This application contains subject matter related to the subject matter of the following patent applications, commonly owned herewith:
Patent Cooperation Treaty (PCT) Application No. PCT/US2003/011128, filed Apr. 10, 2003, entitled “Patient Comfort Apparatus and System”, and published on Oct. 23, 2003 under Publication No. WO 2003/086500;
PCT Application No. PCT/US2005/025355, filed Jul. 18, 2005, entitled “Perioperative Warming Device”, and published on Feb. 23, 2006 under Publication No. WO 2006/020170;
PCT Application No. PCT/US2005/043968, filed Dec. 6, 2005, entitled “Warming Device with Varied Permeability”, and published on Jun. 15, 2006 under Publication No. WO 2006/062910;
PCT Application No. PCT/US2005/044214, filed Dec. 6, 2005, entitled “Warming Device”, and published on Jun. 15, 2006 under Publication No. WO 2006/063027;
PCT Application No. PCT/US2006/004644, filed Feb. 9, 2006, entitled “Warming Device for Perioperative Use”, and published on Aug. 17, 2006 under Publication No. WO2006/086587;
PCT Application No. PCT/US2006/041028, filed Oct. 19, 2006, entitled “Multifunction Warming Device for Perioperative Use”, and published on Apr. 26, 2007 under Publication No. WO 2007/047917;
PCT Application No. PCT/US2007/013073, filed Jun. 1, 2007, entitled “Warming Device”, published on Jan. 31, 2008 under Publication No. WO 2008/013603;
PCT Application No. PCT/US2008/000141, filed Jan. 4, 2008, entitled “Convective Warming Device With a Drape”, published on Jul. 31, 2008 under Publication No. WO 2008/091486;
U.S. patent application Ser. No. 10/411,865, filed Apr. 10, 2003, entitled “Patient Comfort Apparatus and System”, and published on Oct. 16, 2003 under Publication No. US 2003/0195596, now U.S. Pat. No. 7,001,416;
U.S. patent application Ser. No. 10/508,319, 371(c) date Mar. 3, 2005, entitled “Patient Comfort Apparatus and System”, and published on Jun. 30, 2005 under Publication No. US 2005/0143796;
U.S. patent application Ser. No. 10/895,672, filed Jul. 21, 2004, entitled “Perioperative Warming Device”, now abandoned, published on Jan. 20, 2005, under Publication No. US 2005/0015127;
U.S. patent application Ser. No. 11/005,883, filed Dec. 7, 2004, entitled “Warming Device with Varied Permeability”, and published on Jun. 8, 2006 under Publication No. US 2006/0122671, now U.S. Pat. No. 7,226,454;
U.S. patent application Ser. No. 11/006,491, filed Dec. 7, 2004, entitled “Warming Device”, and published on Jun. 8, 2006 under Publication No. US 2006/0122672, now U.S. Pat. No. 7,364,584;
U.S. patent application Ser. No. 11/057,396, filed Feb. 11, 2005, entitled “Perioperative Warming Device”, and published on Aug. 17, 2006 under Publication No. US2006/0184215, now U.S. Pat. No. 7,276,076;
U.S. patent application Ser. No. 11/057,397, filed Feb. 11, 2005, entitled “Thermal Blanket for Warming the Limbs”, and published on Aug. 17, 2006 under Publication No. US 2006/0184216;
U.S. patent application Ser. No. 11/057,403, filed Feb. 11, 2005, entitled “Warming Device for Perioperative Use”, and published on Aug. 17, 2006 under Publication No. US 2006/0184217;
U.S. patent application Ser. No. 11/057,404, filed Feb. 11, 2005, entitled “Clinical Garment for Comfort Warming and Prewarming”, and published on Aug. 17, 2006 under Publication No. US 2006/0184218;
U.S. patent application Ser. No. 11/260,706, filed Oct. 27, 2005, entitled “Patient Comfort Apparatus and System”, and published on Mar. 9, 2006 under Publication No. US 2006/0052853;
U.S. patent application Ser. No. 11/363,136, filed Feb. 27, 2006, entitled “Forced Air Warming Unit”, and published on Jul. 6, 2006 under Publication No. US 2006/0147320;
U.S. patent application Ser. No. 11/492,425, filed Jul. 25, 2006, entitled “Warming Device”, and published on Nov. 16, 2006 under Publication No. US 2006/0259104;
U.S. patent application Ser. No. 11/583,432, filed Oct. 19, 2006, entitled “Multifunction Warming Device for Perioperative Use”, and published on Apr. 26, 2007 under Publication No. US 2007/0093882;
U.S. patent application Ser. No. 11/583,477, filed Oct. 19, 2006, entitled “Multifunction Warming Device with Provision for Being Secured”, and published on Apr. 26, 2007 under Publication No. US 2007/0093883;
U.S. patent application Ser. No. 11/583,480, filed Oct. 19, 2006, entitled “Multifunction Warming Device with Provision for Warming Hands”, and published on Apr. 26, 2007 under Publication No. US 2007/0093884;
U.S. patent application Ser. No. 11/583,481, filed Oct. 19, 2006, entitled “Multifunction Warming Device with an Upper Body Convective Apparatus”, and published on Apr. 26, 2007 under Publication No. US 2007/0093885;
U.S. patent application Ser. No. 11/656,777, filed Jan. 23, 2007, entitled “Convective Warming Device With a Drape”, and published on Jul. 24, 2008 under Publication No. US 2008/0177361;
U.S. patent application Ser. No. 11/704,547, filed Feb. 9, 2007, entitled “A Forced Air Warming Unit”, and published on Aug. 14, 2008 under Publication No. US 2008/0195184;
U.S. patent application Ser. No. 11/801,292, filed May 9, 2007, entitled “Warming Device with Varied Permeability”, and published on Oct. 11, 2007 under Publication No. US 2007/0239239;
U.S. patent application Ser. No. 11/899,872, filed Sep. 7, 2007, entitled “Perioperative Warming Method”, and published on Jan. 31, 2008 under Publication No. US 2008/0027522; and,
U.S. patent application Ser. No. 11/899,928, filed Sep. 7, 2007, entitled “Perioperative Warming Device” and published on Jan. 31, 2008 under Publication No. US 2008/0027521.
A clinical garment has at least one duct in communication with permeable surfaces for delivery of warmed air by convection to the inside of the garment.
Convective devices that transfer heat to a human body are known. For example, there are devices that receive a stream of warmed pressurized air, inflate in response to the pressurized air, distribute it within a pneumatic structure, and emit the warmed air onto a body to accomplish such objectives as increasing comfort, reducing shivering, and treating or preventing hypothermia. These devices are typically called “convective thermal blankets” or “covers”. Arizant Healthcare Inc., the assignee of this application, makes and sells such thermal blankets under the BAIR HUGGER® brand. One such device is the Model 522 Upper Body Blanket.
Use of the term “convective” to denote the transfer of heat between a warming device and a body refers to the principal mode of heat transfer, it being understood that heat may at the same time be transferred between a convective warming device and a body by conduction and radiation, although not to the degree of convection.
A recent invention disclosed in the referenced PCT application adapts a clinical garment such as a robe or gown to receive a convective warming device in order to warm a patient wearing the garment in a clinical setting for comfort and mobility of the patient. Arizant Healthcare Inc., the assignee of this application, makes and sells such warming devices under the BAIR PAWS® brand. There is a need to further adapt such a clinical garment in order to simplify the means by which it delivers warmed air and to enhance the utility of the garment in delivering perioperative thermal treatment to patients.
The term “perioperative” is defined in the PDR Medical Dictionary, Second Edition, (Medical Economics Company, 2000), as “around the time of operation.” The perioperative period is characterized by a sequence including the time preceding an operation when a patient is being prepared for surgery (“the preoperative period”), followed by the time spent in surgery (“the intraoperative period”), and by the time following an operation when the patient is closely monitored for complications while recovering from the effects of anesthesia (“the postoperative period”).
According to Mahoney et al. (Maintaining intraoperative normothermia: A meta-analysis of outcomes with costs. AANA Journal. 4/99; 67, 2:155-164), therapeutic warming is employed during at least the intraoperative period (during surgery) in order to prevent or mitigate a constellation of effects that result from hypothermia. In fact, it is increasingly manifest that maintenance of normothermia perioperatively enhances the prospects for a quick, successful recovery from surgery. The effectiveness of therapeutic warming depends upon delivery of enough heat to a patient's body to raise the patient's core body temperature to, or maintain it within, a narrow range, typically near 37° C. This range is called “normothermic” and a body with a core temperature in this range is at “normothermia.” Hypothermia occurs when the core body temperature falls below 36° C.; mild hypothermia occurs when core body temperature is in the range of 34° C. to 36° C. Therefore, “perioperative therapeutic warming” is warming therapy capable of being delivered during one or more of the perioperative periods for the prevention or treatment of hypothermia.
Therapeutic warming is contrasted with “comfort warming” which is intended to maintain or enhance a patient's sense of “thermal comfort”. Of course, therapeutic warming may also comfort a patient by alleviating shivering or a feeling of being cold, but this is a secondary or ancillary effect. Thermal comfort is a subjective notion; however, the environmental conditions necessary to produce a sense of thermal comfort in a population of human beings are known and well tabulated. For example, Fanger (Thermal Comfort: Analysis and Applications of Environmental Engineering. Danish Technical press, Copenhagen, 1970) defines thermal comfort as “that condition of mind which expresses satisfaction with the thermal environment.” Even when a patient is normothermic, less than ideal environmental conditions can result in acute feelings of discomfort. Under normothermic conditions, thermal comfort is largely determined with reference to skin temperature, not core body temperature. Comfort warming is warming applied to a patient to alleviate the patient's sense of thermal discomfort.
Both therapeutic warming and comfort warming may be provided by convective devices such as convective thermal blankets that receive and distribute warmed, pressurized air and then expel the distributed air through one or more surfaces toward a patient in order to prevent or treat hypothermia in the patient. An example of use of such a device for therapeutic warming is found in U.S. Pat. No. 6,524,332, “System and Method for Warming a Person to Prevent or Treat Hypothermia”, commonly owned with this application. Comfort warming by a clinical garment is described in the referenced U.S. patent application Ser. No. 10/508,319, and the referenced Publication No. WO 03/086500.
When delivered by convective devices, therapeutic warming is distinguished from comfort warming by intended effects and by the parameters of heat delivery that produce those effects. In this regard, a convective warming system typically includes a source of warmed pressurized air (also called a heater/blower unit, a forced air warming unit, a heater unit, etc.), a convective device such as a thermal blanket (which is, typically, inflatable), and a flexible conduit or air hose connecting the heater/blower unit with the thermal blanket. Use of such a system for a particular type of warming requires delivery of warmed air through a thermal blanket at parametric values that achieve a particular objective. The conditions by which a convective device such as a thermal blanket produces thermal comfort in normothermic individuals at steady state are significantly different from those necessary to treat hypothermia. Typically the conditions for thermal comfort are met in a comfort warming system with a relatively low capacity heater/blower unit, while those in a therapeutic warming system are achieved with a relatively high capacity heater/blower unit. The different capacities have led to use of air hoses with different capacities, with those delivering air flow for thermal comfort typically having smaller diameters than those serving a therapeutic warming requirement. The result is a divergence of designs leading to installation of different air delivery infrastructures for therapeutic and comfort warming.
The application of warmed air to the limbs by a comfort warming system produces the sense of well-being that characterizes comfort warming because of the high density of thermoreceptors in the arms and legs. Warming the peripheral body regions produces a greater comfort response than thermal stimulation of the anterior or posterior abdominal and thoracic body regions. One surprising result of warming preoperatively by heating the limbs is that the increase of thermal energy content in the body's periphery prevents or reduces the core temperature drop caused by core-to-periphery redistribution. Thus, while warming the limbs preoperatively does not produce an increase in core body temperature, it does prevent that temperature from dropping once anesthesia is initiated. Warming the limbs preoperatively in order to prevent or delay a drop in core body temperature may be referred to as “prewarming.”
The comfort warming system described in the referenced Publication No. WO 03/086500 directs warmed air primarily to the thoracic and upper abdominal regions. Its utility for prewarming is therefore limited. Adaptation of a clinical garment for both comfort warming and prewarming would enhance the utility of such comfort warming systems and provide greater flexibility in thermal treatment of patients.
In one aspect, a clinical garment has at least one duct in communication with permeable surfaces along peripheral portions of the inside of the garment.
In another aspect, the permeable surfaces are disposed along a lower hem portion and along lower sleeve portions on the inside of the garment.
In yet another aspect, the duct may be formed integrally with the clinical garment.
A warming device is constituted of a clinical garment with at least one duct for comfort warming and prewarming. In this regard, a “clinical garment” is a garment that is typically used to temporarily clothe a patient in a clinical setting. Clinical garments include hospital gowns, robes, bibs and other equivalents. The clinical setting may be a medical or dental office or clinic, a hospital, or any facility or institution that provides medical or dental treatment to patients. The clinical garment has a duct in communication with permeable surfaces on the inside of the clinical garment for comfort warming and prewarming by convection. The permeable surfaces are disposed along peripheral portions of the inside of the garment. For example, the permeable surfaces may be disposed along a lower hem portion and along lower sleeve portions on the inside of the garment. When a patient wears the clinical garment, the patient's legs extend across the permeable surface along the lower hem portion while the patient's arms extend along the permeable surfaces along the lower sleeve portions. Delivery of warmed pressurized air through these surfaces to the patient's limbs provides comfort warming and also prewarming.
In one aspect, a clinical garment with a duct for comfort warming and prewarming may be worn on a patient where it receives a stream of warmed pressurized air in through an inlet port of the duct and emits the air through one or more permeable surfaces near peripheral portions of the inside of the clinical garment to convectively warm the patient's limbs for comfort and for prewarming. In another aspect, a clinical garment for prewarming may be worn on a patient while a stream of warmed pressurized air is received in the duct and distributed by the duct to one or more permeable surfaces on the inside of the clinical garment near the patient's limbs. The warmed pressurized air may circulate through the permeable surfaces to warm the patient's limbs.
In the clinical garment illustrated and discussed below, the duct is inflatable. That is, the structure of the duct, flaccid when not in use, tautens when receiving a stream of pressurized air.
Refer now to
Most convective warming products are designed to provide a single mode of warming. Each of the thermal blankets described above is designed for therapeutic warming. The devices described in Publication No. WO 03/086500 are designed for comfort warming. In contrast, the clinical garment described in this specification may provide either comfort warming and/or prewarming, depending on the need.
The clinical garment 12 for comfort warming and prewarming is illustrated in
With reference to FIGS. 2 and 3A-3F, a representative assembly of the clinical garment 12 will be specified.
Manifestly, the descriptions and illustrations in this specification are presented for an understanding of how to make and use an exemplary perioperative warming device. The only limitations on the scope of protection afforded the inventive principles presented are in the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/057,404, filed Feb. 11, 2005, now U.S. Pat. No. 7,470,280, issued Dec. 30, 2008.
Number | Name | Date | Kind |
---|---|---|---|
2512559 | Williams | Jun 1950 | A |
2573414 | Dunn | Oct 1951 | A |
2826758 | Kahn | Mar 1958 | A |
3468299 | Amato | Sep 1969 | A |
3610251 | Sanderson | Oct 1971 | A |
3610323 | Troyer | Oct 1971 | A |
3757366 | Sacher | Sep 1973 | A |
3855635 | Ramirez | Dec 1974 | A |
3911499 | Benevento et al. | Oct 1975 | A |
3950789 | Konz et al. | Apr 1976 | A |
3999037 | Metcalf, Sr. | Dec 1976 | A |
4055173 | Knab | Oct 1977 | A |
4146933 | Jenkins et al. | Apr 1979 | A |
4369528 | Vest et al. | Jan 1983 | A |
4494248 | Holder | Jan 1985 | A |
4524463 | Ogden | Jun 1985 | A |
4558468 | Landry et al. | Dec 1985 | A |
4578825 | Vote | Apr 1986 | A |
4587671 | Rodriguez et al. | May 1986 | A |
4651727 | Howorth | Mar 1987 | A |
4653120 | Leaf | Mar 1987 | A |
4696066 | Ball et al. | Sep 1987 | A |
4718124 | Sawicki et al. | Jan 1988 | A |
4787101 | Feinberg | Nov 1988 | A |
4914752 | Hinson et al. | Apr 1990 | A |
4964282 | Wagner | Oct 1990 | A |
5062424 | Hooker | Nov 1991 | A |
5190031 | Guibert et al. | Mar 1993 | A |
5255390 | Gross et al. | Oct 1993 | A |
5304213 | Berke et al. | Apr 1994 | A |
5360439 | Dickerhoff et al. | Nov 1994 | A |
5367710 | Karmin | Nov 1994 | A |
5411541 | Bell et al. | May 1995 | A |
5443488 | Namenmye et al. | Aug 1995 | A |
5572742 | McFadden | Nov 1996 | A |
5575006 | Wolfe | Nov 1996 | A |
5611087 | Adkins | Mar 1997 | A |
5620482 | Augustine et al. | Apr 1997 | A |
5697963 | Augustine | Dec 1997 | A |
5733318 | Augustine | Mar 1998 | A |
5749109 | Kappel | May 1998 | A |
5785716 | Bayron | Jul 1998 | A |
5891187 | Winthrop et al. | Apr 1999 | A |
5946722 | Trautmann | Sep 1999 | A |
5970519 | Weber | Oct 1999 | A |
5974605 | Dickerhoff et al. | Nov 1999 | A |
6049907 | Palomo | Apr 2000 | A |
6109338 | Butzer | Aug 2000 | A |
6154883 | Spann et al. | Dec 2000 | A |
6156058 | Kappel et al. | Dec 2000 | A |
6203567 | Augustine | Mar 2001 | B1 |
6216270 | Moquin et al. | Apr 2001 | B1 |
6235659 | McAmish et al. | May 2001 | B1 |
6375673 | Clifton et al. | Apr 2002 | B1 |
6378136 | Matsushita | Apr 2002 | B2 |
6484321 | Shamam | Nov 2002 | B1 |
6511501 | Augustine et al. | Jan 2003 | B1 |
6524332 | Augustine et al. | Feb 2003 | B1 |
6551347 | Elkins | Apr 2003 | B1 |
6571574 | Blackstone | Jun 2003 | B1 |
6596019 | Turner et al. | Jul 2003 | B2 |
6647552 | Hogan | Nov 2003 | B1 |
6694522 | Neal | Feb 2004 | B1 |
6792622 | Graves | Sep 2004 | B2 |
6799332 | Hatton | Oct 2004 | B2 |
6820622 | Teves et al. | Nov 2004 | B1 |
6851125 | Fujikawa et al. | Feb 2005 | B2 |
6876884 | Hansen et al. | Apr 2005 | B2 |
7001416 | Augustine et al. | Feb 2006 | B2 |
7226454 | Albrecht et al. | Jun 2007 | B2 |
7276076 | Bieberich | Oct 2007 | B2 |
7364584 | Anderson | Apr 2008 | B2 |
7470280 | Bieberich | Dec 2008 | B2 |
7520889 | Van Duren | Apr 2009 | B2 |
20020032473 | Kushnir et al. | Mar 2002 | A1 |
20020138901 | Augustine et al. | Oct 2002 | A1 |
20030069621 | Kushnir | Apr 2003 | A1 |
20030126668 | Scroggins | Jul 2003 | A1 |
20030208251 | Papay et al. | Nov 2003 | A1 |
20050015127 | Bieberich | Jan 2005 | A1 |
20050143796 | Augustine et al. | Jun 2005 | A1 |
20060047332 | Malmberg et al. | Mar 2006 | A1 |
20060064147 | Almqvist | Mar 2006 | A1 |
20060122671 | Albrecht et al. | Jun 2006 | A1 |
20060122672 | Anderson | Jun 2006 | A1 |
20060147320 | Hansen et al. | Jul 2006 | A1 |
20060184216 | Van Duren | Aug 2006 | A1 |
20060184217 | Van Duren | Aug 2006 | A1 |
20060184218 | Bieberich | Aug 2006 | A1 |
20060259104 | Panser et al. | Nov 2006 | A1 |
20070093882 | Anderson et al. | Apr 2007 | A1 |
20070093883 | Anderson et al. | Apr 2007 | A1 |
20070093884 | Anderson et al. | Apr 2007 | A1 |
20070093885 | Anderson et al. | Apr 2007 | A1 |
20070239239 | Albrecht et al. | Oct 2007 | A1 |
20080027521 | Bieberich | Jan 2008 | A1 |
20080027522 | Bieberich | Jan 2008 | A1 |
20080125840 | Anderson | May 2008 | A1 |
20080177361 | Anderson | Jul 2008 | A1 |
20090062891 | Bieberich | Mar 2009 | A1 |
20090149931 | Anderson | Jun 2009 | A9 |
20090228083 | Anderson et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
821150 | Nov 1937 | FR |
475811 | Nov 1937 | GB |
1 462 033 | Jan 1997 | GB |
525 415 | Feb 2005 | SE |
WO 9714381 | Apr 1997 | WO |
WO 9848652 | Nov 1998 | WO |
WO 0062726 | Oct 2000 | WO |
WO 03086500 | Oct 2003 | WO |
WO 03106897 | Dec 2003 | WO |
WO 2004004500 | Jan 2004 | WO |
WO 2006020170 | Feb 2006 | WO |
WO 2006062910 | Jun 2006 | WO |
WO 2006063027 | Jun 2006 | WO |
WO 2006086587 | Aug 2006 | WO |
WO 2007047917 | Apr 2007 | WO |
WO 2008013603 | Jan 2008 | WO |
WO 2008091486 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090062891 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11057404 | Feb 2005 | US |
Child | 12290713 | US |