Clinician programmer methods and systems for maintaining target operating temperatures

Information

  • Patent Grant
  • 11439829
  • Patent Number
    11,439,829
  • Date Filed
    Friday, May 22, 2020
    4 years ago
  • Date Issued
    Tuesday, September 13, 2022
    2 years ago
Abstract
Methods and systems for monitoring and regulating temperatures of neurostimulator programmers are provided herein. A neurostimulator programmer may include one or more sensors that may detect one or more temperatures associated with the neurostimulator programmer. Each of the one or more sensors may be associated with one or more respective threshold values. When these threshold values are exceeded, one or more courses of actions may be taken by the neurostimulator programmer. For example, the neurostimulator programmer may reduce functionality of one or more heat-generating components, increase monitoring of temperature, and/or initiate shutdown of the neurostimulator programmer. In some cases, two or more such methods may be performed simultaneously, for example, one method to deal with high temperatures and another method to deal with particularly excessive temperatures.
Description
FIELD OF THE INVENTION

The present invention relates to neurostimulation treatment systems and associated devices, as well as methods of monitoring and regulating these systems and associated devices.


BACKGROUND OF THE INVENTION

Treatments with neurostimulation systems have become increasingly common in recent years. These neurostimulation systems generally have a neurostimulation component (for example, a pulse generator) and one or more interfacing components. The pulse generator may be an implantable pulse generator (IPG) or an external pulse generator (EPG). The interfacing components may include a neurostimulator programmer, which may be a clinician programmer (CP) or a patient remote for example. The neurostimulator programmer may be able to, for example, adjust stimulation parameters, turn stimulation on or off, receive stimulation history from the pulse generator, and/or transmit programming instructions to the pulse generator.


While neurostimulation systems have been widely implemented in treating a number of conditions, there are still a number of implementation problems that need to be addressed. For example, neurostimulation programmers may operate non-optimally or may pose safety risks when they are subjected to excessive temperatures that may result from a combination of the environment in which they are used and heat produced by the neurostimulation programmers themselves. Thus, it may be advantageous to devise methods, systems, and devices for monitoring and regulating temperatures of neurostimulation programmers while they are in use so as to ensure optimal safety and efficacy. Given the effects of neurostimulation systems on patient health and the attending safety risks associated with these systems, it may be particularly desirable to monitor and regulate these systems.


BRIEF SUMMARY OF THE INVENTION

The present invention generally relates to neurostimulation treatment systems and associated devices and methods, and in particular to methods of monitoring and regulating temperatures of neurostimulation programmers. The present invention has particular application to sacral nerve stimulation treatment systems configured to treat bladder and bowel related dysfunctions. It will be appreciated however that the present invention may also be utilized for the treatment of pain, or other suitable indications, such as movement or affective disorders, as will be appreciated by one of skill in the art.


In some embodiments, the temperature of neurostimulator programmers may need to be monitored and/or regulated to abide by prescribed standards set by the manufacturer or by the regulating agency. For example, neurostimulator programmers may need to abide by safety and/or efficacy regulations that prescribe maximum temperatures or optimal temperatures that may be sustained by a neurostimulator programmer while it is in use. A neurostimulator programmer may include components that generate heat, and this heat may accumulate within the neurostimulator programmer such that it may exceed thresholds beyond which the neurostimulator programmer may not operate safely, or beyond which the neurostimulator programmer may not operate optimally. Moreover, in some instances, the environment in which the neurostimulator programmer may be operated may introduce heat. It is therefore advantageous for the neurostimulator programmer to make use of one or more temperature monitoring and/or regulating software algorithms to maintain safety and efficacy.


An Example First Temperature-Regulation Software


In some embodiments, a neurostimulator programmer may be configured to execute a first temperature-regulation software. In one aspect, methods in accordance with the present invention may include receiving a first temperature information from one or more sensors associated with a neurostimulator programmer. The first temperature information may include one or more first temperature values. Each of the first temperature values may be associated with a particular one of the sensors. The method may include determining that one of the first temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the first temperature values. In response to determining that the one of the first temperature values exceeds its respective sensor-specific threshold value, the method may include reducing a charge rate of a charger module of the neurostimulator programmer to a reduced charge rate. For example, the reduced charge rate may be 25% of the maximum charge rate. The method may include receiving a second temperature information from one or more of the sensors so as to continue temperature monitoring of the neurostimulator programmer, wherein the second temperature information may include one or more second temperature values. Each of the second temperature values may be associated with a particular one of the sensors. In one aspect, the second temperature information may be received after a predetermined first period of time (for example, about 1 minute) elapses after reducing the charge rate of charger module.


In one aspect, the one or more sensors may include a display sensor disposed within a housing of the neurostimulator programmer, the display sensor being disposed near an inverter that powers a display of the neurostimulator programmer. As an example, the inverter may be a cold-cathode fluorescent lamp (CCFL) backlight inverter, and the display may be an LCD display. The respective sensor-specific threshold value corresponding to the display sensor may be any suitable value (for example, about 45 degrees Celsius). In one aspect, the one or more sensors may include a charger sensor disposed near the charger module of the neurostimulator programmer. The respective sensor-specific threshold value corresponding to the display sensor may be any suitable value (for example, about 42 degrees Celsius). In one aspect, the first temperature information may include a first temperature value associated with a first sensor disposed near an inverter that powers a display of the neurostimulator programmer, and a first temperature value associated with a second sensor disposed at a different location. As an example, the second sensor may be disposed near the charger module of the neurostimulator. In one aspect, any suitable sensor may be used in generating the first temperature information. For example, the first temperature information may include a first temperature value associated with a sensor disposed near a CPU of the neurostimulator programmer. As another example, the first temperature information may include a first temperature value associated with a sensor disposed near a battery of the neurostimulator programmer. In one aspect, the first temperature information may include temperature values from the same set of sensors as the second temperature information.


In one aspect, the neurostimulator programmer may adjust functionality of any other suitable heat-generating component. For example, it may adjust a clock speed of the CPU (for example, based on the first temperature value exceeding a sensor-specific threshold value).


In one aspect, the neurostimulator programmer may determine that each of the second temperature values is at or below a respective sensor-specific threshold value. Each respective sensor-specific threshold value may correspond to the respective sensor associated with one of the second temperature values. In response to determining that each of the second temperature values is at or below its respective sensor-specific threshold value, the neurostimulator programmer may increase the charge rate by a predetermined amount. It may initiate a follow-up process that may include: (a) waiting for a predetermined period of time; (b) receiving a follow-up temperature information from one or more of the sensors after waiting for the predetermined period of time, wherein the follow-up temperature information comprises one or more follow-up temperature values; (c) determining that each of the follow-up temperature values is below its respective sensor-specific threshold value; (d) increasing the charge rate by the predetermined amount; and (e) repeating steps (a)-(d) until the charge rate reaches a maximum charge rate or until one of the follow-up temperature values exceeds its respective sensor-specific threshold value.


In one aspect, the neurostimulator programmer may determine that one of the second temperature values exceeds a respective sensor-specific threshold value. The respective sensor-specific threshold value may correspond to the respective sensor associated with the one of the second temperature values. In response to determining that the one of the second temperature values exceeds its respective sensor-specific threshold value, the neurostimulator programmer may reduce a brightness level of a display of the neurostimulator programmer by a predetermined brightness-reduction amount (for example, 10% of a maximum brightness level). In one aspect, after reducing the brightness level of the display in response to determining that the one of the second temperature values exceeds its respective sensor-specific threshold value, the neurostimulator programmer may (a) wait for a predetermined first period of time; (b) receive a subsequent temperature information from one or more of the sensors after waiting for the predetermined first period of time, wherein the subsequent temperature information may include one or more subsequent temperature values; (c) determine that one of the subsequent temperature values exceeds a respective sensor-specific threshold value; (d) in response to determining that the one of the subsequent temperature values exceeds its respective sensor-specific threshold value, reduce the brightness level of a display of the neurostimulator programmer by the predetermined brightness-reduction amount; and (e) repeat steps (a)-(d) until the brightness level of the display reaches a minimum brightness level or until each of the subsequent temperature values is at or below its respective sensor-specific threshold value.


In one aspect, in response to determining that the brightness level of the display has reached the minimum brightness level, initiating a continuous monitoring process. The continuous monitoring process may include the steps of: (a) waiting for a predetermined second period of time, wherein the predetermined second period of time may be less than the predetermined first period of time; (b) receiving a follow-up temperature information from one or more of the sensors after waiting for the predetermined second period of time (for example, about 10 seconds), wherein the follow-up temperature information may include one or more follow-up temperature values; and (c) repeating steps (a)-(b) until each of the follow-up temperature values is at or below its respective sensor-specific threshold values.


In one aspect, the neurostimulator programmer may (a) receive a third temperature information from one or more of the sensors comprising one or more third temperature values; (b) determine that each of the third temperature values is at or below a respective sensor-specific nominal value (for example, about 42 degrees Celsius as measured by a sensor disposed near an inverter that powers a display of the neurostimulator programmer); (c) in response to determining that each of the third temperature values is at or below its respective sensor-specific nominal value, increase the brightness level of the display by a predetermined brightness-increase amount; (d) wait for a predetermined third period of time (for example, about 1 minute) after increasing the brightness level of the display; and (e) repeat steps (a)-(d) until the brightness level of the display reaches a user-set level. In one aspect, the brightness-increase amount may be the same as the brightness-reduction amount. In one aspect, the neurostimulator programmer may increase the charge rate of the charger module (for example, to a maximum charge rate, or incrementally by a predetermined amount) after the brightness level of the display reaches the user-set level.


An Example Second Temperature-Regulation Software


In some embodiments, the neurostimulator programmer may be configured to execute a second temperature-regulation software (for example, for handling particularly excessive temperatures). In one aspect, the neurostimulator programmer may receive a first temperature information from one or more sensors associated with the neurostimulator programmer, wherein the first temperature information may include one or more first temperature values. Each of the first temperature values may be associated with a particular one of the sensors. The neurostimulator programmer may determine that one of the first temperature values exceeds a respective sensor-specific high-threshold value, wherein the respective sensor-specific high-threshold value may correspond to the respective sensor associated with the one of the first temperature values. In particular embodiments, each respective sensor-specific high-threshold value may indicate an unsafe operating temperature. In particular embodiments, the sensor-specific high-threshold values of the second temperature-regulation software may be higher temperature values than the corresponding sensor-specific threshold values of the first temperature-regulation software. In response to determining that the one of the first temperature values exceeds its respective sensor-specific high-threshold value, the neurostimulator programmer may initiate a process that may include: (a) waiting for a predetermined first period of time; (b) after waiting for the predetermined first period of time, receiving a second temperature information from one or more of the sensors, the second temperature information comprising one or more second temperature values; (c) determining whether one of the second temperature values exceeds a respective sensor-specific high-threshold value; and (d) repeating steps (a)-(c) for a predetermined maximum number of times (for example, 5 times) or until each of the second temperature values is at or below its respective sensor-specific high-threshold value. In one aspect, the neurostimulator programmer may determine that steps (a)-(c) have been repeated consecutively for the predetermined maximum number of times, and may cause the neurostimulator programmer to initiate a shutdown of the neurostimulation programmer. Alternatively, the neurostimulator programmer may determine that each of the second temperature values is at or below its respective sensor-specific high-threshold value. It may initiate a monitoring process, which may include the steps of: waiting for a predetermined second period of time; after waiting for the predetermined second period of time, receiving a third temperature information from one or more of the sensors, the third temperature information comprising one or more third temperature values; and determining whether one or more of the third temperature values exceeds a respective sensor-specific high-threshold value.


In one aspect, the predetermined first period of time may be less than the predetermined second period of time. As an example, the predetermined first period of time may be about 10 seconds. The predetermined second period of time may be about 1 minute.


In one aspect, in response to determining that the one of the first temperature values exceeds its respective sensor-specific high-threshold value, the neurostimulator programmer may initialize a counter, increment a counter, and determine whether the counter has been incremented to a maximum count, wherein the maximum count may correspond to the predetermined maximum number of times. In another aspect, the neurostimulator programmer may initialize a counter to have a value corresponding to the predetermined maximum number of times, decrement the counter, and determine whether the counter has been documented to a minimum count (for example, 0).


In one aspect, the one or more sensors may include a display sensor disposed within a housing of the neurostimulator programmer, the display sensor being disposed near an inverter that powers a display of the neurostimulator programmer. As an example, the inverter may be a CCFL backlight inverter, and the display may be an LCD display. The respective sensor-specific high-threshold value corresponding to the display sensor may be any suitable value (for example, about 50 degrees Celsius). In one aspect, the one or more sensors may include a charger sensor disposed near the charger module of the neurostimulator programmer, with a respective sensor-specific high-threshold value of a suitable value (for example, about 55 degrees Celsius). In one aspect, the one or more sensors may include a sensor disposed near a CPU of the neurostimulator programmer, with a respective sensor-specific high-threshold value of a suitable value (for example, about 90 degrees Celsius). In one aspect, the one or more sensors may include a sensor disposed near a battery of the neurostimulator programmer, with a respective sensor-specific high-threshold value of a suitable value (for example, about 45 degrees Celsius). In one aspect, the first temperature information may include a first temperature value associated with a first sensor disposed near an inverter that powers a display of the neurostimulator programmer, and a first temperature value associated with a second sensor disposed at a different location. As an example, the second sensor may be disposed near the charger module of the neurostimulator. In one aspect, any suitable sensor may be used in generating the first temperature information. In one aspect, the first temperature information may include temperature values from the same set of sensors as the second temperature information.


Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates a nerve stimulation system, which includes a clinician programmer and a patient remote used in positioning and/or programming of both a trial neurostimulation system and a permanently implanted neurostimulation system, in accordance with aspects of the invention.



FIG. 2 illustrates an example of a fully implanted neurostimulation system in accordance with aspects of the invention.



FIG. 3 illustrates an example of a neurostimulation system having an implantable stimulation lead, an implantable pulse generator, and an external charging device, in accordance with aspects of the invention.



FIG. 4 illustrates an example of stimulation in a cycling mode, in which the duty cycle is the stimulation on time over the stimulation-on time plus the stimulation-off time.



FIG. 5 illustrates signal characteristics of a neurostimulation program, exhibiting a ramping feature.



FIG. 6 illustrates a schematic of a clinician programmer configuration.



FIG. 7 illustrates an example method that may be executed by a first temperature-regulation software for monitoring temperature of the neurostimulator programmer and taking one or more steps to reduce the temperature if it is determined that the temperature is beyond one or more thresholds.



FIG. 8 illustrates an example schematic of a printed circuit board assembly (PCBA) of a neurostimulator programmer including an example set of sensors disposed in example locations.



FIG. 9A illustrates an example method of a process in which the neurostimulator programmer reduces a brightness level of the display to reduce temperature.



FIG. 9B illustrates an example method of a monitoring process in which the neurostimulator programmer monitors temperature values.



FIG. 10 illustrates an example method of a process in which the neurostimulator programmer increases a brightness level of the display only when it is determined that a temperature of the neurostimulator programmer is nominal again.



FIG. 11 illustrates an example method that may be executed by a second temperature-regulation software for monitoring temperature of the neurostimulator programmer and shutting down the neurostimulator programmer if it is determined that the temperature is beyond one or more thresholds.





DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to neurostimulation treatment systems and associated devices, as well as methods of treatment and configuration of such treatment systems. In particular embodiments, the invention relates to sacral nerve stimulation treatment systems configured to treat bladder dysfunctions, including overactive bladder (“OAB”), as well as fecal dysfunctions and relieve symptoms associated therewith. It will be appreciated however that the present invention may also be utilized for any variety of neuromodulation uses, such as fecal dysfunction, the treatment of pain or other indications, such as movement or affective disorders, as will be appreciated by one of skill in the art.


I. Neurostimulation Indications


Neurostimulation (or neuromodulation as may be used interchangeably hereunder) treatment systems, such as any of those described herein, can be used to treat a variety of ailments and associated symptoms, such as acute pain disorders, movement disorders, affective disorders, as well as bladder related dysfunction and fecal dysfunction. Examples of pain disorders that may be treated by neurostimulation include failed back surgery syndrome, reflex sympathetic dystrophy or complex regional pain syndrome, causalgia, arachnoiditis, and peripheral neuropathy. Movement orders include muscle paralysis, tremor, dystonia and Parkinson's disease. Affective disorders include depressions, obsessive-compulsive disorder, cluster headache, Tourette syndrome and certain types of chronic pain. Bladder related dysfunctions include but are not limited to OAB, urge incontinence, urgency-frequency, and urinary retention. OAB can include urge incontinence and urgency-frequency alone or in combination. Urge incontinence is the involuntary loss or urine associated with a sudden, strong desire to void (urgency). Urgency-frequency is the frequent, often uncontrollable urges to urinate (urgency) that often result in voiding in very small amounts (frequency). Urinary retention is the inability to empty the bladder. Neurostimulation treatments can be configured to address a particular condition by effecting neurostimulation of targeted nerve tissues relating to the sensory and/or motor control associated with that condition or associated symptom.


In one aspect, the methods and systems described herein are particularly suited for treatment of urinary and fecal dysfunctions. These conditions have been historically under-recognized and significantly underserved by the medical community. OAB is one of the most common urinary dysfunctions. It is a complex condition characterized by the presence of bothersome urinary symptoms, including urgency, frequency, nocturia and urge incontinence. It is estimated that about 40 million Americans suffer from OAB. Of the adult population, about 16% of all men and women live with OAB symptoms.


OAB symptoms can have a significant negative impact on the psychosocial functioning and the quality of life of patients. People with OAB often restrict activities and/or develop coping strategies. Furthermore, OAB imposes a significant financial burden on individuals, their families, and healthcare organizations. The prevalence of co-morbid conditions is also significantly higher for patients with OAB than in the general population. Co-morbidities may include falls and fractures, urinary tract infections, skin infections, vulvovaginitis, cardiovascular, and central nervous system pathologies. Chronic constipation, fecal incontinence, and overlapping chronic constipation occur more frequently in patients with OAB.


Conventional treatments of OAB generally include lifestyle modifications as a first course of action. Lifestyle modifications include eliminating bladder irritants (such as caffeine) from the diet, managing fluid intake, reducing weight, stopping smoking, and managing bowel regularity. Behavioral modifications include changing voiding habits (such as bladder training and delayed voiding), training pelvic floor muscles to improve strength and control of urethral sphincter, biofeedback and techniques for urge suppression. Medications are considered a second-line treatment for OAB. These include anti-cholinergic medications (oral, transdermal patch, and gel) and oral beta-3 adrenergic agonists. However, anti-cholinergics are frequently associated with bothersome, systemic side effects including dry mouth, constipation, urinary retention, blurred vision, somnolence, and confusion. Studies have found that more than 50% of patients stop using anti-cholinergic medications within 90 days due to a lack of benefit, adverse events, or cost.


When these approaches are unsuccessful, third-line treatment options suggested by the American Urological Association include intradetrusor (bladder smooth muscle) injections of botulinum toxin (BTX), Percutaneous Tibial Nerve Stimulation (PTNS) and Sacral Nerve Stimulation (SNM). BTX is administered via a series of intradetrusor injections under cystoscopic guidance, but repeat injections of BTX are generally required every 4 to 12 months to maintain effect and BTX may undesirably result in urinary retention. A number or randomized controlled studies have shown some efficacy of BTX injections in OAB patients, but long-term safety and effectiveness of BTX for OAB is largely unknown.


PTNS therapy consists of weekly, 30-minute sessions over a period of 12 weeks, each session using electrical stimulation that is delivered from a hand-held stimulator to the sacral plexus via the tibial nerve. For patients who respond well and continue treatment, ongoing sessions, typically every 3-4 weeks, are needed to maintain symptom reduction. There is potential for declining efficacy if patients fail to adhere to the treatment schedule. Efficacy of PTNS has been demonstrated in a few randomized-controlled studies, however, there is limited data on PTNS effectiveness beyond 3-years and PTNS is not recommended for patients seeking a cure for urge urinary incontinence (UUI) (e.g., 100% reduction in incontinence episodes) (EAU Guidelines).


II. Sacral Neuromodulation Overview


SNM is an established therapy that provides a safe, effective, reversible, and long-lasting treatment option for the management of urge incontinence, urgency-frequency, and non-obstructive urinary retention. SNM therapy involves the use of mild electrical pulses to stimulate the sacral nerves located in the lower back. Electrodes are placed next to a sacral nerve, usually at the S3 level, by inserting the electrode leads into the corresponding foramen of the sacrum. The electrodes are inserted subcutaneously and are subsequently attached to an implantable pulse generator (IPG). The safety and effectiveness of SNM for the treatment of OAB, including durability at five years for both urge incontinence and urgency-frequency patients, is supported by multiple studies and is well-documented. SNM has also been approved to treat chronic fecal incontinence in patients who have failed or are not candidates for more conservative treatments.


III. Example Systems



FIG. 1 schematically illustrates example nerve stimulation system setups, which includes a setup for use in a trial neurostimulation system 200 and a setup for use in a permanently implanted neurostimulation system 100, in accordance with aspects of the invention. The EPG 80 and IPG 50 are each compatible with and wirelessly communicate with a clinician programmer (CP) 60 and a patient remote 70, which are used in positioning and/or programming the trial neurostimulation system 200 and/or permanently implanted system 100 after a successful trial. As discussed above, the system utilizes a cable set and EMG sensor patches in the trial system setup 100 to facilitate lead placement and neurostimulation programming. CP can include specialized software, specialized hardware, and/or both, to aid in lead placement, programming, re-programming, stimulation control, and/or parameter setting. In addition, each of the IPG and the EPG allows the patient at least some control over stimulation (e.g., initiating a pre-set program, increasing or decreasing stimulation), and/or to monitor battery status with the patient remote. This approach also allows for an almost seamless transition between the trial system and the permanent system.


In one aspect, the CP 60 is used by a physician to adjust the settings of the EPG and/or IPG while the lead is implanted within the patient. The CP can be a tablet computer used by the clinician to program the IPG, or to control the EPG during the trial period. The CP can also include capability to record stimulation-induced electromyograms to facilitate lead placement and programming. The patient remote 70 can allow the patient to turn the stimulation on or off, or to vary stimulation from the IPG while implanted, or from the EPG during the trial phase.


In another aspect, the CP 60 has a control unit which can include a microprocessor and specialized computer-code instructions for implementing methods and systems for use by a physician in deploying the treatment system and setting up treatment parameters. The CP generally includes a graphical user interface, an EMG module, an EMG input that can couple to an EMG output stimulation cable, an EMG stimulation signal generator, and a stimulation power source. The stimulation cable can further be configured to couple to any or all of an access device (e.g., a foramen needle), a treatment lead of the system, or the like. The EMG input may be configured to be coupled with one or more sensory patch electrode(s) for attachment to the skin of the patient adjacent a muscle (e.g., a muscle enervated by a target nerve). Other connectors of the CP may be configured for coupling with an electrical ground or ground patch, an electrical pulse generator (e.g., an EPG or an IPG), or the like. As noted above, the CP can include a module with hardware and computer-code to execute EMG analysis, where the module can be a component of the control unit microprocessor, a pre-processing unit coupled to or in-line with the stimulation and/or sensory cables, or the like.


In other aspects, the CP 60 allows the clinician to read the impedance of each electrode contact whenever the lead is connected to an EPG, an IPG or a CP to ensure reliable connection is made and the lead is intact. This may be used as an initial step in both positioning the lead and in programming the leads to ensure the electrodes are properly functioning. The CP 60 is also able to save and display previous (e.g., up to the last four) programs that were used by a patient to help facilitate re-programming. In some embodiments, the CP 60 further includes a USB port for saving reports to a USB drive and a charging port. The CP is configured to operate in combination with an EPG when placing leads in a patient body as well with the IPG during programming. The CP can be electronically coupled to the EPG during test simulation through a specialized cable set or through wireless communication, thereby allowing the CP to configure, modify, or otherwise program the electrodes on the leads connected to the EPG. The CP may also include physical on/off buttons to turn the CP on and off and/or to turn stimulation on and off.


The electrical pulses generated by the EPG and IPG are delivered to one or more targeted nerves via one or more neurostimulation electrodes at or near a distal end of each of one or more leads. The leads can have a variety of shapes, can be a variety of sizes, and can be made from a variety of materials, which size, shape, and materials can be tailored to the specific treatment application. While in this embodiment, the lead is of a suitable size and length to extend from the IPG and through one of the foramen of the sacrum to a targeted sacral nerve, in various other applications, the leads may be, for example, implanted in a peripheral portion of the patient's body, such as in the arms or legs, and can be configured to deliver electrical pulses to the peripheral nerve such as may be used to relieve chronic pain. It is appreciated that the leads and/or the stimulation programs may vary according to the nerves being targeted.



FIG. 2 schematically illustrates an example of a fully implanted neurostimulation system 100 adapted for sacral nerve stimulation. Neurostimulation system 100 includes an IPG implanted in a lower back region and connected to a neurostimulation lead extending through the S3 foramen for stimulation of the S3 sacral nerve. The lead is anchored by a tined anchor portion 30 that maintains a position of a set of neurostimulation electrodes 40 along the targeted nerve, which in this example, is the anterior sacral nerve root S3 which enervates the bladder so as to provide therapy for various bladder related dysfunctions. While this embodiment is adapted for sacral nerve stimulation, it is appreciated that similar systems can be used in treating patients with, for example, chronic, severe, refractory neuropathic pain originating from peripheral nerves or various urinary dysfunctions or still further other indications. Implantable neurostimulation systems can be used to either stimulate a target peripheral nerve or the posterior epidural space of the spine.


Properties of the electrical pulses can be controlled via a controller of the implanted pulse generator. In some embodiments, these properties can include, for example, the frequency, amplitude, pattern, duration, or other aspects of the electrical pulses. These properties can include, for example, a voltage, a current, or the like. This control of the electrical pulses can include the creation of one or more electrical pulse programs, plans, or patterns, and in some embodiments, this can include the selection of one or more pre-existing electrical pulse programs, plans, or patterns. In the embodiment depicted in FIG. 2, the implantable neurostimulation system 100 includes a controller in the IPG having one or more pulse programs, plans, or patterns that may be pre-programmed or created as discussed above. In some embodiments, these same properties associated with the IPG may be used in an EPG of a partly implanted trial system used before implantation of the permanent neurostimulation system 100.


In one aspect, the EPG unit is wirelessly controlled by a patient remote and/or the CP in a similar or identical manner as the IPG of a permanently implanted system. The physician or patient may alter treatment provided by the EPG through use of such portable remotes or programmers and the treatments delivered are recorded on a memory of the programmer for use in determining a treatment suitable for use in a permanently implanted system. The CP can be used in lead placement, programming and/or stimulation control in each of the trial and permanent nerve stimulation systems. In addition, each nerve stimulation system allows the patient to control stimulation or monitor battery status with the patient remote. This configuration is advantageous as it allows for an almost seamless transition between the trial system and the permanent system. From the patient's viewpoint, the systems will operate in the same manner and be controlled in the same manner, such that the patient's subjective experience in using the trial system more closely matches what would be experienced in using the permanently implanted system. Thus, this configuration reduces any uncertainties the patient may have as to how the system will operate and be controlled such that the patient will be more likely to convert a trial system to a permanent system.



FIG. 3 illustrates an example neurostimulation system 100 that is fully implantable and adapted for sacral nerve stimulation treatment. The implantable system 100 includes an IPG 10 that is coupled to a neurostimulation lead 20 that includes a group of neurostimulation electrodes 40 at a distal end of the lead. The lead includes a lead anchor portion 30 with a series of tines extending radially outward so as to anchor the lead and maintain a position of the neurostimulation lead 20 after implantation. The lead 20 may further include one or more radiopaque markers 25 to assist in locating and positioning the lead using visualization techniques such as fluoroscopy. In some embodiments, the IPG provides monopolar or bipolar electrical pulses that are delivered to the targeted nerves through one or more neurostimulation electrodes. In sacral nerve stimulation, the lead is typically implanted through the S3 foramen as described herein.


In one aspect, the IPG is rechargeable wirelessly through conductive coupling by use of a charging device 50 (CD), which is a portable device powered by a rechargeable battery to allow patient mobility while charging. The CD is used for transcutaneous charging of the IPG through RF induction. The CD can either be patched to the patient's skin using an adhesive or can be held in place using a belt 53 or by an adhesive patch 52, such as shown in the schematic of FIG. 1. The CD may be charged by plugging the CD directly into an outlet or by placing the CD in a charging dock or station 51 that connects to an AC wall outlet or other power source.


The system may further include a patient remote 70 and CP 60, each configured to wirelessly communicate with the implanted IPG, or with the EPG during a trial, as shown in the schematic of the nerve stimulation system in FIG. 1. The CP 60 may be a tablet computer used by the clinician to program the IPG and the EPG. The device also has the capability to record stimulation-induced electromyograms (EMGs) to facilitate lead placement, programming, and/or re-programming. The patient remote may be a battery-operated, portable device that utilizes radio-frequency (RF) signals to communicate with the EPG and IPG and allows the patient to adjust the stimulation levels, check the status of the IPG battery level, and/or to turn the stimulation on or off.


One or more of the pulse generators can include a processor and/or memory adapted to provide instructions to and receive information from the other components of the implantable neurostimulation system. The processor can include a microprocessor, such as a commercially available microprocessor from Intel® or Advanced Micro Devices, Inc.®, or the like. An IPG may include an energy storage feature, such as one or more capacitors, and typically includes a wireless charging unit.


One or more properties of the electrical pulses can be controlled via a controller of the IPG or EPG. In some embodiments, these properties can include, for example, the frequency, strength, pattern, duration, or other aspects of the timing and magnitude of the electrical pulses. These properties can further include, for example, a voltage, a current, or the like. This control of the electrical pulses can include the creation of one or more electrical pulse programs, plans, or patterns, and in some embodiments, this can include the selection of one or more pre-existing electrical pulse programs, plans, or patterns. In one aspect, the IPG 10 includes a controller having one or more pulse programs, plans, or patterns that may be created and/or pre-programmed. In some embodiments, the IPG can be programmed to vary stimulation parameters including pulse amplitude in a range from 0 mA to 10 mA, pulse width in a range from 50 μs to 500 μs, pulse frequency in a range from 5 Hz to 250 Hz, stimulation modes (e.g., continuous or cycling), and electrode configuration (e.g., anode, cathode, or off), to achieve the optimal therapeutic outcome specific to the patient. In particular, this allows for an optimal setting to be determined for each patient even though each parameter may vary from person to person.


In one aspect, the CP 60 may be used to program the IPG/EPG according to various stimulation modes, which can be determined by the CP or selected by the physician using the CP. In some embodiments, the IPG/EPG may be configured with two stimulation modes: continuous mode and cycling mode. The cycling mode saves energy in comparison to the continuous mode, thereby extending the recharge interval of the battery and lifetime of the device. The cycling mode may also help reduce the risk of neural adaptation for some patients. Neural adaptation is a change over time in the responsiveness of the neural system to a constant stimulus. Thus, cycling mode may also mitigate neural adaptation so to provide longer-term therapeutic benefit. FIG. 4 illustrates an example of stimulation in a cycling mode, in which the duty cycle is the stimulation on time over the stimulation-on time plus the stimulation-off time. In some embodiments, the IPG/EPG is configured with a ramping feature, as shown in the example of FIG. 5. In these embodiments, the stimulation signal is ramped up and/or down between the stimulation-on and stimulation-off levels. This feature helps reduce the sudden “jolting” or “shocking” sensation that some patients might experience when the stimulation is initially turned on or at the cycle-on phase during the cycling mode. This feature is particularly of benefit for patients who need relative high stimulation settings and/or for patients who are sensitive to electrical stimulation.


To activate an axon of a nerve fiber, one needs to apply an electric field outside of the axon to create a voltage gradient across its membrane. This can be achieved by pumping charge between the electrodes of a stimulator. Action potentials, which transmit information through the nervous system, are generated when the outside of the nerve is depolarized to a certain threshold, which is determined by the amount of current delivered. To generate continuous action potentials in the axon, this extracellular gradient threshold needs to be reached with the delivery of each stimulation pulse.


In conventional systems, a constant voltage power source is able to maintain the output voltage of the electrodes, so that enough current is delivered to activate the axon at initial implantation. However, during the first several weeks following implantation, tissue encapsulation around electrodes occurs, which results in an impedance (tissue resistance) increase. According to the ohms' law (I=V/R where I is the current, V the voltage and R the tissue impedance of the electrode pair), current delivered by a constant voltage stimulator will therefore decrease, generating a smaller gradient around the nerve. When the impedance reaches a certain value, extracellular depolarization will go down below the threshold value, so that no more action potential can be generated in the axon. Patients will need to adjust the voltage of their system to re-adjust the current, and restore the efficacy of the therapy.


In contrast, embodiments of the present invention utilize a constant current power source. In one aspect, the system uses feedback to adjust the voltage in such a way that the current is maintained regardless of what happens to the impedance (until one hits the compliance limit of the device), so that the gradient field around the nerve is maintained overtime. Using a constant current stimulator keeps delivering the same current that is initially selected regardless the impedance change, for a maintained therapeutic efficacy.



FIG. 6 schematically illustrates a block diagram of the configuration of the CP 60 and associated interfaces and internal components. As described above, CP 60 is typically a tablet computer with software that runs on a standard operating system. The CP 60 includes a communication module, a stimulation module and an EMG sensing module. The communication module communicates with the IPG and/or EPG in the medical implant communication service frequency band for programming the IPG and/or EPG. While this configuration reflects a portable user interface display device, such as a tablet computer, it is appreciated that the CP may be incorporated into various other types of computing devices, such as a laptop, desktop computer, or a standalone terminal for use in a medical facility.


III. Monitoring and Regulation of Temperature on Neurostimulator Programmers


In some embodiments, the temperature of neurostimulator programmers (for example, the CP 60 or the patient remote 70) may need to be monitored and/or regulated to abide by prescribed standards set by the manufacturer or by the regulating agency. For example, neurostimulator programmers may need to abide by safety and/or efficacy regulations that prescribe maximum temperatures or optimal temperatures that may be sustained by a neurostimulator programmer while it is in use. A neurostimulator programmer may include components that generate heat, and this heat may accumulate within the neurostimulator programmer such that it may exceed thresholds beyond which the neurostimulator programmer may not operate safely, or beyond which the neurostimulator programmer may not operate optimally. Moreover, in some instances, the environment in which the neurostimulator programmer may be operated may introduce heat. It is therefore advantageous for the neurostimulator programmer to make use of one or more temperature monitoring and/or regulating software algorithms to maintain safety and efficacy.


III.A) Example First Temperature-Regulation Software



FIG. 7 illustrates an example method 700 that may be executed by a first temperature-regulation software for monitoring temperature of the neurostimulator programmer and taking one or more steps to reduce the temperature if it is determined that the temperature is beyond one or more thresholds. In some embodiments, this first temperature-regulation software may be implemented by one or more processors of the neurostimulator programmer, which may be disposed within a portable housing of the neurostimulator programmer. In some embodiments, as illustrated by step 710 in FIG. 7, the neurostimulator programmer may receive a first temperature information from one or more sensors associated with the neurostimulator programmer. The first temperature information may include one or more first temperature values, each of the first temperature values being associated with a particular one of the sensors.


Any suitable sensors of any suitable type may be used to measure temperature for generating the first temperature values. For example, the sensors may be thermistors (for example, Negative Temperature Coefficient (NTC) thermistors), resistance temperature detectors (RTD), thermocouples, and/or semi-conductor-based sensors. In some embodiments, the sensors may include a display sensor for sensing a temperature generated by a display of the neurostimulator programmer, a charger sensor for sensing a temperature generated by a charger module of the neurostimulator programmer, a CPU sensor for sensing a temperature generated by a CPU of the neurostimulator programmer, a battery sensor for sensing a temperature generated by a battery of the neurostimulator programmer as it is being discharged, and/or any other suitable sensors. In this example, each of these sensors may be disposed at or near a respective heat-generating component. For example, the display sensor may be disposed within the housing of the neurostimulator programmer near an inverter that powers the display (for example, near a cold-cathode fluorescent lamp (CCFL) of an LCD display), or near one or more LEDs of the display. As another example, the charger sensor may be disposed near the charger module of the neurostimulator programmer. As another example, the CPU sensor may be disposed at or near the CPU of the neurostimulator programmer. As another example, the battery sensor may be disposed at or near the battery pack of the neurostimulator programmer. In an example embodiment, the neurostimulator programmer may receive a first temperature information that may include a first temperature value associated with a display sensor and also a first temperature value associated with a charger sensor, indicating for example temperatures near the display inverter and the charger module, respectively.



FIG. 8 illustrates an example schematic of a printed circuit board assembly (PCBA) of a neurostimulator programmer including an example set of sensors disposed in example locations. In some embodiments, the PCBA may include a CPU sensor 815 that may be at or near a CPU 810. The CPU sensor 815 may be located such that it is suited for detecting heat generated by the CPU 810. In some embodiments, the PCBA may include a display sensor 825 that may be at or near one or more backlight components (for example, LCD backlight components 820) of the neurostimulator programmer. The backlight components may include, for example, an inverter and/or LEDs of the backlight. The display sensor 825 may be located such that it is suited for detecting heat generated by the display. In some embodiments, the PCBA may include a charger sensor 835 that may be at or near a charging module (for example, the battery charger chip 830). The charger sensor 835 may be located such that it is suited for detecting heat generated by the charging module as it, for example, steps down voltage, as described elsewhere herein. In some embodiments, the PCBA may include a battery sensor 845 that may be at or near a battery pack 840. The battery pack 840 may include one battery or several batteries that may be coupled together. The battery sensor 845 may be located such that it is suited for detecting heat generated by the charging or discharging of the battery pack 840 or components thereof. Although FIG. 8 illustrates a configuration that includes four different types of sensors (the CPU sensor 815, the display sensor 825, the charger sensor 835, and the battery sensor 845), this disclosure contemplates any number or combination of these types of sensors and/or any other suitable types of sensors. Moreover, although FIG. 8 illustrates only one sensor of each type (for example, only one battery sensor 845, only one display sensor 825) this disclosure contemplates that any suitable number of such sensors may be incorporated into the PCBA. For example, in a case where the battery pack includes four different batteries, there may be a battery sensor 845 adjacent to each of the four different batteries.


In some embodiments, as illustrated by step 720 in FIG. 7, the neurostimulator programmer may determine whether one of the first temperature values exceeds a threshold value. In some embodiments, each sensor may have a threshold value that is specific to the sensor—that is, each sensor may have a sensor-specific threshold value. For example, a sensor-specific threshold value corresponding to a display sensor may be about 45 degrees Celsius. As another example, a sensor-specific threshold value corresponding to the charger sensor may be about 42 degrees Celsius. As such, the determination as to whether a first temperature value exceeds a threshold value may require consideration of the sensor-specific threshold value associated with the sensor from which the first temperature value was measured. The neurostimulator programmer may thus determine whether any of the one or more first temperature values exceeds its respective sensor-specific threshold value.


In some embodiments, as illustrated by step 730 in FIG. 7, in response to a determination that one of the first temperature values exceeds its respective sensor-specific threshold value, the neurostimulator programmer may attempt to cause a reduction in temperature by performing a suitable temperature-reducing action. In attempting to reduce temperature, the neurostimulator programmer may, for example, reduce a functionality of a first heat-generating component, or multiple such components, of the neurostimulator programmer. Reducing functionality may serve to reduce the generation of heat by these components. In some embodiments, the neurostimulator programmer may reduce a charge rate of a charger module of the neurostimulator programmer to a reduced charge rate. The reduced charge rate may be a predetermined charge rate, for example, set at 25% of a maximum charge rate. In some embodiments, the neurostimulator programmer may reduce the charge rate by a predetermined amount. For example, the charge rate may be reduced by 20% of the maximum charge rate. Alternatively, the predetermined amount may vary based on the current charge rate of the neurostimulator programmer (for example, it may be set at 10% of the current charge rate).


In embodiments where the charge rate is reduced by a predetermined amount, the neurostimulator programmer may reduce the charge rate of the charger module incrementally. For example, the neurostimulator programmer may reduce the charge rate by 20% of the maximum charge rate, and may continue to do so until the charge rate reaches a minimum level (or until each of the second temperature values are at or below its respective sensor-specific threshold value). In this example, the neurostimulator programmer may reduce the charge rate until it reaches a minimum level of 25%. Alternatively, the neurostimulator programmer may reduce the charge rate until charging is disabled entirely. In some embodiments, the incremental reduction of charge rate may occur first before a brightness level of the display is reduced (the reduction of the rightness level is explained in further detail below). In other embodiments, the incremental reduction of charge rate may occur along with the reduction of the brightness level.


In some embodiments, the charger module may be a module within the neurostimulator programmer housing that receives at a port a coupling to a source of AC current (for example, an outlet) to charge a battery of the neurostimulator programmer. The charger module may, for example, convert the AC current into DC current for charging a battery pack of the neurostimulator programmer. This conversion process may generate heat that may accumulate within the neurostimulator programmer. In some embodiments, the charger module may receive DC current but the voltage of the current may need to be adjusted. For example, the charger module may step down the voltage to a level that is appropriate for charging the battery pack. In these embodiments, the adjustment of voltage may generate heat that may accumulate within the neurostimulator programmer. In some embodiments, the charger module may receive energy wirelessly from a source (for example, using induction technology), which may generate heat. In some embodiments, the manufacturer may determine that the reduction of the charge rate may be an optimal first step, at least in part because the manufacturer may determine that the reduction in charge rate may not impede the functionality of the neurostimulator programmer as a whole, relative to a reduction in functionality of other heat-generating components (for example, a display of the neurostimulator programmer).


In some embodiments, as illustrated by step 740 of FIG. 7, the neurostimulator programmer may receive a second temperature information from one or more of the sensors. The second temperature information may include one or more second temperature values, each of the second temperature values being associated with a particular one of the sensors. In some embodiments, the second temperature information may be received after the first temperature information is received. In some embodiments, the second temperature information may be received after a predetermined period of time elapses following a temperature-reducing action attempted by the neurostimulator programmer. In some embodiments, the predetermined period of time may be about 1 minute. For example, the second temperature information may be received after 1 minute elapses following the reduction of the charge rate of the neurostimulator programmer.


In some embodiments, as illustrated by step 750 of FIG. 7, the neurostimulator programmer may determine whether each of the second temperature values exceeds its respective sensor-specific threshold value corresponding to the associated sensor.


In some embodiments, as illustrated by step 760 of FIG. 7, in response to determining that a second temperature value exceeds its respective sensor-specific threshold value, the neurostimulator programmer may attempt to cause a reduction in temperature by performing another suitable action. In attempting to reduce temperature, the neurostimulator programmer may, for example, reduce a functionality of a second heat-generating component. For example, the second heat-generating component may be a display of the neurostimulator programmer, in which case the neurostimulator programmer may reduce a brightness level of the display. In this example, the neurostimulator programmer may reduce a brightness level of a display of the neurostimulator programmer by a predetermined brightness-reduction amount. The brightness-reduction amount may be any suitable amount. For example it may be set at 10% of the maximum brightness level. Alternatively, it may vary based on the current brightness level of the neurostimulator programmer (for example, it may be set at 10% of the current brightness level).



FIG. 9A illustrates an example method 900 of a process in which the neurostimulator programmer reduces a brightness level of the display to reduce temperature. At step 910, the neurostimulator programmer may reduce a brightness of its display by a predetermined brightness-reduction amount. At step 920, the neurostimulator programmer may wait for a predetermined first period of time (for example, 1 minute). At step 930, the neurostimulator programmer may receive, from one or more of the sensors, a subsequent temperature information that includes one or more subsequent temperature values. At step 940, the neurostimulator programmer may determine whether any of the subsequent temperature values exceeds their respective sensor-specific threshold values. If it is determined that each of the subsequent temperature values do not exceed their respective sensor-specific threshold values, the method 900 may loop back to step 920. However, if it is determined that at least one of the subsequent temperature values exceeds its respective sensor-specific threshold value, the method 900 may proceed to step 950. At step 950, the neurostimulator programmer may determine whether a current brightness level of the display is at a minimum brightness level. This minimum brightness level may be set by, for example, the manufacturer or by an operator of the neurostimulator programmer. For example, the minimum brightness level may be 10% of the maximum brightness level. If it is determined that the current brightness level of the display is already at the minimum brightness level, the method 900 may proceed to step 960, where the neurostimulator programmer may initiate a monitoring process (for example, as outlined below). However, if it is determined that the current brightness level of the display is not at the minimum brightness level, the method 900 may proceed to step 970, where the neurostimulator programmer may again reduce the brightness level of the display by the predetermined brightness-reduction amount. The method 900 may then loop back to step 920. In some embodiments, the method 900 may continue in this manner until the brightness level of the display reaches a minimum brightness level or until each of the subsequent temperature values is at or below its respective sensor-specific threshold value.



FIG. 9B illustrates an example method 960 of a monitoring process in which the neurostimulator programmer monitors temperature values. The method 960 may start at step 962, where the neurostimulator programmer may wait for a predetermined second period of time. In some embodiments, the predetermined second period of time may be less than the predetermined first period of time described with respect to step 920 of FIG. 9A. For example, the predetermined second period of time may be 10 seconds, whereas the predetermined first period of time may have been 1 minute. This may be, because the monitoring process may be correspond to a “high-alert condition,” where the temperature of the neurostimulator programmer is high and yet the neurostimulator programmer is unable to reduce the brightness level so as to reduce the temperature. In such a condition, increased monitoring may be warranted. In some embodiments, when the neurostimulator programmer is in this high-alert condition, the neurostimulator programmer may provide an indication or an alarm/warning to an operator of the neurostimulator programmer. Referencing FIG. 9B, at step 964, the neurostimulator programmer may receive a follow-up temperature information that includes one or more follow-up temperature values. At step 966, the neurostimulator programmer may determine whether any of the follow-up temperature values exceeds its respective sensor-specific threshold value. If it is determined that at least one of the follow-up temperature values exceeds its respective sensor-specific threshold value, the method 960 may loop back to step 962. However, if it is determined that each of the follow-up temperature values is at or below its respective sensor-specific threshold value, the method 960 may proceed to step 968, where the neurostimulator programmer may exit the monitoring process.


In some embodiments, the neurostimulator programmer may receive second temperature values where each of the second temperature values is determined to be at or below its respective sensor-specific threshold value. In response, the neurostimulator programmer may reverse course taken by prior actions to reduce functionality. For example, in the case where a charge rate of the neurostimulator programmer was decreased, the neurostimulator programmer may increase the charge rate by a predetermined amount. In this example, it may then initiate a follow-up process that may monitor and continue to increase functionality so long as second temperature values remain at or below respective sensor-specific threshold values. For example, the follow-up process may include the steps of (a) waiting for a predetermined period of time; (b) receiving a follow-up temperature information from one or more of the sensors after waiting for the predetermined period of time, wherein the follow-up temperature information may include one or more follow-up temperature values; (c) determining whether each of the follow-up temperature values is below its respective sensor-specific threshold value; and (d) again increasing the charge rate by the predetermined amount if it is determined that each of the follow-up temperature values is below its respective sensor-specific threshold value. These steps may be repeated until the charge rate reaches a maximum charge rate (for example, 100%) or until one of the follow-up temperature values exceeds its respective sensor-specific threshold value.



FIG. 10 illustrates an example method 1000 of a process in which the neurostimulator programmer increases a brightness level of the display only when it is determined that a temperature of the neurostimulator programmer is nominal again. The method 1000 may start at step 1010, where the neurostimulator may receive a third temperature information that includes one or more third temperature values. At step 1020 the neurostimulator programmer may determine that each of the third temperature values is at or below a respective sensor-specific nominal value. In some embodiments, the sensor-specific nominal value for a particular sensor may be different from the sensor-specific threshold value for the particular sensor. For example, the sensor-specific nominal value may be less than the sensor-specific threshold value. As an example, the sensor-specific nominal value of a display sensor may be around 42 degrees Celsius, as compared to a sensor-specific threshold value that may be around 45 degrees Celsius for the same display sensor. When the sensor-specific nominal value is reached, it may indicate that it is particularly safe to increase functionality of one or more heat-generating components of the neurostimulator programmer. Referring to FIG. 10, the method 1000 may proceed to step 1030, where the neurostimulator programmer may increase the brightness level of the display by a predetermined brightness-increase amount. In some embodiments, this brightness-increase amount may be equivalent to the brightness-reduction amount. For example, both the brightness-increase amount and the brightness-reduction amount may be 10% of the maximum brightness level of the display. In other embodiments, the brightness-increase amount may be different from the brightness-reduction amount. For example, the brightness-increase amount may be 5% of the maximum brightness level of the display, while the brightness-reduction amount may be 10% of the maximum brightness level of the display. The method 1000 may then proceed to step 1040, where the neurostimulator programmer may wait for a predetermined third period of time. In some embodiments, the third period of time may be around 1 minute. The method 1000 may then proceed to step 1050, where the neurostimulator programmer determines whether the current brightness level of the display is at a user-set level (alternatively, it may determine whether the current brightness level of the display is at a maximum brightness level). In the event of a negative determination, the method 1000 may loop back to step 1030, again causing an increase of the brightness level. However, in the event of a positive determination, the method 1000 may proceed to step 1060, where the neurostimulator programmer may increase a charge rate to a maximum charge rate. Alternatively, the neurostimulator programmer may increase the charge rate by a predetermined amount, and may incrementally increase the charge rate, waiting in between each increase, for example, for the predetermined third period of time.


Although the disclosure focuses on a particular order of actions for reducing temperature, with the first heat-generating component being the charger module and the second heat-generating component being the display, the disclosure contemplates any suitable order of actions. For example, the first heat-generating component may be the display and the second heat-generating component may be the charger module. In this example, the functionality of bird display may be reduced before the functionality of the charger module. Additionally, although the disclosure focuses on the display and the charger module as first and/or second heat-generating components for which functionality may be reduced, the disclosure contemplates reducing functionality for any other suitable heat-generating components (the CPU, the battery, etc.) in the neurostimulator programmer. This reduction may be performed additionally to or alternatively to the reduction of functionality of the charger module and/or the display. For example, in response to determining that a first or second temperature value exceeds a respective sensor-specific threshold value, the neurostimulator programmer may adjust a clock speed of its CPU (for example, reducing the clock speed of its CPU), or reduce power consumption of the neurostimulator programmer.


Additionally, although the disclosure focuses on reducing one or more functionalities, the disclosure also contemplates other types of actions that may reduce overall temperature of the neurostimulator programmer. In some embodiments, the neurostimulator programmer may turn on or increase a functionality of a heatsink or heat exchanger device such as a fan component of the neurostimulator programmer (for example, increasing the speed of the fan component). Such an increase in functionality may be performed additionally or alternatively to the reduction of functionality described elsewhere. For example, in response to determining that a second temperature value exceeds its respective sensor-specific threshold value, rather than (or in addition to) reducing the brightness level of the display, the neurostimulator programmer may turn on or increase the speed of a fan component in an attempt to reduce the temperature of the neurostimulator programmer.


III.B) Example Second Temperature-Regulation Software


In some embodiments, a neurostimulator programmer may alternatively or additionally implement a second temperature-regulation software that may be capable of shutting down the neurostimulator programmer if a temperature of the neurostimulator programmer is beyond one or more thresholds. In some embodiments, the second temperature-regulation software may provide a final safety net in cases where particularly excessive temperatures are reached. In some embodiments, this second temperature-regulation software may be implemented to run simultaneously with the first temperature-regulation software. In some embodiments, the second temperature-regulation software may operate independently of the first temperature-regulation software.



FIG. 11 illustrates an example method 1100 that may be executed by a second temperature-regulation software for monitoring temperature of the neurostimulator programmer and shutting down the neurostimulator programmer if it is determined that the temperature is beyond one or more thresholds. In some embodiments, this first temperature-regulation software may be implemented by one or more processors of the neurostimulator programmer, which may be disposed within a housing of the neurostimulator programmer. In some embodiments, as illustrated by step 1110 in FIG. 11, the neurostimulator programmer may receive a first temperature information from one or more sensors associated with the neurostimulator programmer. The first temperature information comprises one or more first temperature values, each of the first temperature values being associated with a particular one of the sensors.


In some embodiments, as illustrated by step 1120 of FIG. 11, the neurostimulator programmer may determine whether one of the first temperature values exceeds a respective sensor-specific high-threshold value. Each respective sensor-specific high-threshold value may corresponds to a respective sensor associated with one of the first temperature values. In some embodiments, the respective sensor-specific high-threshold values may indicate an unsafe operating temperature. In some embodiments, the respective sensor-specific high-threshold values may be higher than their counterpart sensor-specific threshold values, as described herein with respect to the first temperature-regulation software. For example, a display sensor (for example, a display sensor disposed near a CCFL backlight inverter that powers an LCD display of the neurostimulator programmer) may have a sensor-specific high-threshold value of about 50 degrees Celsius, whereas the same display sensor may have a sensor-specific threshold value of about 45 degrees Celsius. As another example, a charger sensor disposed near a charger module of the neurostimulator programmer may have a sensor-specific high-threshold value of about 55 degrees Celsius, whereas the same charger sensor may have a sensor-specific threshold value of about 44 degrees Celsius. In some embodiments, the second temperature-regulation software may receive temperature values from more sensors than the first temperature-regulation software. As an example, the first temperature-regulation software may only receive temperature values from a display sensor and a charger sensor, while the second temperature-regulation software may receive temperature values from the display sensor, the charger sensor, a CPU sensor, and a battery sensor. In this example, each of these sensors may be associated with their own sensor-specific high-threshold values. For example, the display sensor may be associated with a sensor-specific high-threshold value of about 50 degrees Celsius, the charger sensor may be associated with a sensor-specific high-threshold value of about 55 degrees Celsius, the CPU sensor may be associated with a sensor-specific high-threshold value of about 90 degrees Celsius, and the battery sensor may be associated with a sensor-specific high-threshold value of about 45 degrees Celsius.


In some embodiments, as illustrated by step 1130 of FIG. 11, in response to determining that at least one of the first temperature values exceeds its respective sensor-specific high-threshold value, the neurostimulator programmer may wait for a predetermined first period of time. As an example, the predetermined first period of time may be about 10 seconds. In some embodiments, this predetermined first period of time of the second temperature-regulation software may be a shorter period of time than the predetermined first period of time of the first temperature-regulation software. This may be the case because temperatures that exceed one or more of the sensor-specific high-threshold values may be particularly excessive (for example, relative to the sensor-specific threshold values of the first temperature-regulation software), and may require more frequent monitoring as a result.


In some embodiments, as illustrated by step 1140 of FIG. 11, after waiting for the predetermined first period of time, the neurostimulator programmer may receive a second temperature information from one or more of the sensors. The second temperature information may include one or more second temperature values.


In some embodiments, as illustrated by step 1150 of FIG. 11, the neurostimulator programmer may determine whether one of the second temperature values exceeds a respective sensor-specific high-threshold value. In some embodiments, if it is determined that at least one of the second temperature values exceeds its respective sensor-specific high-threshold value, the neurostimulator programmer may repeat steps 1130 to 1150. In some embodiments, the neurostimulator programmer may repeat these steps for a predetermined maximum number of times until each of the second temperature values is at or below its respective sensor-specific high-threshold value. The predetermined maximum number of times may dictate a maximum number of times that steps 1130 to 1150 may be performed consecutively. As an example, the predetermined maximum number of times may be 5 times. The neurostimulator programmer may then determine whether any of the second temperature values exceeds a respective sensor-specific high-threshold value. In some embodiments, a counter algorithm may be used to keep track of the number of times steps 1130 to 1150 are repeated. As illustrated by step 1160 of FIG. 11, for example, a counter may be incremented (or initialized if it has not already been initialized) when it is determined at step 1150 that at least one second temperature value exceeds its respective sensor-specific high-threshold value. At step 1170 of FIG. 11, the neurostimulator programmer may determine whether the counter is at a predetermined maximum count. In some embodiments, the maximum count may correspond to the predetermined maximum number of times that steps 1130 to 1150 may be repeated consecutively. If the counter is in fact at the predetermined maximum count, the neurostimulator programmer may initiate a shutdown of the neurostimulation programmer. In some embodiments, instead of initiating a shutdown, the neurostimulator may initiate a sleep or hibernation mode that may reduce all functionality of the device short of shutting down. However, if the counter is not yet at the maximum count, the method 1100 may loop back to step 1130, and steps 1130 to 1150 be repeated consecutively until the count reaches the maximum count or until none of the second temperature values exceed their respective sensor-specific high-threshold values. In some embodiments, the counter may be initialized to have a value corresponding to the predetermined maximum count, in which case the counter may be decremented each time the method 1100 loops back to step 1130. In this example, steps 1130 to 1150 may be repeated consecutively until the count reaches a minimum count (for example, a count of 0) or until none of the second temperature values exceed their respective sensor-specific high-threshold values.


In some embodiments, if none of the second temperature values exceed their respective sensor-specific high-threshold values, as illustrated in FIG. 11, the method 1100 may proceed to step 1190, where the neurostimulator programmer may wait for a predetermined second period of time. In some embodiments, the predetermined second period of time may be different from the predetermined first period of time. For example, the predetermined first period of time may be less than the predetermined second period of time. In this example, the predetermined first period of time may be about 10 seconds, while the predetermined second period of time may be about 1 minute. In some embodiments, after waiting for the predetermined second period of time, the neurostimulator programmer may receive a third temperature information from one or more of the sensors, as illustrated by step 1192 in FIG. 11. The third temperature information may include one or more third temperature values. As illustrated by step 1194 in FIG. 11, the neurostimulator programmer may determine whether one or more of the third temperature values exceeds a respective sensor-specific high-threshold value.


In some embodiments, where the first temperature-regulation software and the second temperature-regulation software are both being executed on a neurostimulator programmer, the second temperature-regulation software may override the first temperature-regulation software. For example, when a sensor-specific high-threshold value has been exceeded, the steps of the second temperature-regulation software may take precedence over the steps of the first temperature-regulation software. However, in some embodiments, the steps of both the first temperature-regulation software and the second temperature-regulation software may still continue to be performed in these cases. For example, the brightness level may be decreased according to the first temperature-regulation software, even as the second-temperature software is incrementing its counter on the way to a shutdown of the neurostimulator programmer. In other embodiments, the first temperature-regulation software may be halted when a sensor-specific high-threshold value has been exceeded, while the second temperature-regulation software may continue to execute.


Particular embodiments may repeat one or more steps of the methods of FIGS. 8-11, where appropriate. Although this disclosure describes and illustrates particular steps of the methods of FIGS. 8-11 as occurring in a particular order, this disclosure contemplates any suitable steps of the methods of FIGS. 8-11 occurring in any suitable order. Moreover, although this disclosure describes and illustrates example methods for regulating temperature of the neurostimulator programmer including the particular steps of the methods of FIGS. 8-11, this disclosure contemplates any suitable method for regulating temperature of a similar device including any suitable steps, which may include all, some, or none of the steps of the methods of FIGS. 8-11, where appropriate. For example, the disclosure contemplates that at least some of the steps of these methods may be optional, where appropriate. Furthermore, although this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the methods of FIGS. 8-11, this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the methods of FIGS. 8-11.


In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention can be used individually or jointly. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.

Claims
  • 1. A method for regulating temperature on a neurostimulator programmer configured to communicate with a neurostimulator device, the method comprising: receiving, by one or more processors, a first temperature information from one or more sensors associated with the neurostimulator programmer, wherein the first temperature information comprises one or more first temperature values, each of the first temperature values being associated with a particular one of the sensors;determining, by one or more of the processors, that one of the first temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the first temperature values;in response to determining that the one of the first temperature values exceeds its respective sensor-specific threshold value, reducing a charge rate of a charger module of the neurostimulator programmer to a reduced charge rate; andreceiving, by one or more of the processors, a second temperature information from the one or more of the sensors so as to continue temperature monitoring of the neurostimulator programmer, wherein the second temperature information comprises one or more second temperature values, each of the second temperature values being associated with a particular one of the sensors;wherein the charge rate is reduced continuously until the charge rate reaches a minimum level or until each of the second temperature values are at or below its respective sensor-specific threshold value.
  • 2. The method of claim 1, wherein the one or more sensors comprises a display sensor disposed within a housing of the neurostimulator programmer, the display sensor being disposed near an inverter that powers a display of the neurostimulator programmer.
  • 3. The method of claim 2, wherein the inverter is a cold-cathode fluorescent lamp (CCFL) backlight inverter, and wherein the display is an LCD display.
  • 4. The method of claim 2, wherein the respective sensor-specific threshold value corresponding to the display sensor is about 45 degrees Celsius.
  • 5. The method of claim 1, wherein the one or more sensors comprises a charger sensor disposed near the charger module of the neurostimulator programmer.
  • 6. The method of claim 5, wherein the respective sensor-specific threshold value corresponding to the charger sensor is about 42 degrees Celsius.
  • 7. The method of claim 1, wherein the first temperature information comprises a first temperature value associated with a first sensor disposed near an inverter that powers a display of the neurostimulator programmer, and further comprises a first temperature value associated with a second sensor disposed at a different location.
  • 8. The method of claim 7, wherein the second sensor is disposed near the charger module of the neurostimulator programmer.
  • 9. The method of claim 1, wherein the first temperature information comprises a first temperature value associated with a sensor disposed near a CPU of the neurostimulator programmer, further comprising: adjusting a clock speed of the CPU based on the first temperature value.
  • 10. The method of claim 1, wherein the first temperature information comprises a first temperature value associated with a sensor disposed near a battery of the neurostimulator programmer.
  • 11. The method of claim 1, wherein the respective sensor associated with the one of the first temperature values is the same as the respective sensor associated with the one of the second temperature values.
  • 12. The method of claim 1, wherein the reduced charge rate is 25% of a maximum charge rate.
  • 13. The method of claim 1, wherein the second temperature information is received after a predetermined first period of time elapses after reducing the charge rate of the charger module.
  • 14. The method of claim 13, wherein the predetermined first period of time is about 1 minute.
  • 15. The method of claim 1, further comprising: determining that each of the second temperature values is at or below a respective sensor-specific threshold value, wherein each respective sensor-specific threshold value corresponds to the respective sensor associated with one of the second temperature values; and in response to determining that each of the second temperature values is at or below its respective sensor-specific threshold value, increasing the charge rate by a predetermined amount, and initiating a follow-up process comprising:(a) waiting for a predetermined period of time;(b) receiving a follow-up temperature information from one or more of the sensors after waiting for the predetermined period of time, wherein the follow-up temperature information comprises one or more follow-up temperature values;(c) determining that each of the follow-up temperature values is below its respective sensor-specific threshold value;(d) increasing the charge rate by the predetermined amount; and(e) repeating steps (a) (d) until the charge rate reaches a maximum charge rate or until one of the follow-up temperature values exceeds its respective sensor-specific threshold value.
  • 16. The method of claim 1, further comprising: determining that one of the second temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the second temperature values; andin response to determining that the one of the second temperature values exceeds its respective sensor-specific threshold value, reducing a brightness level of a display of the neurostimulator programmer by a predetermined brightness-reduction amount.
  • 17. The method of claim 16, wherein the predetermined brightness-reduction amount is 10% of a maximum brightness level.
  • 18. A method for regulating temperature on a neurostimulator programmer configured to communicate with a neurostimulator device, the method comprising: receiving, by one or more processors, a first temperature information from one or more sensors associated with the neurostimulator programmer, wherein the first temperature information comprises one or more first temperature values, each of the first temperature values being associated with a particular one of the sensors;determining, by one or more of the processors, that one of the first temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the first temperature values;in response to determining that the one of the first temperature values exceeds its respective sensor-specific threshold value, reducing a charge rate of a charger module of the neurostimulator programmer to a reduced charge rate;receiving, by one or more of the processors, a second temperature information from the one or more of the sensors so as to continue temperature monitoring of the neurostimulator programmer, wherein the second temperature information comprises one or more second temperature values, each of the second temperature values being associated with a particular one of the sensors;determining that one of the second temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the second temperature values;in response to determining that the one of the second temperature values exceeds its respective sensor-specific threshold value, reducing a brightness level of a display of the neurostimulator programmer by a predetermined brightness-reduction amount; andafter reducing the brightness level of the display in response to determining that the one of the second temperature values exceeds its respective sensor-specific threshold value;(a) waiting for a predetermined first period of time;(b) receiving a subsequent temperature information from one or more of the sensors after waiting for the predetermined first period of time, wherein the subsequent temperature information comprises one or more subsequent temperature values;(c) determining that one of the subsequent temperature values exceeds a respective sensor-specific threshold value;(d) in response to determining that the one of the subsequent temperature values exceeds its respective sensor-specific threshold value, reducing the brightness level of a display of the neurostimulator programmer by the predetermined brightness-reduction amount; and(e) repeating steps (a) (d) until the brightness level of the display reaches a minimum brightness level or until each of the subsequent temperature values is at or below its respective sensor-specific threshold value.
  • 19. The method of claim 18, further comprising in response to determining that the brightness level of the display has reached the minimum brightness level, initiating a continuous monitoring process, the continuous monitoring process comprising: (a) waiting for a predetermined second period of time, wherein the predetermined second period of time is less than the predetermined first period of time;(b) receiving a follow-up temperature information from one or more of the sensors after waiting for the predetermined second period of time, wherein the follow-up temperature information comprises one or more follow-up temperature values; and(c) repeating steps (a)-(b) until each of the follow-up temperature values is at or below its respective sensor-specific threshold values.
  • 20. The method of claim 19, wherein the predetermined second period of time is about 10 seconds.
  • 21. A method for regulating temperature on a neurostimulator programmer configured to communicate with a neurostimulator device, the method comprising: receiving, by one or more processors, a first temperature information from one or more sensors associated with the neurostimulator programmer, wherein the first temperature information comprises one or more first temperature values, each of the first temperature values being associated with a particular one of the sensors;determining, by one or more of the processors, that one of the first temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the first temperature values;in response to determining that the one of the first temperature values exceeds its respective sensor-specific threshold value, reducing a charge rate of a charger module of the neurostimulator programmer to a reduced charge rate;receiving, by one or more of the processors, a second temperature information from the one or more of the sensors so as to continue temperature monitoring of the neurostimulator programmer, wherein the second temperature information comprises one or more second temperature values, each of the second temperature values being associated with a particular one of the sensors;determining that one of the second temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the second temperature values;in response to determining that the one of the second temperature values exceed its respective sensor-specific threshold value, reducing a brightness level of a display of the neurostimulator programmer by a predetermined brightness-reduction amount;(a) receiving a third temperature information from one or more of the sensors comprising one or more third temperature values;(b) determining that each of the third temperature values is at or below a respective sensor-specific nominal value;(c) in response to determining that each of the third temperature values is at or below its respective sensor-specific nominal value, increasing the brightness level of the display by a predetermined brightness-increase amount;(d) waiting for a predetermined third period of time after increasing the brightness level of the display; and(e) repeating steps (a)-(d) until the brightness level of the display reaches a user-set level.
  • 22. The method of claim 21, wherein the predetermined third period of time is about 1 minute.
  • 23. The method of claim 21, further comprising increasing the charge rate of the charger module after the brightness level of the display reaches the user-set level.
  • 24. The method of claim 23, wherein the charge rate of the charger module is increased to a maximum charge rate.
  • 25. The method of claim 21, wherein the brightness-increase amount is the same as the brightness-reduction amount.
  • 26. The method of claim 21, wherein the one or more sensors comprises a particular sensor disposed within a housing of the neurostimulator programmer, the particular sensor being disposed near an inverter that powers a display of the neurostimulator programmer, and wherein the respective sensor-specific nominal value of the particular sensor is about 42 degrees Celsius.
  • 27. The method of claim 21, further comprising: receiving a fourth temperature information from one or more of the sensors, wherein the fourth temperature information comprises one or more fourth temperature values, each of the fourth temperature values being associated with a particular one of the sensors;corresponds to the respective sensor associated with the one of the fourth temperature values; andin response to determining that the one of the fourth temperature values exceeds its respective sensor-specific high-threshold value, (a) waiting for a predetermined period of time;(b) after waiting for the predetermined period of time, receiving a subsequent temperature information from one or more of the sensors, the subsequent temperature information comprising one or more subsequent temperature values;(c) determining whether one of the subsequent temperature values exceeds a respective sensor-specific high-threshold value; and(d) repeating steps (a)-(c) for a predetermined maximum number of times or until each of the subsequent temperature values is at or below its respective sensor-specific high-threshold value.
  • 28. A system for regulating temperature on a neurostimulator programmer configured to communicate with a neurostimulator device, the system comprising: a neurostimulator device; anda neurostimulator programmer comprising: a portable housing;one or more sensors for sensing temperature; andone or more processors disposed within the portable housing configured to: receive a first temperature information from one or more of the sensors, wherein the first temperature information comprises one or more first temperature values, each of the first temperature values being associated with a particular one of the sensors;determine that one of the first temperature values exceeds a respective sensor-specific threshold value, wherein the respective sensor-specific threshold value corresponds to the respective sensor associated with the one of the first temperature values;in response to determining that the one of the first temperature values exceeds its respective sensor-specific threshold value, reduce a charge rate of a charger module of the neurostimulator programmer to a reduced charge rate; andreceive a second temperature information from one or more of the sensors so as to continue temperature monitoring of the neurostimulator programmer, wherein the second temperature information comprises one or more second temperature values, each of the second temperature values being associated with a particular one of the sensors;wherein the charge rate is reduced continuously until the charge rate reaches a minimum level or until each of the second temperature values are at or below its respective sensor-specific threshold value.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/852,805 filed May 24, 2019, and entitled “CLINICIAN PROGRAMMER METHODS AND SYSTEMS FOR MAINTAINING TARGET OPERATING TEMPERATURES”, the entirety of which is hereby incorporated by reference herein.

US Referenced Citations (825)
Number Name Date Kind
3057356 Greatbatch Oct 1962 A
3348548 Chardack Oct 1967 A
3646940 Timm et al. Mar 1972 A
3824129 Fagan, Jr. Jul 1974 A
3825015 Berkovits Jul 1974 A
3888260 Fischell Jun 1975 A
3902501 Citron et al. Sep 1975 A
3939843 Smyth Feb 1976 A
3942535 Schulman Mar 1976 A
3970912 Hoffman Jul 1976 A
3995623 Blake et al. Dec 1976 A
4019518 Maurer et al. Apr 1977 A
4044774 Corbin et al. Aug 1977 A
4082097 Mann et al. Apr 1978 A
4141365 Fischell et al. Feb 1979 A
4166469 Littleford Sep 1979 A
4210383 Davis Jul 1980 A
4269198 Stokes May 1981 A
4285347 Hess Aug 1981 A
4340062 Thompson et al. Jul 1982 A
4379462 Borkan et al. Apr 1983 A
4407303 Akerstrom Oct 1983 A
4437475 White Mar 1984 A
4512351 Pohndorf Apr 1985 A
4550731 Batina et al. Nov 1985 A
4558702 Barreras et al. Dec 1985 A
4654880 Sontag Mar 1987 A
4662382 Sluetz et al. May 1987 A
4719919 Marchosky et al. Jan 1988 A
4721118 Harris Jan 1988 A
4722353 Sluetz Feb 1988 A
4744371 Harris May 1988 A
4800898 Hess et al. Jan 1989 A
4848352 Pohndorf et al. Jul 1989 A
4860446 Lessar et al. Aug 1989 A
4957118 Erlebacher Sep 1990 A
4989617 Memberg et al. Feb 1991 A
5012176 Laforge Apr 1991 A
5052407 Hauser et al. Oct 1991 A
5197466 Marchosky et al. Mar 1993 A
5204611 Nor et al. Apr 1993 A
5255691 Otten Oct 1993 A
5257634 Kroll Nov 1993 A
5342408 deCoriolis et al. Aug 1994 A
5439485 Mar et al. Aug 1995 A
5476499 Hirschberg Dec 1995 A
5484445 Knuth Jan 1996 A
5571148 Loeb et al. Nov 1996 A
5592070 Mino Jan 1997 A
5637981 Nagai et al. Jun 1997 A
5676162 Larson, Jr. et al. Oct 1997 A
5690693 Wang et al. Nov 1997 A
5702428 Tippey et al. Dec 1997 A
5702431 Wang et al. Dec 1997 A
5712795 Layman et al. Jan 1998 A
5713939 Nedungadi et al. Feb 1998 A
5733313 Barreras, Sr. et al. Mar 1998 A
5735887 Barreras, Sr. et al. Apr 1998 A
5741316 Chen et al. Apr 1998 A
5871532 Schroeppel Feb 1999 A
5876423 Braun Mar 1999 A
5902331 Bonner et al. May 1999 A
5948006 Mann Sep 1999 A
5949632 Barreras, Sr. et al. Sep 1999 A
5957965 Moumane et al. Sep 1999 A
5991665 Wang et al. Nov 1999 A
6014588 Fitz Jan 2000 A
6027456 Feler et al. Feb 2000 A
6035237 Schulman et al. Mar 2000 A
6052624 Mann Apr 2000 A
6055456 Gerber Apr 2000 A
6057513 Ushikoshi et al. May 2000 A
6067474 Schulman et al. May 2000 A
6075339 Reipur et al. Jun 2000 A
6076017 Taylor et al. Jun 2000 A
6081097 Seri et al. Jun 2000 A
6083247 Rutten et al. Jul 2000 A
6104957 Alo et al. Aug 2000 A
6104960 Duysens et al. Aug 2000 A
6138681 Chen et al. Oct 2000 A
6157861 Faltys et al. Dec 2000 A
6165180 Cigaina et al. Dec 2000 A
6166518 Echarri et al. Dec 2000 A
6169387 Kaib Jan 2001 B1
6172556 Prentice Jan 2001 B1
6178353 Griffith et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6181961 Prass Jan 2001 B1
6191365 Avellanet Feb 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212430 Kung Apr 2001 B1
6212431 Hahn et al. Apr 2001 B1
6221513 Lasater Apr 2001 B1
6227204 Baumann et al. May 2001 B1
6243608 Pauly et al. Jun 2001 B1
6246911 Seligman Jun 2001 B1
6249703 Stanton et al. Jun 2001 B1
6265789 Honda et al. Jul 2001 B1
6275737 Mann Aug 2001 B1
6278258 Echarri et al. Aug 2001 B1
6305381 Weijand et al. Oct 2001 B1
6306100 Prass Oct 2001 B1
6314325 Fitz Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6316909 Honda et al. Nov 2001 B1
6321118 Hahn Nov 2001 B1
6324432 Rigaux et al. Nov 2001 B1
6327504 Dolgin et al. Dec 2001 B1
6354991 Gross et al. Mar 2002 B1
6360750 Gerber et al. Mar 2002 B1
6381496 Meadows et al. Apr 2002 B1
6393325 Mann et al. May 2002 B1
6438423 Rezai et al. Aug 2002 B1
6442434 Zarinetchi et al. Aug 2002 B1
6453198 Torgerson et al. Sep 2002 B1
6466817 Kaula et al. Oct 2002 B1
6473652 Sarwal et al. Oct 2002 B1
6500141 Irion et al. Dec 2002 B1
6505075 Weiner Jan 2003 B1
6505077 Kast et al. Jan 2003 B1
6510347 Borkan Jan 2003 B2
6516227 Meadows et al. Feb 2003 B1
6517227 Stidham et al. Feb 2003 B2
6542846 Miller et al. Apr 2003 B1
6553263 Meadows et al. Apr 2003 B1
6584355 Stessman Jun 2003 B2
6587728 Fang et al. Jul 2003 B2
6600954 Cohen et al. Jul 2003 B2
6609031 Law et al. Aug 2003 B1
6609032 Woods et al. Aug 2003 B1
6609945 Jimenez et al. Aug 2003 B2
6625494 Fang et al. Sep 2003 B2
6652449 Gross et al. Nov 2003 B1
6654634 Prass Nov 2003 B1
6662051 Eraker et al. Dec 2003 B1
6662053 Borkan Dec 2003 B2
6664763 Echarri et al. Dec 2003 B2
6678563 Fang et al. Jan 2004 B2
6685638 Taylor et al. Feb 2004 B1
6701189 Fang et al. Mar 2004 B2
6721603 Zabara et al. Apr 2004 B2
6735474 Loeb et al. May 2004 B1
6745077 Griffith et al. Jun 2004 B1
6809701 Amundson et al. Oct 2004 B2
6836684 Rijkhoff et al. Dec 2004 B1
6836685 Fitz Dec 2004 B1
6847849 Mamo et al. Jan 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6892098 Ayal et al. May 2005 B2
6895280 Meadows et al. May 2005 B2
6896651 Gross et al. May 2005 B2
6901287 Davis et al. May 2005 B2
6907293 Grill et al. Jun 2005 B2
6923814 Hildebrand et al. Aug 2005 B1
6941171 Mann et al. Sep 2005 B2
6959215 Gliner et al. Oct 2005 B2
6971393 Mamo et al. Dec 2005 B1
6989200 Byers et al. Jan 2006 B2
6990376 Tanagho et al. Jan 2006 B2
6999819 Swoyer et al. Feb 2006 B2
7010351 Firlik et al. Mar 2006 B2
7024247 Gliner et al. Apr 2006 B2
7047078 Boggs, II et al. May 2006 B2
7051419 Schrom et al. May 2006 B2
7054689 Whitehurst et al. May 2006 B1
7069081 Biggs et al. Jun 2006 B2
7127298 He et al. Oct 2006 B1
7131996 Wasserman et al. Nov 2006 B2
7142925 Bhadra et al. Nov 2006 B1
7146217 Firlik et al. Dec 2006 B2
7146219 Sieracki et al. Dec 2006 B2
7151914 Brewer Dec 2006 B2
7167743 Heruth et al. Jan 2007 B2
7167749 Biggs et al. Jan 2007 B2
7167756 Torgerson et al. Jan 2007 B1
7177677 Kaula et al. Feb 2007 B2
7177690 Woods et al. Feb 2007 B2
7177698 Klosterman et al. Feb 2007 B2
7181286 Sieracki et al. Feb 2007 B2
7184836 Meadows et al. Feb 2007 B1
7187978 Malek et al. Mar 2007 B2
7191005 Stessman Mar 2007 B2
7212110 Martin et al. May 2007 B1
7214197 Prass May 2007 B2
7216001 Hacker et al. May 2007 B2
7225028 Della Santina et al. May 2007 B2
7225032 Schmeling et al. May 2007 B2
7231254 DiLorenzo Jun 2007 B2
7234853 Givoletti Jun 2007 B2
7236831 Firlik et al. Jun 2007 B2
7239918 Strother et al. Jul 2007 B2
7245972 Davis Jul 2007 B2
7283867 Strother et al. Oct 2007 B2
7286880 Olson et al. Oct 2007 B2
7295878 Meadows et al. Nov 2007 B1
7299096 Balzer et al. Nov 2007 B2
7305268 Gliner et al. Dec 2007 B2
7317948 King et al. Jan 2008 B1
7324852 Barolat et al. Jan 2008 B2
7324853 Ayal et al. Jan 2008 B2
7326181 Katims Feb 2008 B2
7328068 Spinelli et al. Feb 2008 B2
7330764 Swoyer et al. Feb 2008 B2
7337006 Kim et al. Feb 2008 B2
7359751 Erickson et al. Apr 2008 B1
7369894 Gerber May 2008 B2
7386348 North et al. Jun 2008 B2
7387603 Gross et al. Jun 2008 B2
7395113 Heruth et al. Jul 2008 B2
7396265 Darley et al. Jul 2008 B2
7406351 Wesselink Jul 2008 B2
7415308 Gerber et al. Aug 2008 B2
7444181 Shi et al. Oct 2008 B2
7444184 Boveja et al. Oct 2008 B2
7447546 Kim et al. Nov 2008 B2
7450991 Smith et al. Nov 2008 B2
7450993 Kim et al. Nov 2008 B2
7460911 Cosendai et al. Dec 2008 B2
7463928 Lee et al. Dec 2008 B2
7470236 Kelleher et al. Dec 2008 B1
7483747 Gliner et al. Jan 2009 B2
7483752 Von Arx et al. Jan 2009 B2
7486048 Tsukamoto et al. Feb 2009 B2
7496404 Meadows et al. Feb 2009 B2
7502651 Kim et al. Mar 2009 B2
7515965 Gerber et al. Apr 2009 B2
7515967 Phillips et al. Apr 2009 B2
7522953 Kaula et al. Apr 2009 B2
7532936 Erickson et al. May 2009 B2
7539538 Parramon et al. May 2009 B2
7551958 Libbus et al. Jun 2009 B2
7551960 Forsberg et al. Jun 2009 B2
7555346 Woods et al. Jun 2009 B1
7555347 Loeb Jun 2009 B2
7565199 Sheffield et al. Jul 2009 B2
7565203 Greenberg et al. Jul 2009 B2
7571000 Boggs, II et al. Aug 2009 B2
7577481 Firlik et al. Aug 2009 B2
7578819 Bleich et al. Aug 2009 B2
7580752 Gerber et al. Aug 2009 B2
7580753 Kim et al. Aug 2009 B2
7582053 Gross et al. Sep 2009 B2
7582058 Miles et al. Sep 2009 B1
7613516 Cohen et al. Nov 2009 B2
7617002 Goetz Nov 2009 B2
7620456 Gliner et al. Nov 2009 B2
7623925 Grill et al. Nov 2009 B2
7636602 Baru Fassio et al. Dec 2009 B2
7640059 Forsberg et al. Dec 2009 B2
7643880 Tanagho et al. Jan 2010 B2
7650192 Wahlstrand Jan 2010 B2
7664544 Miles et al. Feb 2010 B2
7672730 Firlik et al. Mar 2010 B2
7706889 Gerber et al. Apr 2010 B2
7720547 Denker et al. May 2010 B2
7720548 King May 2010 B2
7725191 Greenberg et al. May 2010 B2
7734355 Cohen et al. Jun 2010 B2
7738963 Hickman et al. Jun 2010 B2
7738965 Phillips et al. Jun 2010 B2
7747330 Nolan et al. Jun 2010 B2
7756584 Sheffield et al. Jul 2010 B2
7771838 He et al. Aug 2010 B1
7774069 Olson et al. Aug 2010 B2
7801601 Maschino et al. Sep 2010 B2
7801619 Gerber et al. Sep 2010 B2
7805196 Miesel et al. Sep 2010 B2
7813803 Heruth et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7819909 Goetz et al. Oct 2010 B2
7826901 Lee et al. Nov 2010 B2
7831305 Gliner Nov 2010 B2
7848818 Barolat et al. Dec 2010 B2
7853322 Bourget et al. Dec 2010 B2
7878207 Goetz et al. Feb 2011 B2
7890176 Jaax et al. Feb 2011 B2
7904167 Klosterman et al. Mar 2011 B2
7912555 Swoyer et al. Mar 2011 B2
7925357 Phillips et al. Apr 2011 B2
7932696 Peterson Apr 2011 B2
7933656 Sieracki et al. Apr 2011 B2
7935051 Miles et al. May 2011 B2
7937158 Erickson et al. May 2011 B2
7945330 Gliner et al. May 2011 B2
7952349 Huang et al. May 2011 B2
7957797 Bourget et al. Jun 2011 B2
7957809 Bourget et al. Jun 2011 B2
7957818 Swoyer Jun 2011 B2
7962218 Balzer et al. Jun 2011 B2
7966073 Pless et al. Jun 2011 B2
7979119 Kothandaraman et al. Jul 2011 B2
7979126 Payne et al. Jul 2011 B2
7981144 Geist et al. Jul 2011 B2
7988507 Darley et al. Aug 2011 B2
8000782 Gharib et al. Aug 2011 B2
8000800 Takeda et al. Aug 2011 B2
8000805 Swoyer et al. Aug 2011 B2
8005535 Gharib et al. Aug 2011 B2
8005549 Boser et al. Aug 2011 B2
8005550 Boser et al. Aug 2011 B2
8019423 Possover Sep 2011 B2
8019425 Firlik et al. Sep 2011 B2
8024047 Olson et al. Sep 2011 B2
8027716 Gharib et al. Sep 2011 B2
8036756 Swoyer et al. Oct 2011 B2
8044635 Peterson Oct 2011 B2
8050753 Libbus et al. Nov 2011 B2
8050767 Sheffield et al. Nov 2011 B2
8050768 Firlik et al. Nov 2011 B2
8050769 Gharib et al. Nov 2011 B2
8055337 Moffitt et al. Nov 2011 B2
8055349 Gharib et al. Nov 2011 B2
8065012 Firlik et al. Nov 2011 B2
8068912 Kaula et al. Nov 2011 B2
8073546 Sheffield et al. Dec 2011 B2
8082039 Kim et al. Dec 2011 B2
8083663 Gross et al. Dec 2011 B2
8103360 Foster Jan 2012 B2
8108049 King Jan 2012 B2
8112155 Einav et al. Feb 2012 B2
8116862 Stevenson et al. Feb 2012 B2
8121701 Woods et al. Feb 2012 B2
8121702 King Feb 2012 B2
8129942 Park et al. Mar 2012 B2
8131358 Moffitt et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8145324 Stevenson et al. Mar 2012 B1
8147421 Farquhar et al. Apr 2012 B2
8150530 Wesselink Apr 2012 B2
8155753 Wesselink Apr 2012 B2
8175717 Haller et al. May 2012 B2
8180451 Hickman et al. May 2012 B2
8180452 Shaquer May 2012 B2
8180461 Mamo et al. May 2012 B2
8182423 Miles et al. May 2012 B2
8190262 Gerber et al. May 2012 B2
8195300 Gliner et al. Jun 2012 B2
8214042 Ozawa et al. Jul 2012 B2
8214048 Whitehurst et al. Jul 2012 B1
8214051 Sieracki et al. Jul 2012 B2
8219196 Torgerson Jul 2012 B2
8219202 Giftakis et al. Jul 2012 B2
8224452 Pless et al. Jul 2012 B2
8224460 Schleicher et al. Jul 2012 B2
8229565 Kim et al. Jul 2012 B2
8233990 Goetz Jul 2012 B2
8255057 Fang et al. Aug 2012 B2
8311636 Gerber et al. Nov 2012 B2
8314594 Scott et al. Nov 2012 B2
8326433 Blum et al. Dec 2012 B2
8332040 Winstrom Dec 2012 B1
8337410 Kelleher et al. Dec 2012 B2
8340786 Gross et al. Dec 2012 B2
8362742 Kallmyer Jan 2013 B2
8369943 Shuros et al. Feb 2013 B2
8380314 Panken et al. Feb 2013 B2
8386048 McClure et al. Feb 2013 B2
8391972 Libbus et al. Mar 2013 B2
8396555 Boggs, II et al. Mar 2013 B2
8412335 Gliner et al. Apr 2013 B2
8417346 Giftakis et al. Apr 2013 B2
8423145 Pless et al. Apr 2013 B2
8423146 Giftakis et al. Apr 2013 B2
8430805 Burnett et al. Apr 2013 B2
8433414 Gliner et al. Apr 2013 B2
8435166 Burnett et al. May 2013 B2
8447402 Jiang et al. May 2013 B1
8447408 North et al. May 2013 B2
8457756 Rahman Jun 2013 B2
8457758 Olson et al. Jun 2013 B2
8467875 Bennett et al. Jun 2013 B2
8480437 Dilmaghanian et al. Jul 2013 B2
8483839 Wesselink Jul 2013 B2
8494625 Hargrove Jul 2013 B2
8509919 Yoo et al. Aug 2013 B2
8515545 Trier Aug 2013 B2
8538530 Orinski Sep 2013 B1
8543223 Sage et al. Sep 2013 B2
8544322 Minami et al. Oct 2013 B2
8549015 Barolat Oct 2013 B2
8554322 Olson et al. Oct 2013 B2
8555894 Schulman et al. Oct 2013 B2
8562539 Marino Oct 2013 B2
8571677 Torgerson et al. Oct 2013 B2
8577474 Rahman et al. Nov 2013 B2
8588917 Whitehurst et al. Nov 2013 B2
8626314 Swoyer et al. Jan 2014 B2
8634904 Kaula et al. Jan 2014 B2
8634932 Ye et al. Jan 2014 B1
8644931 Stadler et al. Feb 2014 B2
8644933 Ozawa et al. Feb 2014 B2
8655451 Klosterman et al. Feb 2014 B2
8672840 Miles et al. Mar 2014 B2
8694115 Goetz et al. Apr 2014 B2
8700175 Fell Apr 2014 B2
8706254 Vamos et al. Apr 2014 B2
8712546 Kim et al. Apr 2014 B2
8725262 Olson et al. May 2014 B2
8725269 Nolan et al. May 2014 B2
8731656 Bourget et al. May 2014 B2
8738141 Smith et al. May 2014 B2
8738148 Olson et al. May 2014 B2
8740783 Gharib et al. Jun 2014 B2
8744585 Gerber et al. Jun 2014 B2
8750985 Parramon et al. Jun 2014 B2
8761897 Kaula et al. Jun 2014 B2
8768450 Gharib et al. Jul 2014 B2
8768452 Gerber Jul 2014 B2
8774912 Gerber Jul 2014 B2
8805518 King et al. Aug 2014 B2
8812116 Kaula et al. Aug 2014 B2
8825163 Grill et al. Sep 2014 B2
8825175 King Sep 2014 B2
8831731 Blum et al. Sep 2014 B2
8831737 Wesselink Sep 2014 B2
8849632 Sparks et al. Sep 2014 B2
8855767 Faltys et al. Oct 2014 B2
8855773 Kokones et al. Oct 2014 B2
8868199 Kaula et al. Oct 2014 B2
8903486 Bourget et al. Dec 2014 B2
8918174 Woods et al. Dec 2014 B2
8918184 Torgerson et al. Dec 2014 B1
8954148 Labbe et al. Feb 2015 B2
8989861 Su et al. Mar 2015 B2
9044592 Imran et al. Jun 2015 B2
9050473 Woods et al. Jun 2015 B2
9089712 Joshi et al. Jul 2015 B2
9108063 Olson et al. Aug 2015 B2
9144680 Kaula et al. Sep 2015 B2
9149635 Denison et al. Oct 2015 B2
9155885 Wei et al. Oct 2015 B2
9166321 Smith et al. Oct 2015 B2
9168374 Su Oct 2015 B2
9192763 Gerber et al. Nov 2015 B2
9197173 Denison et al. Nov 2015 B2
9199075 Westlund Dec 2015 B1
9205255 Strother et al. Dec 2015 B2
9209634 Cottrill et al. Dec 2015 B2
9216294 Bennett et al. Dec 2015 B2
9227055 Wahlstrand et al. Jan 2016 B2
9227076 Sharma et al. Jan 2016 B2
9238135 Goetz et al. Jan 2016 B2
9240630 Joshi Jan 2016 B2
9242090 Atalar et al. Jan 2016 B2
9244898 Vamos et al. Jan 2016 B2
9248292 Trier et al. Feb 2016 B2
9259578 Torgerson Feb 2016 B2
9259582 Joshi et al. Feb 2016 B2
9265958 Joshi et al. Feb 2016 B2
9270134 Gaddam et al. Feb 2016 B2
9272140 Gerber Mar 2016 B2
9283394 Whitehurst et al. Mar 2016 B2
9295851 Gordon et al. Mar 2016 B2
9308022 Chitre et al. Apr 2016 B2
9308382 Strother et al. Apr 2016 B2
9314616 Wells et al. Apr 2016 B2
9320899 Parramon et al. Apr 2016 B2
9333339 Weiner May 2016 B2
9352148 Stevenson et al. May 2016 B2
9352150 Stevenson et al. May 2016 B2
9358039 Kimmel et al. Jun 2016 B2
9364658 Wechter Jun 2016 B2
9375574 Kaula et al. Jun 2016 B2
9393423 Parramon et al. Jul 2016 B2
9399137 Parker et al. Jul 2016 B2
9409020 Parker Aug 2016 B2
9415211 Bradley et al. Aug 2016 B2
9427571 Sage et al. Aug 2016 B2
9427573 Gindele et al. Aug 2016 B2
9427574 Lee et al. Aug 2016 B2
9433783 Wei et al. Sep 2016 B2
9436481 Drew Sep 2016 B2
9446245 Grill et al. Sep 2016 B2
9463324 Olson et al. Oct 2016 B2
9468755 Westlund et al. Oct 2016 B2
9471753 Kaula et al. Oct 2016 B2
9480846 Strother et al. Nov 2016 B2
9492672 Vamos et al. Nov 2016 B2
9492675 Torgerson et al. Nov 2016 B2
9492678 Chow Nov 2016 B2
9498628 Kaemmerer et al. Nov 2016 B2
9502754 Zhao et al. Nov 2016 B2
9504830 Kaula et al. Nov 2016 B2
9522282 Chow et al. Dec 2016 B2
9555246 Jiang et al. Jan 2017 B2
9561372 Jiang et al. Feb 2017 B2
9592389 Moffitt Mar 2017 B2
9610449 Kaula et al. Apr 2017 B2
9615744 Denison et al. Apr 2017 B2
9623257 Olson et al. Apr 2017 B2
9636497 Bradley et al. May 2017 B2
9643004 Gerber May 2017 B2
9653935 Cong et al. May 2017 B2
9656074 Simon et al. May 2017 B2
9656076 Trier et al. May 2017 B2
9656089 Yip et al. May 2017 B2
9675809 Chow Jun 2017 B2
9687649 Thacker Jun 2017 B2
9707405 Shishilla et al. Jul 2017 B2
9713706 Gerber Jul 2017 B2
9717900 Swoyer et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9731116 Chen Aug 2017 B2
9737704 Wahlstrand et al. Aug 2017 B2
9744347 Chen et al. Aug 2017 B2
9750930 Chen Sep 2017 B2
9757555 Novotny et al. Sep 2017 B2
9764147 Torgerson Sep 2017 B2
9767255 Kaula et al. Sep 2017 B2
9776002 Parker et al. Oct 2017 B2
9776006 Parker et al. Oct 2017 B2
9776007 Kaula et al. Oct 2017 B2
9782596 Vamos et al. Oct 2017 B2
9814884 Parker et al. Nov 2017 B2
9821112 Olson et al. Nov 2017 B2
9827415 Stevenson et al. Nov 2017 B2
9827424 Kaula et al. Nov 2017 B2
9833614 Gliner Dec 2017 B1
9849278 Spinelli et al. Dec 2017 B2
9855423 Jiang et al. Jan 2018 B2
9855438 Parramon et al. Jan 2018 B2
9872988 Kaula et al. Jan 2018 B2
9878165 Wilder et al. Jan 2018 B2
9878168 Shishilla et al. Jan 2018 B2
9882420 Cong et al. Jan 2018 B2
9884198 Parker Feb 2018 B2
9889292 Gindele et al. Feb 2018 B2
9889293 Siegel et al. Feb 2018 B2
9889306 Stevenson et al. Feb 2018 B2
9895532 Kaula et al. Feb 2018 B2
9899778 Hanson et al. Feb 2018 B2
9901284 Olsen et al. Feb 2018 B2
9901740 Drees et al. Feb 2018 B2
9907476 Bonde et al. Mar 2018 B2
9907955 Bakker et al. Mar 2018 B2
9907957 Woods et al. Mar 2018 B2
9924904 Cong et al. Mar 2018 B2
9931513 Kelsch et al. Apr 2018 B2
9931514 Frysz et al. Apr 2018 B2
9950171 Johanek et al. Apr 2018 B2
9974108 Polefko May 2018 B2
9974949 Thompson et al. May 2018 B2
9981121 Seifert et al. May 2018 B2
9981137 Eiger May 2018 B2
9987493 Torgerson et al. Jun 2018 B2
9993650 Seitz et al. Jun 2018 B2
9999765 Stevenson Jun 2018 B2
10004910 Gadagkar et al. Jun 2018 B2
10016596 Stevenson et al. Jul 2018 B2
10027157 Labbe et al. Jul 2018 B2
10045764 Scott et al. Aug 2018 B2
10046164 Gerber Aug 2018 B2
10047782 Sage et al. Aug 2018 B2
10052490 Kaula et al. Aug 2018 B2
10065044 Sharma et al. Sep 2018 B2
10071247 Childs Sep 2018 B2
10076661 Wei et al. Sep 2018 B2
10076667 Kaula et al. Sep 2018 B2
10083261 Kaula et al. Sep 2018 B2
10086191 Bonde et al. Oct 2018 B2
10086203 Kaemmerer Oct 2018 B2
10092747 Sharma et al. Oct 2018 B2
10092749 Stevenson et al. Oct 2018 B2
10092762 Jiang et al. Oct 2018 B2
10095837 Corey et al. Oct 2018 B2
10099051 Stevenson et al. Oct 2018 B2
10103559 Cottrill et al. Oct 2018 B2
10109844 Dai et al. Oct 2018 B2
10118037 Kaula et al. Nov 2018 B2
10124164 Stevenson et al. Nov 2018 B2
10124171 Kaula et al. Nov 2018 B2
10124179 Norton et al. Nov 2018 B2
10141545 Kraft et al. Nov 2018 B2
10173062 Parker Jan 2019 B2
10179241 Walker et al. Jan 2019 B2
10179244 LeBaron et al. Jan 2019 B2
10183162 Johnson et al. Jan 2019 B2
10188857 North et al. Jan 2019 B2
10195419 Shiroff et al. Feb 2019 B2
10206710 Kern et al. Feb 2019 B2
10213229 Chitre et al. Feb 2019 B2
10220210 Walker et al. Mar 2019 B2
10226617 Finley et al. Mar 2019 B2
10226636 Gaddam et al. Mar 2019 B2
10236709 Decker et al. Mar 2019 B2
10238863 Gross et al. Mar 2019 B2
10238877 Kaula et al. Mar 2019 B2
10244956 Kane Apr 2019 B2
10245434 Kaula et al. Apr 2019 B2
10258800 Perryman et al. Apr 2019 B2
10265532 Carcieri et al. Apr 2019 B2
10277055 Peterson et al. Apr 2019 B2
10293168 Bennett et al. May 2019 B2
10328253 Wells Jun 2019 B2
10363419 Simon et al. Jul 2019 B2
10369275 Olson et al. Aug 2019 B2
10369370 Shishilla et al. Aug 2019 B2
10376701 Kaula et al. Aug 2019 B2
10406369 Jiang et al. Sep 2019 B2
10448889 Gerber et al. Oct 2019 B2
10456574 Chen et al. Oct 2019 B2
10471262 Perryman et al. Nov 2019 B2
10485970 Gerber et al. Nov 2019 B2
10493282 Caparso et al. Dec 2019 B2
10493287 Yoder et al. Dec 2019 B2
10561835 Gerber Feb 2020 B2
10729903 Jiang et al. Aug 2020 B2
20020002390 Fischell et al. Jan 2002 A1
20020010498 Rigaux et al. Jan 2002 A1
20020010499 Rigaux et al. Jan 2002 A1
20020040185 Atalar et al. Apr 2002 A1
20020051550 Leysieffer May 2002 A1
20020051551 Leysieffer et al. May 2002 A1
20020055761 Mann et al. May 2002 A1
20020077572 Fang et al. Jun 2002 A1
20020140399 Echarri et al. Oct 2002 A1
20020169485 Pless et al. Nov 2002 A1
20020177884 Ahn et al. Nov 2002 A1
20030114899 Woods et al. Jun 2003 A1
20030120323 Meadows et al. Jun 2003 A1
20030195586 Rigaux et al. Oct 2003 A1
20030195587 Rigaux et al. Oct 2003 A1
20030212440 Boveja Nov 2003 A1
20040098068 Carbunaru et al. May 2004 A1
20040158298 Gliner et al. Aug 2004 A1
20040210290 Omar-Pasha Oct 2004 A1
20040250820 Forsell Dec 2004 A1
20040260357 Vaughan et al. Dec 2004 A1
20040260358 Vaughan et al. Dec 2004 A1
20040267137 Peszynski et al. Dec 2004 A1
20050004619 Wahlstrand et al. Jan 2005 A1
20050004621 Boveja et al. Jan 2005 A1
20050021108 Klosterman et al. Jan 2005 A1
20050049648 Cohen et al. Mar 2005 A1
20050075693 Toy et al. Apr 2005 A1
20050075694 Schmeling et al. Apr 2005 A1
20050075696 Forsberg et al. Apr 2005 A1
20050075697 Olson et al. Apr 2005 A1
20050075698 Phillips et al. Apr 2005 A1
20050075699 Olson et al. Apr 2005 A1
20050075700 Schommer et al. Apr 2005 A1
20050085743 Hacker et al. Apr 2005 A1
20050104577 Matei et al. May 2005 A1
20050119713 Whitehurst et al. Jun 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050187590 Boveja et al. Aug 2005 A1
20050240238 Mamo et al. Oct 2005 A1
20060009816 Fang et al. Jan 2006 A1
20060142822 Tulgar Jun 2006 A1
20060149345 Boggs, II et al. Jul 2006 A1
20060200205 Haller Sep 2006 A1
20060206166 Weiner Sep 2006 A1
20070025675 Kramer Feb 2007 A1
20070032834 Gliner et al. Feb 2007 A1
20070032836 Thrope et al. Feb 2007 A1
20070049988 Carbunaru et al. Mar 2007 A1
20070054804 Suty-Heinze Mar 2007 A1
20070100388 Gerber May 2007 A1
20070208227 Smith et al. Sep 2007 A1
20070239224 Bennett et al. Oct 2007 A1
20070245316 Bates et al. Oct 2007 A1
20070245318 Goetz et al. Oct 2007 A1
20070265675 Lund et al. Nov 2007 A1
20070293914 Woods et al. Dec 2007 A1
20080027514 DeMulling et al. Jan 2008 A1
20080065178 Kelleher et al. Mar 2008 A1
20080065182 Strother et al. Mar 2008 A1
20080071191 Kelleher et al. Mar 2008 A1
20080081958 Denison et al. Apr 2008 A1
20080132969 Bennett et al. Jun 2008 A1
20080154335 Thrope et al. Jun 2008 A1
20080161874 Bennett et al. Jul 2008 A1
20080167694 Bolea et al. Jul 2008 A1
20080177348 Bolea et al. Jul 2008 A1
20080177365 Bolea et al. Jul 2008 A1
20080183236 Gerber Jul 2008 A1
20080215112 Firlik et al. Sep 2008 A1
20080269740 Bonde et al. Oct 2008 A1
20080306325 Burnett et al. Dec 2008 A1
20090018617 Skelton et al. Jan 2009 A1
20090036946 Cohen et al. Feb 2009 A1
20090036951 Heruth et al. Feb 2009 A1
20090048531 McGinnis et al. Feb 2009 A1
20090054804 Gharib et al. Feb 2009 A1
20090076565 Surwit Mar 2009 A1
20090118788 Firlik et al. May 2009 A1
20090157141 Chiao et al. Jun 2009 A1
20090171381 Schmitz et al. Jul 2009 A1
20090204176 Miles et al. Aug 2009 A1
20090227829 Burnett et al. Sep 2009 A1
20090281596 King et al. Nov 2009 A1
20090287272 Kokones et al. Nov 2009 A1
20090287273 Carlton et al. Nov 2009 A1
20090306746 Blischak Dec 2009 A1
20100023084 Gunderson Jan 2010 A1
20100076254 Jimenez et al. Mar 2010 A1
20100076534 Mock Mar 2010 A1
20100100158 Thrope et al. Apr 2010 A1
20100131030 Firlik et al. May 2010 A1
20100145427 Gliner et al. Jun 2010 A1
20100152808 Boggs, II Jun 2010 A1
20100152809 Boggs, II Jun 2010 A1
20100160712 Burnett et al. Jun 2010 A1
20100168820 Maniak et al. Jul 2010 A1
20100204538 Burnett et al. Aug 2010 A1
20100222629 Burnett et al. Sep 2010 A1
20100317989 Gharib et al. Dec 2010 A1
20110004264 Siejko et al. Jan 2011 A1
20110054562 Gliner Mar 2011 A1
20110071593 Parker et al. Mar 2011 A1
20110208263 Balzer et al. Aug 2011 A1
20110238136 Bourget et al. Sep 2011 A1
20110257701 Strother et al. Oct 2011 A1
20110282416 Hamann et al. Nov 2011 A1
20110301662 Bar-Yoseph et al. Dec 2011 A1
20110301667 Olson et al. Dec 2011 A1
20110313268 Kokones et al. Dec 2011 A1
20120022611 Firlik et al. Jan 2012 A1
20120029382 Kelleher et al. Feb 2012 A1
20120041512 Weiner Feb 2012 A1
20120046712 Woods et al. Feb 2012 A1
20120101537 Peterson et al. Apr 2012 A1
20120116741 Choi et al. May 2012 A1
20120130448 Woods et al. May 2012 A1
20120136413 Bonde et al. May 2012 A1
20120165899 Gliner Jun 2012 A1
20120197370 Kim et al. Aug 2012 A1
20120238893 Farquhar et al. Sep 2012 A1
20120253422 Thacker et al. Oct 2012 A1
20120253442 Gliner et al. Oct 2012 A1
20120265267 Blum et al. Oct 2012 A1
20120271376 Kokones et al. Oct 2012 A1
20120271382 Arcot-Krishnamurthy et al. Oct 2012 A1
20120276854 Joshi et al. Nov 2012 A1
20120276856 Joshi et al. Nov 2012 A1
20120277621 Gerber et al. Nov 2012 A1
20120277828 O'Connor et al. Nov 2012 A1
20120277839 Kramer et al. Nov 2012 A1
20120290055 Boggs, II Nov 2012 A1
20120296395 Hamann et al. Nov 2012 A1
20120310299 Kaula et al. Dec 2012 A1
20120316630 Firlik et al. Dec 2012 A1
20130004925 Labbe et al. Jan 2013 A1
20130006330 Wilder et al. Jan 2013 A1
20130006331 Weisgarber et al. Jan 2013 A1
20130041430 Wang et al. Feb 2013 A1
20130072998 Su et al. Mar 2013 A1
20130079840 Su et al. Mar 2013 A1
20130120630 Kim May 2013 A1
20130123568 Hamilton et al. May 2013 A1
20130131755 Panken et al. May 2013 A1
20130150925 Vamos et al. Jun 2013 A1
20130165814 Kaula et al. Jun 2013 A1
20130165991 Kim et al. Jun 2013 A1
20130178758 Kelleher et al. Jul 2013 A1
20130197608 Eiger Aug 2013 A1
20130207863 Joshi Aug 2013 A1
20130226261 Sparks et al. Aug 2013 A1
20130245719 Zhu et al. Sep 2013 A1
20130245722 Temes et al. Sep 2013 A1
20130261684 Howard Oct 2013 A1
20130289659 Nelson et al. Oct 2013 A1
20130289664 Johanek Oct 2013 A1
20130303828 Hargrove Nov 2013 A1
20130310891 Enrooth et al. Nov 2013 A1
20130310893 Yoo et al. Nov 2013 A1
20130310894 Trier Nov 2013 A1
20130331909 Gerber Dec 2013 A1
20140062900 Kaula et al. Mar 2014 A1
20140063003 Kaula et al. Mar 2014 A1
20140063017 Kaula et al. Mar 2014 A1
20140067006 Kaula et al. Mar 2014 A1
20140067014 Kaula et al. Mar 2014 A1
20140067016 Kaula et al. Mar 2014 A1
20140067354 Kaula et al. Mar 2014 A1
20140114385 Nijhuis et al. Apr 2014 A1
20140142549 Su et al. May 2014 A1
20140148870 Burnett May 2014 A1
20140163579 Tischendorf et al. Jun 2014 A1
20140163580 Tischendorf et al. Jun 2014 A1
20140163644 Scott et al. Jun 2014 A1
20140180363 Zhu et al. Jun 2014 A1
20140194771 Parker et al. Jul 2014 A1
20140194772 Single et al. Jul 2014 A1
20140194942 Sathaye et al. Jul 2014 A1
20140222112 Fell Aug 2014 A1
20140235950 Miles et al. Aug 2014 A1
20140236257 Parker et al. Aug 2014 A1
20140237806 Smith et al. Aug 2014 A1
20140243931 Parker et al. Aug 2014 A1
20140249446 Gharib et al. Sep 2014 A1
20140249599 Kaula et al. Sep 2014 A1
20140277251 Gerber et al. Sep 2014 A1
20140277270 Parramon et al. Sep 2014 A1
20140288374 Miles et al. Sep 2014 A1
20140288375 Miles et al. Sep 2014 A1
20140288389 Gharib et al. Sep 2014 A1
20140296737 Parker et al. Oct 2014 A1
20140304773 Woods et al. Oct 2014 A1
20140324144 Ye et al. Oct 2014 A1
20140343628 Kaula et al. Nov 2014 A1
20140343629 Kaula et al. Nov 2014 A1
20140344733 Kaula et al. Nov 2014 A1
20140344740 Kaula et al. Nov 2014 A1
20140350636 King et al. Nov 2014 A1
20150088227 Shishilla et al. Mar 2015 A1
20150134027 Kaula et al. May 2015 A1
20150214604 Zhao et al. Jul 2015 A1
20150360030 Cartledge et al. Dec 2015 A1
20160045724 Lee et al. Feb 2016 A1
20160045745 Mathur et al. Feb 2016 A1
20160045746 Jiang et al. Feb 2016 A1
20160045747 Jiang et al. Feb 2016 A1
20160045751 Jiang Feb 2016 A1
20160114167 Jiang et al. Apr 2016 A1
20160121123 Jiang et al. May 2016 A1
20170189679 Jiang et al. Jul 2017 A1
20170197079 Illegems et al. Jul 2017 A1
20170209703 Jiang et al. Jul 2017 A1
20170340878 Wahlstrand et al. Nov 2017 A1
20180021587 Strother et al. Jan 2018 A1
20180036477 Olson et al. Feb 2018 A1
20190269918 Parker Sep 2019 A1
20190351244 Shishilla et al. Nov 2019 A1
20190358395 Olson et al. Nov 2019 A1
Foreign Referenced Citations (144)
Number Date Country
520440 Sep 2011 AT
4664800 Nov 2000 AU
5123800 Nov 2000 AU
2371378 Nov 2000 CA
2554676 Sep 2005 CA
2957967 Nov 2018 CA
101626804 Jan 2010 CN
101721200 Jun 2010 CN
102215909 Oct 2011 CN
103002947 Mar 2013 CN
102307618 Mar 2014 CN
107073258 Feb 2020 CN
3146182 Jun 1983 DE
0656218 Jun 1995 EP
1205004 May 2002 EP
1680182 Jul 2006 EP
1904153 Apr 2008 EP
2243509 Oct 2010 EP
1680182 May 2013 EP
1904153 Apr 2015 EP
3180072 Nov 2018 EP
2395128 Feb 2013 ES
1098715 Mar 2012 HK
2007505698 Mar 2007 JP
2007268293 Oct 2007 JP
4125357 Jul 2008 JP
2013500081 Jan 2013 JP
2013541381 Nov 2013 JP
6602371 Nov 2019 JP
9639932 Dec 1996 WO
9820933 May 1998 WO
9918879 Apr 1999 WO
9934870 Jul 1999 WO
9942173 Aug 1999 WO
0002623 Jan 2000 WO
0019939 Apr 2000 WO
0019940 Apr 2000 WO
0056677 Sep 2000 WO
0001320 Nov 2000 WO
0065682 Nov 2000 WO
0069012 Nov 2000 WO
0078389 Dec 2000 WO
0183029 Nov 2001 WO
0193759 Dec 2001 WO
0209808 Feb 2002 WO
0137728 Aug 2002 WO
02072194 Sep 2002 WO
02072194 Mar 2003 WO
02078592 Mar 2003 WO
03026739 Apr 2003 WO
03043690 May 2003 WO
03005887 Aug 2003 WO
03035163 Sep 2003 WO
03066162 Mar 2004 WO
2004021876 Mar 2004 WO
2004036765 Apr 2004 WO
03026482 May 2004 WO
2004047914 Jun 2004 WO
2004052448 Jun 2004 WO
2004052449 Jun 2004 WO
2004058347 Jul 2004 WO
2004064634 Aug 2004 WO
2004066820 Aug 2004 WO
2004087256 Oct 2004 WO
03037170 Dec 2004 WO
2004103465 Dec 2004 WO
2005000394 Jan 2005 WO
2005002664 Mar 2005 WO
2005002665 Jun 2005 WO
2005032332 Aug 2005 WO
2005079295 Sep 2005 WO
2005081740 Sep 2005 WO
2005105203 Nov 2005 WO
2005123185 Dec 2005 WO
2006012423 Feb 2006 WO
2006019764 Feb 2006 WO
2005081740 Mar 2006 WO
2006029257 Mar 2006 WO
2006091611 Aug 2006 WO
2006084194 Oct 2006 WO
2006116256 Nov 2006 WO
2006119015 Nov 2006 WO
2006119046 Nov 2006 WO
2006127366 Nov 2006 WO
2005087307 May 2007 WO
2007064924 Jun 2007 WO
2007064936 Jun 2007 WO
2007108863 Sep 2007 WO
2007089394 Nov 2007 WO
2008021524 Feb 2008 WO
2008039242 Apr 2008 WO
2008042902 Aug 2008 WO
2009021080 Feb 2009 WO
2009042379 Apr 2009 WO
2009051965 Apr 2009 WO
2009042172 Jul 2009 WO
2009134478 Nov 2009 WO
2009137119 Nov 2009 WO
2009139907 Nov 2009 WO
2009139909 Nov 2009 WO
2009139910 Nov 2009 WO
2010014055 Feb 2010 WO
2010014260 Feb 2010 WO
2009139917 Mar 2010 WO
2010065143 Jun 2010 WO
2011011748 Jan 2011 WO
2011053607 May 2011 WO
2011053661 May 2011 WO
2011059565 May 2011 WO
2011100162 Aug 2011 WO
2011139779 Nov 2011 WO
2011153024 Dec 2011 WO
2012054183 Apr 2012 WO
2011156286 May 2012 WO
2011156287 Jun 2012 WO
2012075265 Jun 2012 WO
2012075281 Jun 2012 WO
2012075299 Jun 2012 WO
2012075497 Jun 2012 WO
2012135733 Oct 2012 WO
2012155183 Nov 2012 WO
2012155184 Nov 2012 WO
2012155185 Nov 2012 WO
2012155186 Nov 2012 WO
2012155187 Nov 2012 WO
2012155188 Nov 2012 WO
2012155189 Nov 2012 WO
2012155190 Nov 2012 WO
2012158766 Nov 2012 WO
2013028428 Feb 2013 WO
2013036630 Mar 2013 WO
2013141996 Sep 2013 WO
2013155117 Oct 2013 WO
2013165395 Nov 2013 WO
2014035733 Mar 2014 WO
2012003451 Apr 2014 WO
2014089390 Jun 2014 WO
2014089392 Jun 2014 WO
2014089400 Jun 2014 WO
2014089405 Jun 2014 WO
2014089485 Jun 2014 WO
2013162708 Jul 2014 WO
2014161000 Oct 2014 WO
2014172381 Oct 2014 WO
Non-Patent Literature Citations (65)
Entry
US 9,601,939 B2, 03/2017, Cong et al. (withdrawn)
Bu-802a: How Does Rising Internal Resistance Affect Performance? Understanding the Importance of Low Conductivity, Battery University, Available Online at: https://batteryuniversity.com/learn/article/rising_internal_resistance, Accessed from Internet on May 15, 2020, 10 pages.
DOE Handbook: Primer on Lead-Acid Storage Batteries, United States Department of Energy, Available Online at: htt12s://www.stan dards.doe.gov/standards- documents/ l 000/1084-bhdbk-1995/@@images/file, Sep. 1995, 54 pages.
Medical Electrical Equipment—Part 1: General Requirements for Safety, British Standard, BS EN 60601-1:1990-BS5724-1:1989, Mar. 1979, 200 pages.
Summary of Safety and Effectiveness, Medtronic InterStim System for Urinary Control, Apr. 15, 1999, pp. 1-18.
The Advanced Bionics PRECISION™ Spinal Cord Stimulator System, Advanced Bionics Corporation, Apr. 27, 2004, pp. 1-18.
UL Standard for Safety for Medical and Dental Equipment, Underwriters Laboratories 544, 4th edition, Dec. 30, 1998, 128 pages.
Barnhart et al., “A Fixed-Rate Rechargeable Cardiac Pacemaker”, Applied Physics Laboratory Technical Digest, Jan.-Feb. 1970, pp. 2-9.
Benditt et al., “A Combined Atrial/Ventricular Lead for Permanent Dual-Chamber Cardiac Pacing Applications”, Chest, vol. 83, No. 6, Jun. 1983, pp. 929-931.
Bosch et al., “Sacral (S3) Segmental Nerve Stimulation as a Treatment for Urge Incontinence in Patients with Detrusor Instability: Results of Chronic Electrical Stimulation Using an Implantable Neural Prosthesis”, The Journal of Urology, vol. 154, No. 2, Aug. 1995, pp. 504-507.
Boyce et al., “Research Related to the Development of an Artificial Electrical Stimulator for the Paralyzed Human Bladder: A Review”, The Journal of Urology, vol. 91, No. 1, Jan. 1964, pp. 41-51.
Bradley et al., “Further Experience with the Radio Transmitter Receiver Unit for the Neurogenic Bladder”, Journal of Neurosurgery, vol. 20, No. 11, Nov. 1963, pp. 953-960.
Broggi et al., “Electrical Stimulation of the Gasserian Ganglion for Facial Pain: Preliminary Results”, Acta Neurochirurgica, vol. 39, 1987, pp. 144-146.
Buhlmann et al., “Modeling of a Segmented Electrode for Desynchronizing Deep Brain Stimulation”, Frontiers in Neuroengineering, vol. 4, No. 15, Dec. 8, 2011, 8 pages.
Cameron et al., “Effects of Posture on Stimulation Parameters in Spinal Cord Stimulation”, Neuromodulation, vol. 1, No. 4, Oct. 1998, pp. 177-183.
Connelly et al., “Atrial Pacing Leads Following Open Heart Surgery: Active or Passive Fixation?”, Pacing and Clinical Electrophysiology, vol. 20, No. 10, Oct. 1997, pp. 2429-2433.
Fischell, “The Development of Implantable Medical Devices at the Applied Physics Laboratory”, Johns Hopkins Applied Physics Laboratory Technical Digest, vol. 13 No. 1, 1992, pp. 233-243.
Gaunt et al., “Control of Urinary Bladder Function with Devices: Successes and Failures”, Progress in Brain Research, vol. 152, 2006, pp. 1-24.
Ghovanloo et al., “A Small Size Large Voltage Compliance Programmable Current Source for Biomedical Implantable Microstimulators”, Proceedings of the 25th Annual International Conference of the Institute of Electrical and Electronics Engineers, Engineering in Medicine and Biology Society, Sep. 17-21, 2003, pp. 1979-1982.
Hansen et al., “Urethral Sphincter Emg as Event Detector For Neurogenic Detrusor Overactivity”, IEEE Transactions on Biomedical Engineering, vol. 54, No. 7, Jul. 31, 2007, pp. 1212-1219.
Helland, “Technical Improvements to be Achieved by the Year 2000: Leads and Connector Technology”, Rate Adaptive Cardiac Pacing, Springer Verlag, 1993, pp. 279-292.
Hidefjall, “The Pace of Innovation—Patterns of Innovation in the Cardiac Pacemaker Industry”, Linkoping University Press, 1997, 398 pages.
Ishihara et al., “A Comparative Study of Endocardial Pacemaker Leads”, Cardiovascular Surgery, Nagoya Ekisaikai Hospital, 1st Dept. of Surgery, Nagoya University School of Medicine, 1981, pp. 132-135.
Jonas et al., “Studies on the Feasibility of Urinary Bladder Evacuation by Direct Spinal Cord Stimulation. I. Parameters of Most Effective Stimulation”, Investigative Urology, vol. 13, No. 2, 1975, pp. 142-150.
Kakuta et al., “In Vivo Long Term Evaluation of Transcutaneous Energy Transmission for Totally Implantable Artificial Heart”, American Society for Artificial Internal Organs Journal, Mar.-Apr. 2000, pp. 1-2.
Kester et al., “Voltage-to-Frequency Converters”, Available Online at: https://www.analog.com/media/cn/training-seminars/tutorials/MT-028.pdf, 7 pages.
Lazorthes et al., “Chronic Stimulation of the Gasserian Ganglion for Treatment of Atypical Facial Neuralgia”, Pacing and Clinical Electrophysiology, vol. 10, Jan.-Feb. 1987, pp. 257-265.
Lewis et al., “Early Clinical Experience with the Rechargeable Cardiac Pacemaker”, The Annals of Thoracic Surgery, vol. 18, No. 5, Nov. 1974, pp. 490-493.
Love et al., “Experimental Testing of a Permanent Rechargeable Cardiac Pacemaker”, The Annals of Thoracic Surgery, vol. 17, No. 2, Feb. 1, 1974, pp. 152-156.
Love, “Pacemaker Troubleshooting and Follow-up”, Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy, Chapter 24, 2007, pp. 1005-1062.
Madigan et al., “Difficulty of Extraction of Chronically Implanted Tined Ventricular Endocardial Leads”, Journal of the American College of Cardiology, vol. 3, No. 3, Mar. 1984, pp. 724-731.
McLennan, “The Role of Electrodiagnostic Techniques in the Reprogramming of Patients with a Delayed Suboptimal Response to Sacral Nerve Stimulation”, International Urogynecology Journal, vol. 14, No. 2, Jun. 2003, pp. 98-103.
Meglio, “Percutaneously Implantable Chronic Electrode for Radiofrequency Stimulation of the Gasserian Ganglion. A Perspective in the Management of Trigeminal Pain”, Acta Neurochirurgica, vol. 33, 1984, pp. 521-525.
Meyerson, “Alleviation of Atypical Trigeminal Pain by Stimulation of the Gasserian Ganglion via an Implanted Electrode”, Acta Neurochirurgica Suppiementum , vol. 30, 1980, pp. 303-309.
Mingming, “Development of an Implantable Epidural Spinal Cord Stimulator With Emg Biofeedback”, China Master's Theses Full-text Database: Engineering Technology, vol. 2, No. 6, May 23, 2013, 64 pages.
Mitamura et al., “Development of Transcutaneous Energy Transmission System”, Available Online at https://www.researchgate.net/publication/312810915 Ch. 28, Jan. 1988, pp. 265-270.
Nakamura et al., “Biocompatibility and Practicality Evaluations of Transcutaneous Energy Transmission Unit for the Totally Implantable Artificial Heart System”, Journal of Artificial Organs, vol. 27, No. 2, 1998, pp. 347-351.
Nashold et al., “Electromicturition in Paraplegia. Implantation of a Spinal Neuroprosthesis”, Archives of Surgery., vol. 104, Feb. 1972, pp. 195-202.
Noblett, “Neuromodulation and the Role of Electrodiagnostic Techniques”, International Urogynecology Journal, vol. 21, No. 2, Dec. 2010, 13 pages.
Painter et al., “Implantation of an Endocardial Tined Lead to Prevent Early Dislodgement”, The Journal of Thoracic and Cardiovascular Surgery, vol. 77, No. 2, Feb. 1979, pp. 249-251.
Perez, “Lead-Acid Battery State of Charge vs. Voltage”, Available Online at http://www.rencobattery.com/resources/SOC vs-Voltage.pdf, Aug.-Sep. 1993, 5 pages.
Schaldach et al., “A Long-Lived, Reliable, Rechargeable Cardiac Pacemaker”, Engineering in Medicine, vol. 1: Advances in Pacemaker Technology, 1975, 34 pages.
Scheuer-Leeser et al., “Polyurethane Leads: Facts and Controversy”, PACE, vol. 6, Mar.-Apr. 1983, pp. 454-458.
Smith, “Changing Standards for Medical Equipment”, UL 544 and UL 187 vs. UL 2601 (“Smith”), 2002, 8 pages.
Tanagho et al., “Bladder Pacemaker: Scientific Basis and Clinical Future”, Urology, vol. 20, No. 6, Dec. 1982, pp. 614-619.
Tanagho, “Neuromodulation and Neurostimulation: Overview and Future Potential”, Translational Androl Urol, vol. 1, No. 1, 2012, pp. 44-49.
Torres et al., “Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, No. 9, Dec. 22, 2008, pp. 1938-1948.
Young, “Electrical Stimulation of the Trigeminal Nerve Root for the Treatment of Chronic Facial Pain”, Journal of Neurosurgery, vol. 83, No. 1, Jul. 1995, pp. 72-78.
U.S. Appl. No. 14/827,067, filed Aug. 14, 2015.
U.S. Appl. No. 14/827,074, filed Aug. 14, 2015.
U.S. Appl. No. 14/827,081, filed Aug. 14, 2015.
U.S. Appl. No. 14/827,095, filed Aug. 14, 2015.
U.S. Appl. No. 14/827,108, filed Aug. 14, 2015.
U.S. Appl. No. 14/991,649, filed Jan. 8, 2016.
U.S. Appl. No. 14/991,752, filed Jan. 8, 2016.
U.S. Appl. No. 14/991,784, filed Jan. 8, 2016.
U.S. Appl. No. 62/038,122, filed Aug. 15, 2014.
U.S. Appl. No. 62/101,666, filed Jan. 9, 2015.
U.S. Appl. No. 62/101,782, filed Jan. 9, 2015.
U.S. Appl. No. 62/101,884, filed Jan. 9, 2015.
U.S. Appl. No. 62/101,888, filed Jan. 9, 2015.
U.S. Appl. No. 62/101,897, filed Jan. 9, 2015.
U.S. Appl. No. 62/101,899, filed Jan. 9, 2015.
U.S. Appl. No. 62/110,274, filed Jan. 30, 2015.
U.S. Appl. No. 62/191,134, filed Jul. 10, 2015.
Related Publications (1)
Number Date Country
20200368533 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62852805 May 2019 US