Claims
        
                - 1. A climbing trainer having a movable training wall surface adapted to facilitate climbing training by a user, comprising:
 
                - a support frame;
 
                - a pivoting frame having first and second ends and a pivot axis intermediate the first and second ends, the pivoting frame being pivotably supported by the support frame allowing relative rotational movement about the pivot axis between the pivoting frame and the support frame said pivoting frame having a range of rotational movement between a vertical orientation and a horizontal orientation, said range of motion defining a range of movable climbing wall surface inclinations including at least a range from vertical to downwardly facing horizontal;
 
                - means for selectively allowing and preventing relative rotational movement between the support frame and the pivoting frame about the pivot axis;
 
                - a movable climbing training wall surface comprising a continuous belt having an outer surface adapted to incorporate climbing holds, said continuous belt being carried by and rotatable about said pivoting frame, the continuous belt being restrained from movement transverse to a plane of the climbing training wall surface so as to resist forces tending to pull climbing holds incorporated in the outer surface of the continuous belt away from the wall surface and those tending to push said holds towards the wall surface, the climbing training wall surface being moveable in a direction parallel to a plane defined by the training wall surface by rotation of the continuous belt about said pivoting frame; and
 
                - an actuator adapted to rotate said continuous belt about the pivoting frame, whereby the climbing training wall surface is moved to provide a simulated climb, the inclination of the climbing training wall surface being adjustable by rotation of the pivotable frame over a range of inclinations including negative inclinations.
 
                - 2. The climbing trainer of clam 1, further comprising first and second spindles rotatably carried by the pivot frame at the first and second ends respectively of said pivot frame and rotatable about two parallel axes, the continuous belt comprising said climbing training surface being disposed about said spindles and bending about said two parallel axes, and wherein the continuous belt is stiffened to resist bending about a further axis orthogonal to said two parallel axes about which the first and second spindles rotate.
 
                - 3. The climbing trainer of claim 2, wherein the continuous belt further comprises a multiplicity of rotatably interlinked panels, each being rotatable with respect to another about an axis parallel to said two parallel axes about which said first and second spindles rotate, and configured to mitigate unintentional engagement of the training wall surface with said user and with clothing worn by said user which would otherwise be caught and moved with said wall surface by minimizing opening and closing of voids between said rotationally interlinked panels, said panels each further comprising an inner hinge portion disposed along a first side and an outer hinge portion disposed along said second side, said inner hinge portion having a cylindrical surface which presents forwardly and covers a space between panels that would otherwise open as the panels bend relative to one another from a first coplaner relative angular position to a second oblique relative angular position.
 
                - 4. The climbing trainer of claim 3, further comprising a interchangeable hold releasably affixed to one of said rotationally interlinked panels.
 
                - 5. The climbing trainer of claim 4, wherein said actuator comprises a variable speed motor coupled to at least one of said first and second spindles, said climbing trainer further comprising a speed control operable from said continuous climbing surface, said speed control being adapted to vary the speed of the motor.
 
                - 6. The climbing trainer of claim 5, further comprising a safety kill switch operable from said continuous climbing training surface and adapted to stop movement of said climbing trainer.
 
                - 7. The climbing trainer of claim 3, wherein the rotatably interlinked panels comprise unitary extrusions having first and second sides comprising inner hinge portion having an outer cylindrical configuration at the first side and an outer hinge portion at the second side having an inner cylindrical configuration configured to engage said inner hinge portion of an adjacent panel and cooperate to provide a hinge between adjacent panels.
 
                - 8. The climbing trainer of claim 7, wherein said rotatably interlinked panels are formed of a metal comprising aluminum.
 
                - 9. A climbing trainer having a movable training wall surface adapted to facilitate climbing training by a user, comprising:
 
                - a support frame further comprising a base and a riser;
 
                - a pivoting frame having first and second ends and a pivot axis intermediate the first and second ends, the pivoting frame being pivotably supported by said riser, allowing relative rotational movement about the pivot axis between the pivoting frame and the support frame said pivoting frame having a range of motion including a vertical orientation and a horizontal orientation;
 
                - a worm wheel carried by one of two elements consisting of said support frame and said pivoting frame;
 
                - a worm carried by the other one of said two elements consisting of said support frame and said pivoting frame said pivoting frame;
 
                - a worm drive actuator coupled to said worm, said worm acting to prevent relative rotational movement between the support frame and the pivoting frame about the pivot axis when said worm is not turning due to force generated by said actuator, and said worm acting to cause relative rotational movement between the support frame and the pivoting frame about the pivot axis when the worm is turned by said actuator;
 
                - a movable climbing training wall surface comprising a continuous belt having an outer surface adapted to incorporate climbing holds, said continuous belt being carried by and rotatable about said pivoting frame, the continuous belt being restrained from movement transverse to a plane of the climbing training wall surface so as to resist forces tending to pull climbing holds incorporated in the outer surface of the continuous belt away from the wall surface and those tending to push said holds towards the wall surface, the climbing training wall surface being moveable in a direction parallel to a plane defined by the training wall surface by rotation of the continuous belt about said pivoting frame;
 
                - first and second spindles rotatably carried by the pivot frame at the first and second ends respectively of said pivot frame and rotatable about two parallel axes, the continuous belt comprising said climbing training surface being disposed about said spindles and bending about said two parallel axes, and wherein the continuous belt is stiffened to resist bending about a further axis orthogonal to said two parallel axes about which the first and second spindles rotate; and
 
                - a variable speed belt actuator adapted to rotate said continuous belt about the pivoting frame, whereby the climbing training wall surface is moved to provide a simulated climb, the inclination of the climbing training wall surface being adjustable by rotation of the pivotable frame over a range of inclinations including negative inclinations.
 
                - 10. The climbing trainer of claim 9, further comprising in combination a control panel accessible from said climbing wall surface allowing selective actuation of the belt actuator and variation of the speed of the actuator to control the speed of rotation of the continuous belt.
 
                - 11. The climbing trainer of claim 9, further comprising in combination a control panel accessible from said climbing wall surface allowing selective actuation of the worm actuator to control the relative position of the pivotable frame and the support and thereby control the inclination of the climbing training surface.
 
                - 12. The climbing trainer of claim 9, wherein the continuous belt further comprises a multiplicity of rotatably interlinked panels, each having a front face and being rotatable with respect to another about an axis parallel to said two parallel axes about which said first and second spindles rotate, and configured to mitigate unintentional engagement of the training wall surface with things which would otherwise be caught and moved with said wall surface by minimizing opening and closing of voids between said rotationally interlinked panels, said panels including a first panel and a second panel joined by a hinge further comprising an inner hinge portion comprising a cylindrical surface adjacent and joining the front face of said first panel substantially tangentially and which is disposed behind the front face of said second panel when said panels are disposed substantially coplanar so as to present as a wall on a front side of said pivoting frame and is exposed by relative rotation of said first and second panels about said hinge as said panels travel around the first and second ends of said pivoting frame so as to maintain a substantially continuous surface between the front faces of said first and second panels.
 
                - 13. The climbing trainer of claim 12, wherein the rotatably interlinked panels are extrusions formed of a metal comprising aluminum having first and second sides comprising said inner hinge portion disposed at the first side and an outer hinge portion at the second side having an inner cylindrical configuration configured to engage an inner hinge portion disposed at the first side of an adjacent panel and cooperate to provide a hinge between adjacent panels.
 
                - 14. The climbing trainer of claim 13, wherein said continuous belt defines an inner surface and first and second ends, said belt being slidably connected to said pivoting frame by at least one connection between said pivoting frame and said inner surface intermediate the first and second ends of the belt, and wherein said connection allows relative movement of the frame and continuous belt in a direction parallel to a plane defined by the climbing training wall surface and restricts movement in a direction orthogonal to said plane, whereby said continuous belt is restricted from movement orthogonal to said plane defined by the climbing wall surface by at least one sliding connection to the pivoting frame intermediate the first and second edges of the belt.
 
                - 15. The climbing trainer of claim 9, wherein said range of inclinations comprises those negative inclinations between a maximum negative inclination where said climbing training wall surface is disposed horizontally facing downward and a minimum negative inclination where said climbing training wall surface is disposed vertically.
 
                - 16. A climbing trainer having a movable training wall surface adapted to facilitate climbing training by a user, comprising:
 
                - a support frame further comprising a base and a riser;
 
                - a pivoting frame having first and second ends and a pivot axis intermediate the first and second ends, the pivoting frame being pivotably supported by a riser of the support frame and allowing relative rotational movement about the pivot axis between the pivoting frame and the support frame;
 
                - a worm gear further comprising a concave-faced worm wheel fixed to said support frame and a worm rotatably attached to said pivoting frame selectively rotated by a first rotational actuator including an electric motor controllable to relatively rotationally position the pivot frame and the support and by activation and deactivation of said actuator selectively allowing and preventing relative rotational movement between the support frame and the pivoting frame about the pivot axis;
 
                - a movable climbing training wall surface comprising a continuous belt having an outer surface adapted to incorporate interchangeable climbing holds, said continuous belt being carried by and rotatable about said pivoting frame, the continuous belt being restrained from movement transverse to a plane of the climbing training wall surface so as to resist forces tending to pull climbing holds incorporated in the outer surface of the continuous belt away from the wall surface and those tending to push said holds towards the wall surface, the climbing training wall surface being moveable in a direction parallel to a plane defined by the training wall surface by rotation of the continuous belt about said pivoting frame, said belt further comprising a multiplicity of rotatably interlinked panels having front faces, said panels further comprising stiffeners so as to resist bending, the panels being configured to join by a hinged joint further comprising an inner hinge portion and an outer hinge portion, said inner hinge portion having a cylindrical surface substantially tangentially meeting the front face of adjoining panels to fill a space otherwise opening between adjacent panels as said panels articulate as said continuous belt bends around said pivoting frame, whereby said inner and outer hinge portions cooperate to minimize opening and closing of voids open to said outer surface of said bed as said belt turns, whereby a tendency to pinch is mitigated;
 
                - first and second spindles rotatably carried by the pivot frame at the first and second ends respectively of said pivot frame and rotatable about two parallel axes, the continuous belt comprising said climbing training surface being disposed about said spindles and bending about said two parallel axes, and wherein the continuous belt is stiffened to resist bending about a further axis orthogonal to said two parallel axes about which the first and second spindles rotate; and
 
                - a second rotational actuator comprising a variable speed belt actuator coupled to at least one of said spindles and adapted to rotate said continuous belt about the pivoting frame, whereby the climbing training wall surface is moved to provide a simulated climb; the inclination of the climbing training wall surface being adjustable by rotation of the pivotable frame over a range of inclinations including negative inclinations;
 
                - a control panel accessible from said climbing training surface adapted to allow control of said first actuator and said second actuator to enable selection of a desired inclination of said climbing wall surface and a speed of movement of said climbing wall surface, whereby the inclination and speed of movement of said movable training wall surface can be changed automatically solely by the user by means of the control panel without additional effort and without intervention by others.
 
                - 17. A climbing trainer having a movable training wall surface adapted to facilitate climbing training by a user, comprising:
 
                - a frame having a first end and a second end;
 
                - a movable climbing training wall surface comprising a continuous belt formed by a multiplicity of interlinking panels rotatably disposed about said frame, said panels each having a first end and a second end, said first and second ends collectively forming a first end and second end of said continuous belt, and each of said panels having an outwardly facing climbing training wall surface face and an opposite rear face and two sides disposed perpendicularly to a direction of movement of said climbing wall surface, said continuous belt further comprising
 
                - a first interlinking panel and
 
                - a second interlinking panel, said second interlinking panel being adjacent said first interlinking panel, and
 
                - a hinge between said adjacent first and second interlinking panels, said hinge allowing relative rotational movement between said first and second interlinking panels and rotatably linking adjacent sides of said first and second panels, said hinge further comprising an inner hinge portion connected to said first interlinking panel, said inner hinge portion having a cylindrical outer surface appearing in transverse section as a circular arc portion, and an outer hinge portion having a complementary cylindrically shaped inner surface appearing in transverse section as a circular arc portion configured to cooperate with said outer surface of said inner hinge portion to provide for relative rotation of the inner and outer hinge portions, said inner hinge portion being rotatably received in said outer hinge portion, said outer hinge portion being connected to said second panel, said outer hinge portion enveloping said inner hinge portion to an extent that said inner hinge portion interlinks with said outer hinge portion preventing separation of said inner and outer hinge portions, a portion of said outer cylindrical surface of said inner hinge portion presenting outwardly between said outwardly facing climbing training wall surfaces of said first and second panels so as to mitigate opening and closing of spaces between said adjacent first and second panels as the continuous belt rotates around said frame.
 
                - 18. The climbing trainer of claim 17, wherein said hinge is continuous along said adjacent sides of said first and second panels.
 
                - 19. The climbing trainer of claim 18, wherein said inner hinge portion is slidingly received in said outer hinge portion, whereby panels can be successively interlinked by sliding them together to form a secession of interlinking panels in forming said continuous belt.
 
                - 20. The climbing trainer of claim 19, wherein said interlinking panels further comprise stiffening ribs disposed on said rear face.
 
        
                
                        RELATED APPLICATIONS
        This Non-Provisional Application is based on applicants' prior Provisional application Ser. No. 60/010,731 filed Jan. 29, 1996. It is intended that the materials filed in the prior provisional application be incorporated herein by reference.
                
                
                
                            US Referenced Citations (10)
            
            Foreign Referenced Citations (6)
            
                
                    
                        | Number | 
                        
                        Date | 
                        Country | 
                    
                
                
                        
                            | 2006887 | 
                            
                            Sep 1971 | 
                            DEX | 
                        
                        
                            | 3502 127 A1 | 
                            
                            Jul 1986 | 
                            DEX | 
                        
                        
                            | 646998 | 
                            
                            Feb 1979 | 
                            SUX | 
                        
                        
                            | 0646998 | 
                            
                            Feb 1979 | 
                            SUX | 
                        
                        
                            | 1556693 | 
                            
                            Apr 1990 | 
                            SUX | 
                        
                        
                            | 1600803 | 
                            
                            Oct 1990 | 
                            SUX | 
                        
                
            
            Non-Patent Literature Citations (2)
            
                
                    
                        | Entry | 
                    
                
                
                        
                            | Treco Products, Inc., POWER CLIMB The Ultimate Cardiovascular Training System The Superior Cardiovascular Training System Sales Information Bulletin No. 3 and 4. | 
                        
                        
                            | Brewer's Ledge, Inc. TREADWALL Total Body Fitness CLimbing Promotional Materials. |