, brief description of the drawings, detailed description, abstract, and claims themselves.
As used herein unless otherwise provided, the term “belt” or “flexible component” refers to any piece of material having the general shape of a loop that may be looped over a pulley and used to mechanically link two or more rotating shafts. Examples of belts as that term is used herein include loops of flexible material (such as, by way of non-limiting example, leather, fabric, rubber, or a synthetic polymer), chains, and ropes.
As used herein unless otherwise provided, the term “component” refers to any rigid, flexible, movable, or stationary item that is included in a part, assembly, or structure of an exercise machine.
As used herein unless otherwise provided, the term “mounted on,” when used to refer to a component or structure of an exercise machine, means that the component is fastened to, coupled, welded to, or otherwise affixed or connected to another component or structure on the exercise machine.
As used herein unless otherwise specified, the terms “swivel,” “rotate,” and “pivot” are interchangeable and each refer to an arcing or circular motion along a fixed path about a fixed center point.
As used herein unless otherwise specified, the terms “forward end,” “forward section,” and “forward portion” each refer to an end or section of a climbing exercise machine or any component thereof proximal to an end of the machine toward which a user faces during operation of the machine. Conversely, the terms “rearward end,” “rearward section,” and “rearward portion” each refer to an end or section of the climbing exercise machine or any component thereof opposite to an end of the machine toward which a user faces during operation of the machine.
As used herein unless otherwise provided, the terms “inward” and “inwardly” refer to a direction oriented generally in a horizontal plane and generally toward a central longitudinal axis of a frame of an exercise machine. By way of non-limiting example, handles and foot pedals of an exercise machine may extend “inwardly” from uprights of a frame because they extend from a left upright of the frame toward the right, or from a right upright of the frame toward the left (i.e., in both cases, toward the central longitudinal axis of the frame). By logical extension, as used herein unless otherwise provided, the terms “outward” and “outwardly” refer to a direction oriented generally in a horizontal plane and generally away from the central longitudinal axis of the frame of the exercise machine, e.g. toward the left from a left upright of the frame or toward the right from a right upright of the frame.
Aspects of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium.
In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the disclosed embodiments, configurations, and aspects includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
Examples of the processors as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon® 800 and 801, Qualcomm® Snapdragon® 610 and 615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMD® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM1926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. In additional embodiments, the disclosed methods may be implemented in conjunction with functional programming. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.
In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as program embedded on personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.
Although the present disclosure describes components and functions implemented in the aspects, embodiments, and/or configurations with reference to particular standards and protocols, the aspects, embodiments, and/or configurations are not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein, and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.
The present invention provides an improved climbing exercise machine that simulates a continuous vertical climbing motion for the user. The machine generally includes two handles and two foot pedals, each of which is mounted to a reciprocating, self-lubricating slide. The four reciprocating, self-lubricating slides are housed within two uprights disposed on opposing lateral sides of the machine, each of which houses a linear rail; within each upright, a slide mounting a handle and a slide mounting a foot pedal are interconnected by at least one belt. The belt of the left upright and the belt of the right upright are interconnected by an axle housed within a crossbar. The uprights are secured to a stable base. In embodiments, the machine may further include electronic devices and systems that enable a user to perceive digital content (e.g. streaming multimedia, such as climbing classes or instructional videos, as well as other digital entertainment content) while using the machine; by way of non-limiting example, such devices and systems may include a wirelessly networked tablet computer mounted on the crossbar of the machine.
Referring now to
As illustrated in
As illustrated in
As illustrated particularly in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As illustrated in
Referring now to
By way of further non-limiting example, another alternative embodiment of the uprights is illustrated in
Referring now to
Referring now to
Referring now to
In embodiments, climbing exercise machines of the present invention may comprise a braking feature that increases the resistance the user encounters during exercise and thereby increases the intensity and/or effectiveness of the user's workout. Generally, the braking feature comprises a device or means that slows the rotation of the axle and/or increases the amount of work required to rotate the axle. By way of non-limiting example, such braking features may include a hydraulic pump, a magnetic and/or electromagnetic device that acts to slow or retard the rotation of the axle (e.g. an eddy current brake), and/or a friction brake. The degree of braking, i.e. the magnitude of the braking effect imparted by the braking feature and thus of the increase in work needed to rotate the axle, may be selectively adjusted by a user, for example by use of a knob or other user input device.
Referring now to
In embodiments, climbing exercise machines of the present invention may comprise one or more sensors or devices for measuring and/or recording at least one parameter associated with a use of the machine that corresponds to a parameter of interest to the user. Specifically, many users desire to measure, record, or calculate parameters such as a length of the workout, an effective distance climbed during the workout, a quantity of energy expended the workout, and so on. In some cases, these parameters can be measured directly (e.g. by timing the workout), while others may be calculated from parameters associated with the machine, e.g., the total distance traveled by the reciprocating, self-lubricating slides, the number of rotations of the axle, and/or the work done on the axle (total and/or per rotation). Accordingly, the sensor(s) or device(s) may measure and/or record the parameter associated with the machine and, optionally, convert this parameter to a parameter of interest to the user according to an algorithm. In some embodiments, data comprising the parameter associated with the machine and/or the parameter of interest to the user may be presented to the user in a graphical user interface of the tablet computer of the exercise machine.
In embodiments, the base of the climbing exercise machine may comprise wheels or casters that permit the machine to be easily repositioned on a floor or ground surface. The wheels or casters may take any suitable form and may be placed on any suitable portion of the base. The wheels or casters may, but need not, be selectively removable and/or may be provided with a braking and/or locking mechanism to secure the machine in a desired position.
Environment 100 further includes a network 110. The network 110 may can be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially available protocols, including without limitation Session Initiation Protocol (SIP), Transmission Control Protocol/Internet Protocol (TCP/IP), Systems Network Architecture (SNA), Internetwork Packet Exchange (IPX), AppleTalk, and the like. Merely by way of example, the network 110 maybe a Local Area Network (LAN), such as an Ethernet network, a Token-Ring network and/or the like; a wide-area network; a virtual network, including without limitation a Virtual Private Network (VPN); the Internet; an intranet; an extranet; a Public Switched Telephone Network (PSTN); an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.9 suite of protocols, the Bluetooth® protocol known in the art, and/or any other wireless protocol); and/or any combination of these and/or other networks.
The system may also include one or more servers 114, 116. In this example, server 114 is shown as a web server and server 116 is shown as an application server. The web server 114, which may be used to process requests for web pages or other electronic documents from computing devices 104, 108, 112. The web server 114 can be running an operating system including any of those discussed above, as well as any commercially available server operating systems. The web server 114 can also run a variety of server applications, including SIP servers, HyperText Transfer Protocol (secure) (HTTP(s)) servers, FTP servers, CGI servers, database servers, Java servers, and the like. In some instances, the web server 114 may publish operations available operations as one or more web services.
The environment 100 may also include one or more file and or/application servers 116, which can, in addition to an operating system, include one or more applications accessible by a client running on one or more of the computing devices 104, 108, 112. The server(s) 116 and/or 114 may be one or more general purpose computers capable of executing programs or scripts in response to the computing devices 104, 108, 112. As one example, the server 116, 114 may execute one or more web applications. The web application may be implemented as one or more scripts or programs written in any programming language, such as Java™, C, C #®, or C++, and/or any scripting language, such as Perl, Python, or Tool Command Language (TCL), as well as combinations of any programming/scripting languages. The application server(s) 116 may also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase®, IBM® and the like, which can process requests from database clients running on a computing device 104, 108, 112.
The web pages created by the server 114 and/or 116 may be forwarded to a computing device 104, 108, 112 via a web (file) server 114, 116. Similarly, the web server 114 may be able to receive web page requests, web services invocations, and/or input data from a computing device 104, 108, 112 (e.g., a user computer, etc.) and can forward the web page requests and/or input data to the web (application) server 116. In further embodiments, the server 116 may function as a file server. Although for ease of description,
The environment 100 may also include a database 118. The database 118 may reside in a variety of locations. By way of example, database 118 may reside on a storage medium local to (and/or resident in) one or more of the computers 104, 108, 112, 114, 116. Alternatively, it may be remote from any or all of the computers 104, 108, 112, 114, 116, and in communication (e.g., via the network 110) with one or more of these. The database 118 may reside in a Storage-Area Network (SAN) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers 104, 108, 112, 114, 116 may be stored locally on the respective computer and/or remotely, as appropriate. The database 118 may be a relational database, such as Oracle 20i®, that is adapted to store, update, and retrieve data in response to Structured Query Language (SQL) formatted commands.
The computer system 200 may additionally include a computer-readable storage media reader 224; a communications system 228 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.); and working memory 236, which may include RAM and ROM devices as described above. The computer system 200 may also include a processing acceleration unit 232, which can include a Digital Signal Processor (DSP), a special-purpose processor, and/or the like.
The computer-readable storage media reader 224 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s) 220) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system 228 may permit data to be exchanged with a network and/or any other computer described above with respect to the computer environments described herein. Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including ROM, RAM, magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine-readable mediums for storing information.
The computer system 200 may also comprise software elements, shown as being currently located within a working memory 236, including an operating system 240 and/or other code 244. It should be appreciated that alternate embodiments of a computer system 200 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Examples of the processors 208 as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon® 800 and 801, Qualcomm® Snapdragon® 620 and 615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMD® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
Each embodiment of a climbing exercise machine according to embodiments of the invention is supported by a base, i.e. a structural portion of the machine that contacts a floor surface or ground surface. In some figures, one or more flexible components are represented as belts, while in other figures one or more flexible components are represented as chains; it is to be expressly understood that various flexible components, such as belts, chains, cables, ropes, and the like, can be utilized to interconnect the various components and mechanisms of climbing exercise machines of the invention, and all such variations are within the scope of the invention. Likewise, in some figures, the flexible components are represented as being guided by pulleys and in certain figures the flexible components are represented as being guided by sprockets; it is to be expressly understood that various circular components that rotate on a center axle and are capable of guiding a flexible component can be used to guide the flexible components of the climbing exercise machines of the invention, and all such variations are within the scope of the invention.
A resistance component of climbing exercise machines of the invention that provides resistance to the user while exercising is referred to herein as a “resistance motor,” but it is to be expressly understood that various additional or alternative components and/or mechanisms can be utilized to provide resistance to the user, and all such variations are within the scope of the invention. A component referred to herein as a “slide” is a component that (1) engages with a substantially planar surface, e.g. by sliding or rolling on the substantially planar surface, and (2) is interconnected to or with other components of the climbing exercise machine and causing those other components to move linearly with the sliding or rolling of the slide along the substantially planar surface.
When structures or components of the invention are referred to as being located on a left or right side of a climbing exercise machine, it is to be understood that this refers to a user's left or right, respectively, when the user is engaged with and operating the machine. When referring to a forward or rearward portion of a climbing exercise machine, it is to be understood that forward aspects of the machine are proximate to a side of the machine from which the user mounts and dismounts the machine, and rearward aspects of the machine are distant from a side of the machine from which the user mounts and dismounts the machine.
As a result of the interconnection of the handles 18 and foot pedals 21 created by the multiple flexible component linkage assembly illustrated in
A tablet computer 40 is mounted on the crossbar 12, in a location easily accessible by a user U, such that the user U can operate the tablet computer 40 while operating the machine 1. Tablet computer 40 includes a viewing screen that allows a user U to perceive digital content while operating the machine 1. Tablet computer 40 can also collect and display data pertaining to the user U's performance while operating the machine 1. At least a portion of the performance data corresponding to user U's use of the machine 1 can be captured by sensors located on various components of the machine 1, such as one or more movable electronic sensors 53 and/or one or more stationary electronic sensors 54. As best illustrated in
Tablet computer 40 is connected to the crossbar 12 via a mounting bracket 42 and is supported by an adjustable arm 39. The adjustable arm 39 can telescope within the mounting bracket 42 to adjust the height of the tablet computer 40, and can rotate within the mounting bracket 42 to adjust the angle of the tablet computer 40 in a horizontal plane relative to the user U. An adjustable arm movement lever 58 can be used to manipulate the position of the adjustable arm 39 and the tablet computer 40. Tablet computer 40 is connected to the adjustable arm 39 via a tablet pivot rod 56, such that the tablet computer 40 can be adjusted to various vertical angles. Tablet computer 40 can also be rotated up to 180 degrees in a horizontal plane, as illustrated in
As illustrated in
As illustrated in
A tablet computer 40 is mounted on the crossbar 12, in a location easily accessible by a user U, such that the user U can operate the tablet computer 40 while operating the machine 1. Tablet computer 40 includes a viewing screen that allows a user U to perceive digital content while operating the machine 1. Tablet computer 40 can also collect and display data pertaining to the user U's performance while operating the machine 1. At least a portion of the performance data corresponding to user U's use of the machine 1 can be captured by sensors located on various components of the machine 1, such as one or more movable electronic sensors 53 and/or one or more stationary electronic sensors 54. A movable electronic sensor 53 is mounted on a forward section of a handle adjustment plate 19 and a stationary electronic sensor 54 is mounted on an adjacent section of an upright 11, such that when handle adjustment plate 19 moves in a reciprocating linear pattern along upright 11, the movable electronic sensor 53 passes in close proximity to stationary electronic sensor 54, and either or both of the movable electronic sensor 53 and the stationary electronic sensor 54 collects data and transfers these data to tablet computer 40. Tablet computer 40 can also collect and display data from the resistance motor 47 and other electronic devices and components that interact with machine 1. Although
Tablet computer 40 is connected to the crossbar 12 via a mounting bracket 42 and is supported by an adjustable arm 39. The adjustable arm 39 can telescope within the mounting bracket 42 to adjust the height of the tablet computer 40, and can rotate within the mounting bracket 42 to adjust the angle of the tablet computer 40 in a horizontal plane relative to the user U. An adjustable arm movement lever 58 can be used to manipulate the position of the adjustable arm 39 and the tablet computer 40. Tablet computer 40 is connected to the adjustable arm 39 via a tablet pivot rod 56, such that the tablet computer 40 can be adjusted to various vertical angles. Tablet computer 40 can also be rotated up to 180 degrees in a horizontal plane to face in a rearward direction, such that a user U can perceive digital content from the tablet computer 40 while being behind the machine 1; this feature may be useful for user U to interact with the tablet computer 40 while not operating the machine 1 but performing other exercises.
The left end of the first drive axle 70a extends through a drive axle mounting bearing 71 and is rigidly connected to the left gear rack drive gear 63a. A first axle drive gear 72a is rigidly connected to a right-side section of the first drive axle 70a, and a second drive axle drive gear 72b is rigidly connected to a left-side section of second drive axle 70b; the first drive axle drive gear 72a and the second drive axle drive gear 72b are in aligned contact and operatively engaged with each other. A second drive axle drive chain sprocket 74 is rigidly connected to a right-side section of the second drive axle 70b, and a third drive axle drive chain sprocket 75 is rigidly connected to a left-side section of the third drive axle 70c. A resistance motor drive chain sprocket 76 is rigidly connected to the right end of the resistance motor axle 64, and the resistance motor drive chain sprocket 76, third drive axle drive chain sprocket 75, and second drive axle drive chain sprocket 74 are in alignment and operatively connected by a drive chain 73.
When a user U operates a climbing exercise machine 1 incorporating a multiple gear linkage assembly as illustrated in
As a result of the interconnection of the handles 18 and foot pedals 21 created by the multiple gear linkage assembly illustrated in
As illustrated in
Pulleys 36 are mounted within the upper ends of left and right upper uprights 11. Two pulleys 36 are also mounted within lower and upper sections, respectively, of each end of the crossbar 12, with the upper pulley 36 being disposed inward of the first pulley 36. Another pulley 36 is mounted in a central section of the lower end of lower upright 11. A resistance motor 47 comprising a resistance motor axle 64 and a resistance motor axle pulley 65 is mounted partially within the crossbar 12 and partially within the lower upright 11 at the junction of the crossbar 12 and the lower upright 11, such that portions of the resistance motor 47 may extend into the crossbar 12 and the lower upright 11.
As a result of the interconnection of the handles 18 and foot pedals 21 created by the multiple flexible component linkage assembly illustrated in
A tablet computer 40 is mounted on the crossbar 12, in a location easily accessible by a user U, such that the user U can operate the tablet computer 40 while operating the machine 1. Tablet computer 40 includes a viewing screen that allows a user U to perceive digital content while operating the machine 1. Tablet computer 40 can also collect and display data pertaining to the user U's performance while operating the machine 1. At least a portion of the performance data corresponding to user U's use of the machine 1 can be captured by sensors located on various components of the machine 1, such as one or more movable electronic sensors 53 and one or more stationary electronic sensors 54. As best illustrated in
Tablet computer 40 is connected to the crossbar 12 via a mounting bracket 42 and is supported by an adjustable arm 39. The adjustable arm 39 can telescope within the mounting bracket 42 to adjust the height of the tablet computer 40, and can rotate within the mounting bracket 42 to adjust the angle of the tablet computer 40 in a horizontal plane relative to the user U. An adjustable arm movement lever 58 can be used to manipulate the position of the adjustable arm 39 and the tablet computer 40. Tablet computer 40 is connected to the adjustable arm 39 via a tablet pivot rod 56, such that the tablet computer 40 can be adjusted to various vertical angles. Tablet computer 40 can also be rotated up to 180 degrees in a horizontal plane to face in a rearward direction, such that a user U can perceive digital content from the tablet computer 40 while being behind the machine 1; this feature may be useful for user U to interact with the tablet computer 40 while not operating the machine 1 but performing other exercises.
As illustrated in
Referring now to
As illustrated in
A handle 318A is operatively engaged with upright 310A so as to move along the portion of upright 310A that is nearer to the second end of 310A in a linear reciprocating motion. A foot pedal 321A is operatively engaged with upright 310A so as to move along the portion of upright 310A that is nearer to the first end of 310A in a linear reciprocating motion. A handle 318B is operatively engaged with upright 310B so as to move along the portion of upright 310B that is nearer to the second end of 310A in a linear reciprocating motion. A foot pedal 321B is operatively engaged with upright 310B so as to move along the portion of upright 310B that is nearer to the first end of 310B in a linear reciprocating motion.
A cross connector housing 312 has a first end and a second end; the first end is rigidly connected to upright 310A at a perpendicular angle at a middle, central, or intermediate portion of upright 310A and the second end of cross connector housing 312 is rigidly connected to upright 310B at a perpendicular angle at a middle, central, or intermediate portion of upright 310B such that uprights 310A and 310B combined with cross connector housing 312 generally form an “H” shape. A stationary handle 305A is rigidly connected to cross connector housing 312 proximal to the first end of cross connector housing 312 and extends rearward from cross connector housing 312 such that portions of handle grip 305A are substantially parallel with base frame 313. A stationary handle 305B is rigidly connected to cross connector housing 312 proximal to the second end of cross connector housing 312 and extends rearward of from cross connector housing 312 such that portions of stationary handle 305B are substantially parallel with base frame 313. A resistance adjustment dial 359 is operatively mounted on cross connector housing 312 at a location within comfortable reach of user U during operation of machine 300. An electronic user interface display 340 is mounted on cross connector housing 312 at a location within comfortable reach of user U and at a location within viewing distance by user U during operation of machine 300.
As illustrated in
As illustrated in
A flywheel resistance assembly 349 is mounted on flywheel resistance assembly support frame 343 and is operatively connected to cross connector axle 370 at a middle, central, or intermediate portion of cross connector axle 370. Brace tubes 368 rigidly connect flywheel resistance assembly support frame 343 to mounting blocks 369A and 369B.
As illustrated in
A first flywheel drive pulley 372A is rigidly mounted on a middle, central, or intermediate section of cross connector axle 370. A second flywheel drive pulley 372B, having a diameter the same as or similar to the diameter of drive pulley 372A, is rigidly mounted on drive pulley axle 374 proximal to the first end of drive pulley axle 374, and a third drive pulley axle 372C, having a larger diameter than drive pulley 372B, is rigidly mounted proximal to the first end of drive axle 374. Drive pulleys 372B and 372C are parallel and in close proximity to each other, with drive pulley 372C nearer to the first end of drive axle 374 than drive pulley 372B. A flywheel axle pulley 365 is rigidly mounted on the first end of flywheel axle 364. At least one flywheel 347 is rigidly mounted on a middle, central, or intermediate section of flywheel axle 364. While
A first flywheel drive belt 373A connects drive pulley 372A with drive pulley 372B. A second flywheel drive belt 373B connects drive pulley 372C with flywheel axle pulley 365.
A plurality of disc-shaped resistance magnets 346 are mounted on resistance magnets housing 345 and are offset from and parallel to flywheels 347. A resistance adjustment dial 359 is operatively mounted on cross connector housing 312 and is operatively connected to resistance magnets housing 345 so as to control the pivotal motion of resistance magnets housing 345 and set the location of resistance magnets housing 345. Resistance magnets 346 are mounted on resistance magnets housing 345 such that when resistance magnets housing 345 pivots about resistance magnets housing pivot axle 348 in a direction towards flywheels 347, a portion of the resistance magnets 346 overlap a portion of the flywheels 347, creating a magnetic field that resists the rotation of flywheels 347. When resistance adjustment dial 359 is moved to a position which causes resistance magnets 346 to overlap a larger portion of flywheels 347, more resistance is created, and when resistance adjustment dial 359 is moved to a position which causes resistance magnets 346 to overlap a smaller portion of flywheels 347, less resistance is created.
While handle 318 is represented in
As illustrated in
To operate machine 300, user U may enter machine 300 by stepping onto foot pedal 321A with user U's left foot, stepping onto foot pedal 321B with user U's right foot, gripping handle 318A with user U's left hand, and gripping handle 318B with user U's right hand. User U can then adjust the resistance to the exercise motion by moving resistance adjustment dial 359 to a preferred setting, causing resistance magnets 346 to engage flywheels 347 as previously described. If user U urges handle 318A upward, user U will necessarily concurrently urge foot pedal 321A downward, handle 318B downward, and foot pedal 321B upward.
When user U begins the exercise motion in a first direction as described, all of the various moving components of the machine 300, including handle assemblies 308, foot pedal assemblies 311, linear motion carriages 320A, 320B, 320C, 320D, linkage assemblies 350A, 350B, cross connector axle 370, and flywheel resistance assembly 349, move concurrently in a synchronized fashion. Upward motion of handle 318A and linear motion carriage 320A causes belt 317A to rotate in a first direction on guide pulley 336A and cross connector axle drive pulley 337A, in turn causing the rearward side of linkage belt 317A to move upward, in turn causing the forward side of linkage belt 317A to move downward, in turn causing connector bar 360A to move downward, in turn causing linear motion carriage 320B and foot pedal 321A to move downward. Concurrently, downward motion of handle 318B and linear motion carriage 320C causes belt 317B to rotate in a first direction on guide pulley 336B and cross connector axle drive pulley 337B, in turn causing the forward side of linkage belt 317B to move downward, in turn causing the rearward side of linkage belt 317B to move upward, in turn causing connector bar 360B to move upward, in turn causing linear motion carriage 320D and foot pedal 321B to move upward. Concurrently, cross connector axle drive pulleys 337A and 337B cause cross connector axle 370 to rotate in a first direction, in turn causing flywheel drive pulley 372A to rotate in a first direction, in turn causing flywheel drive belt 373A to rotate in a first direction, in turn causing flywheel drive pulley 372B to rotate in a first direction, in turn causing flywheel drive pulley axle 374 to rotate in a first direction, in turn causing flywheel drive pulley 374C to rotate in a first direction, in turn causing flywheel drive belt 373B to rotate in a first direction, in turn causing flywheel axle pulley 365 to rotate in a first direction, in turn causing flywheels 347 to rotate in a first direction.
When user U reverses the exercise motion to urge handles 318A and 318B and foot pedals 321A and 321B in the opposite second direction, all of the various moving components of the machine 300, including handle assemblies 308, foot pedal assemblies 311, linear motion carriages 320A, 320B, 320C, 320D, linkage assemblies 350A, 350B, cross connector axle 370, and flywheel resistance assembly 349, move concurrently in a synchronized fashion in the opposite second direction. Downward motion of handle 318A and linear motion carriage 320A causes belt 317A to rotate in a second direction on guide pulley 336A and cross connector axle drive pulley 337A, in turn causing the rearward side of linkage belt 317A to move downward, in turn causing the forward side of linkage belt 317A to move upward, in turn causing connector bar 360A to move upward, in turn causing linear motion carriage 320B and foot pedal 321A to move upward. Concurrently, upward motion of handle 318B and linear motion carriage 320C causes belt 317B to rotate in a second direction on guide pulley 336B and cross connector axle drive pulley 337B, in turn causing the forward side of linkage belt 317B to move upward, in turn causing the rearward side of linkage belt 317B to move downward, in turn causing connector bar 360B to move downward, in turn causing linear motion carriage 320D and foot pedal 321B to move downward. Concurrently, cross connector axle drive pulleys 337A and 337B cause cross connector axle 370 to rotate in a second direction, in turn causing flywheel drive pulley 372A to rotate in a second direction, in turn causing flywheel drive belt 373A to rotate in a second direction, in turn causing flywheel drive pulley 372B to rotate in a second direction, in turn causing flywheel drive pulley axle 374 to rotate in a second direction, in turn causing flywheel drive pulley 374C to rotate in a second direction, in turn causing flywheel drive belt 373B to rotate in a second direction, in turn causing flywheel axle pulley 365 to rotate in a second direction, in turn causing flywheels 347 to rotate in a second direction.
User U can continue this reciprocating first and second direction exercise motion for any preferred amount of time and/or preferred number of repetitions. User U may also interact with user interface display 340 prior to the exercise session, during the exercise session, and/or after the exercise session.
It is to be expressly understood that within the scope of the present invention, certain components or features of a climbing exercise machine 1 as illustrated in
The present disclosure, in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, sub-combinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, aspects, embodiments, and configurations, after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more, aspects, embodiments, and configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and configurations of the disclosure may be combined in alternate aspects, embodiments, and configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspects, embodiments, and configurations. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description of the disclosure has included description of one or more aspects, embodiments, or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges, or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
This application is a divisional of U.S. patent application Ser. No. 17/225,706, filed 8 Apr. 2021, which is a continuation-in-part of U.S. patent application Ser. No. 17/118,355, filed 10 Dec. 2020, now U.S. Pat. No. 11,077,336, which is a continuation-in-part of PCT Application PCT/US2020/036434, filed 5 Jun. 2020, which claims the benefit of U.S. Provisional Patent Application 62/858,966, filed 7 Jun. 2019, the entireties of all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3381958 | Gulland | May 1968 | A |
D302194 | Charnitski | Jul 1989 | S |
4958830 | Huggins | Sep 1990 | A |
4982952 | Wang | Jan 1991 | A |
D315937 | Huggins | Apr 1991 | S |
5040785 | Charnitski | Aug 1991 | A |
D323008 | Wang | Jan 1992 | S |
5169361 | Hsu | Dec 1992 | A |
5490818 | Haber | Feb 1996 | A |
5492515 | Charnitski | Feb 1996 | A |
D369390 | Haber | Apr 1996 | S |
5803880 | Allen | Sep 1998 | A |
8801578 | Corbalis | Aug 2014 | B2 |
D759169 | Humberto Mercenari Uribe | Jun 2016 | S |
D802688 | Sun | Nov 2017 | S |
D834659 | Chen | Nov 2018 | S |
D837907 | Chen | Jan 2019 | S |
D838789 | Hu | Jan 2019 | S |
10179260 | Stearns | Jan 2019 | B1 |
D842939 | Mercenari Uribe | Mar 2019 | S |
D853502 | Chen | Jul 2019 | S |
D853504 | Mercenari Uribe | Jul 2019 | S |
10792536 | Liu | Oct 2020 | B2 |
11077336 | Carruthers | Aug 2021 | B2 |
20150343259 | Mercenari Uribe | Dec 2015 | A1 |
20190134456 | Yeh | May 2019 | A1 |
20200171346 | Chen | Jun 2020 | A1 |
Entry |
---|
Official Action for U.S. Appl. No. 17/458,794, dated Dec. 2, 2021 6 pages, Restriction Requirement. |
Official Action for U.S. Appl. No. 17/458,799, dated Dec. 9, 2021 34 pages. |
Official Action for U.S. Appl. No. 17/458,806, dated Nov. 23, 2021 6 pages, Restriction Requirement. |
Notice of Allowance for U.S. Appl. No. 17/458,810, dated Nov. 24, 2021 13 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 17/458,810, dated Dec. 10, 2021 10 pages. |
Ex Parte Quayle Action for U.S. Appl. No. 17/458,818, dated Dec. 6, 2021 10 pages. |
Official Action for U.S. Appl. No. 17/458,831, dated Nov. 26, 2021 15 pages. |
Official Action for U.S. Appl. No. 17/458,839, dated Dec. 15. 2021 27 pages. |
Official Action for U.S. Appl. No. 17/458,850, dated Dec. 8, 2021 9 pages. |
Official Action for U.S. Appl. No. 17/466,610, dated Nov. 24, 2021 21 pages. |
Notice of Allowance for U.S. Appl. No. 17/466,631, dated Nov. 22, 2021 13 pages. |
Notice of Allowance for U.S. Appl. No. 17/466,659, dated Dec. 24, 2021 11 pages. |
Notice of Allowance for U.S. Appl. No. 17/490,083, dated Nov. 30, 2021 11 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 17/490,083, dated Jan. 5, 2022 7 pages. |
Official Action for U.S. Appl. No. 17/490,098, dated Nov. 26, 2021 28 pages. |
Official Action for U.S. Appl. No. 17/490,121, dated Nov. 19, 2021 7 pages, Restriction Requirement. |
Official Action for U.S. Appl. No. 17/490,121, dated Feb. 10, 2022 13 pages. |
Official Action for U.S. Appl. No. 17/458,794, dated Feb. 22, 2022 23 pages. |
Official Action for U.S. Appl. No. 17/458,806, dated Mar. 4, 2022 18 pages. |
Notice of Allowance for U.S. Appl. No. 17/458,818, dated Apr. 1, 2022 9 pages. |
Official Action for U.S. Appl. No. 17/490,750, dated Mar. 4, 2022 7 pages, Restriction Requirement. |
Notice of Allowance for U.S. Appl. No. 17/458,839, dated Apr. 8, 2022 9 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 17/466,631, dated Feb. 25, 2022 13 pages. |
Corrected Notice of Allowance for U.S. Appl. No. 17/466,659, dated Apr. 11, 2022 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210394015 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62858966 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17225706 | Apr 2021 | US |
Child | 17466589 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17118355 | Dec 2020 | US |
Child | 17225706 | US | |
Parent | PCT/US2020/036434 | Jun 2020 | US |
Child | 17118355 | US |