Clip and deployment apparatus for tissue closure

Information

  • Patent Grant
  • 9149276
  • Patent Number
    9,149,276
  • Date Filed
    Monday, March 21, 2011
    13 years ago
  • Date Issued
    Tuesday, October 6, 2015
    8 years ago
Abstract
A tissue engaging device and a corresponding deployment apparatus. The tissue engaging device has a generally annular-shaped body disposed about a central axis. The body has a plurality of inwardly protruding members separated by corresponding intermember spaces. The body is movable between a first position where the body is substantially convex before engagement with the tissue and a second position where the body is substantially concave when the body is engaged with the tissue. The tissue engaging device may be bioabsorbable. The deployment apparatus has a sheath and a tissue eversion apparatus for everting the tissue and positioning the everted tissue within the tissue engaging device.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable.


BACKGROUND OF THE INVENTION

1. The Field of the Invention


The present disclosure generally relates to tissue closure apparatuses and methods.


2. The Relevant Technology


During intravascular and other related medical procedures, catheters are typically inserted through an incision or puncture in the skin and underlying tissues to access an artery or vein, typically in the groin, neck, or subclavian areas of a patient. The catheter can be inserted through a puncture in the blood vessel and guided to the desired site to perform interventional procedures such as angiography, angioplasty, stent delivery, plaque removal, and infusion of a therapeutic substance.


After the procedure is completed and the catheter is removed from the patient, however, the access hole must be closed to prevent hemorrhage. This is typically achieved by applying pressure over the blood vessel manually and then by applying a pressure bandage or a compressive weight. With conventional methods, the risk of post-puncture hemorrhage is high, which can cause considerable complications. The risk of complications is exacerbated by the concomitant use of anticoagulant medications such as heparin or warfarin and by anti-platelet drugs, which are commonly used following a procedure in order to prevent clot formation and thrombus and/or to treat vascular disease.


It is generally recognized that many currently employed vascular sealing methods and devices and other tissue closure methods and devices incompletely seal holes or wounds in vascular or other tissue. Achieving complete wound closure is particularly important in sealing arterial punctures, which are relatively high pressure systems. For example, under normal blood pressure, the arterial system has a pressure of about 120/80 mmHg or more. Failure to completely close arterial holes can result in hematoma, exsanguination, and in extreme cases, may result in catastrophic consequences, such as limb amputation and death. Moreover, many currently employed vascular devices employ methods and materials that remain on the intravascular endothelial surface or otherwise in the sealed vessel. Materials that remain intravascularly can be a nidus for thrombus or intravascular mural hyperplasia with later spontaneous and catastrophic closure of the vessel.


To overcome these shortcomings, some currently employed vascular devices seal the vessel from the outside of the vessel. However, these vascular devices are typically made of stainless steel, titanium, nickel-titanium (Nitinol) or other non-bioabsorbable material. As such, these vascular devices will permanently remain within the body unless physically removed later by a physician. With a prevalence of reaccessing patients for multiple procedures, this can lead to various problems. For example, when a physician tries to reenter the blood vessel in the same location, the prior placed vascular device will prevent the physician from doing so, and could possibly cause damage to the insertion instrument being used. Furthermore, after each procedure, an additional vascular device will be attached to the blood vessel to be left permanently in the body.


BRIEF SUMMARY OF THE INVENTION

The present disclosure provides methods and apparatuses that are suitable for closure of vascular punctures or other openings in bodily tissues. The devices and methods described herein are configured for wound closure on the external surface of the wound, which allows wound healing with little endothelial disruption thereby reducing the chances of intravascular thrombosis or embolism or intimal hyperplasia. In some embodiments, the devices are bioabsorbable.


In one aspect of the invention there is provided a device for engaging tissue that includes a generally annular-shaped body disposed about a central axis. The body has a plurality of inwardly protruding members separated by corresponding intermember spaces. The body is movable between a first position where the body is substantially convex before engagement with the tissue and a second position where the body is substantially concave when the body is engaged with the tissue.


In another aspect of the invention there is provided a tissue closure device for closing an opening in a tissue having an interior surface and opposing exterior surface. The tissue closure device includes a deployment apparatus and a tissue engaging device. The deployment apparatus includes an sheath having a central longitudinal axis extending between a proximal end and a spaced apart distal end. A lumen extends between the proximal and distal ends of the sheath and is bounded by a lumen surface. The deployment apparatus also includes a tissue eversion apparatus configured to form an everted tissue region. The tissue eversion apparatus is positioned within the lumen of the sheath and deployable therefrom for engaging the interior surface of the vessel wall and everting edges of the tissue to be closed. The tissue engaging device is operatively coupled to the deployment apparatus and deliverable therefrom. The tissue engaging device includes a generally annular-shaped body disposed about a central axis. The body has an aperture extending therethrough for receiving the everted edges of the tissue and closing the opening in the tissue. The body is movable between a first position where the body is substantially convex before engagement with the tissue and a second position where the body is substantially concave when the body is engaged with the tissue.


In another aspect of the invention there is provided a method of closing an opening in a body tissue. The method includes the steps of positioning a tissue engaging device over the opening in the body tissue, the tissue engaging device being substantially convex with respect to the body tissue; forming an everted tissue region around the opening in the body tissue; and passing the everted tissue region through an aperture in the tissue engaging device, thereby causing the tissue engaging device to become substantially concave with respect to the body tissue to secure the everted tissue region within the aperture and close the opening.


In another aspect of the invention there is provided a method of closing an opening extending between an interior surface and an opposing exterior surface of a body tissue. The method includes the steps of positioning a deployment apparatus adjacent the exterior surface and over the opening in the body tissue, a tissue eversion apparatus being disposed within the deployment apparatus and a tissue engaging device being associated with the deployment apparatus and positioned over the opening of the body tissue, the tissue engaging device being substantially convex with respect to the body tissue; deploying the tissue eversion apparatus from the deployment apparatus through the opening of the body tissue so that the tissue eversion apparatus engages the interior surface of the body tissue; retracting the tissue eversion apparatus back into the deployment apparatus, the engagement of the tissue eversion apparatus with the interior surface of the body tissue causing an everted tissue region to be formed around the opening as the tissue eversion apparatus is refracted, the everted tissue region being passed through an aperture in the tissue engaging device as the tissue eversion apparatus is refracted, thereby causing the tissue engaging device to become substantially concave with respect to the body tissue to secure the everted tissue region within the aperture and close the opening; and disengaging the tissue eversion apparatus from the everted tissue region, the everted tissue region remaining secured within the tissue engaging device to close the opening and the tissue engaging device remaining substantially concave with respect to the body tissue.


These and other embodiments and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.


Embodiments of the present invention may provide several advantages over conventional designs. For example, embodiments of a closure device according to the present invention may provide an improved, more complete closure of a vessel opening than prior designs. Furthermore, embodiments of a closure device according to the present invention may be made of a bioabsorbable material so as to become absorbed into the body after a certain amount of time. This may prevent problems of reaccessing patients for multiple procedures. Other advantages may also be provided by the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. In the drawings, like numerals designate like elements.



FIG. 1 is a top view of a first embodiment of a tissue engaging device, in accordance with the present invention;



FIGS. 2A and 2B are top views of alternative embodiments of tissue engaging devices, in accordance with the present invention;



FIG. 3A is a perspective side view of a tissue engaging device having a substantially planar configuration;



FIGS. 3B and 3C are perspective side views of a tissue engaging device having a curved configuration, respectively showing the tissue engaging device in a convex state and a concave state;



FIG. 3D is a perspective side view of an alternative tissue engaging device in a convex state;



FIG. 4A is a cross sectional side view of a deployment apparatus having an sheath and a tissue eversion assembly, the deployment apparatus being suitable for delivering any of the tissue engaging devices shown in FIGS. 1 and 2;



FIG. 4B is a close up view of a portion of FIG. 4A;



FIG. 4C is an close up view of an alternative sheath having an inner sheath positioned therein.



FIGS. 5A and 5B are close-up perspective views of a tissue eversion apparatus of the tissue eversion assembly shown in FIG. 4A, in unexpanded and expanded states, respectively;



FIG. 6 is a close-up perspective view of an alternative embodiment of a tissue eversion apparatus in an expanded state;



FIGS. 7A-7H illustrate a method of closing an opening in a tissue wall using the deployment apparatus of FIG. 4, the tissue eversion apparatus of FIGS. 5A and 5B, and the tissue engaging device of FIG. 1;



FIGS. 8A and 8B are close-up perspective views of an alternative embodiment of a tissue eversion apparatus comprising a plurality of resilient arms in unexpanded and expanded states, respectively;



FIGS. 9A-9F illustrate a method of closing an opening in a tissue wall using the tissue eversion apparatus of FIGS. 8A and 8B; and



FIGS. 10A and 10B are close-up perspective views of an alternative embodiment of a tissue eversion apparatus comprising a barbed balloon in unexpanded and expanded states, respectively.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As used in the specification and appended claims, directional terms, such as “top,” “bottom,” “up,” “down,” “upper,” “lower,” “proximal,” “distal,” and the like are used herein solely to indicate relative directions in viewing the drawings and are not intended to limit the scope of the claims in any way.


The present disclosure provides methods and apparatuses that are suitable for closure of vascular punctures or other openings in bodily tissues. The devices and methods described herein are configured for wound closure on the external surface of the wound, which allows wound healing with little endothelial disruption thereby reducing the chances of intravascular thrombosis or embolism or intimal hyperplasia. In some embodiments, the closure elements are bioabsorbable.


Generally, the apparatuses and methods described herein can be used with any type of body tissue that has sufficient strength to be held together by the tissue engaging devices described hereinafter. By way of example only, embodiments of the present invention can be used to close openings in tissues that have a wall or membrane function, e.g., pulmonary, intestinal, vascular, urethral, gastric, renal or other wall structures, or in membranes, e.g., amniotic or pericardial membranes. Openings in other types of tissues can also be closed using embodiments of the present invention. Although many types of body tissue can be closed by the methods and apparatuses disclosed herein, the description included herein refers to “vessels” for convenience.


Furthermore, the apparatuses and methods described herein can be used with large and small hole punctures or other openings in the body tissue. By way of example, the tissue engaging devices of the present invention can be sized to close holes from 5 French to 30 French or larger. It may also be possible to close holes of other sizes.


Turning now to the drawings, FIG. 1 shows a first embodiment of a tissue engaging device or clip 100 for closing an incision, puncture, or other passage through tissue, such as, e.g., communicating with a blood vessel or other body lumen. Clip 100 includes a body 102, which may be generally annular in shape, bounding an aperture 104 and surrounding a central axis 106. As used herein, an “annular-shaped body” includes any hollow body, e.g., including one or more structures surrounding an aperture, whether the body is substantially flat or curved or has a significant thickness or depth. Thus, although an annular-shaped body may be circular, it may include other noncircular shapes as well, such as elliptical or other shapes that are asymmetrical about a central axis.


Body 102 includes an outer region 108 that encircles aperture 104 and has an outer circumferential edge 110. Body 102 may include a plurality of tissue engaging members 112 that extend from outer region 108 into aperture 104 and generally towards central axis 106. Tissue engaging members 112 can comprise any structure that is designed to engage the tissue once the tissue has been positioned within aperture 104. This can include structures designed to puncture or otherwise penetrate the tissue or to structures designed to press against the tissue without penetration therein. For example, in the depicted embodiment, tissue engaging members 112 comprise tines 114 and tabs 116 extending into aperture 104. With a substantially pointed tip 118, tines 114 may penetrate the tissue or press against the tissue without penetration. Tabs 116 are designed to generally press against the tissue without penetrating the tissue, although in some embodiments, tabs may also penetrate the tissue. Other types of tissue engaging members 112 may also be used.


Each tine 114 may extend from outer region 108 to spaced apart tip 118 and may be biased to extend generally inwardly, e.g., towards one another and/or generally towards central axis 106. Tines 114 may be provided in pairs opposite from one another or may be provided otherwise symmetrically or asymmetrically with respect to central axis 106.


Tines 114 may include a variety of pointed tips, such as, e.g., a bayonet tip, and/or may include barbs for penetrating or otherwise engaging tissue. For example, to increase the penetration ability of clip 100 and/or to lower the insertion force required to penetrate tissue, each tine 114 may include a tapered edge extending towards tip 118 along one side of tine. Alternatively, each tine 114 may be provided with a tapered edge on each side of the tine extending towards tip 118.


Each 116 tab may extend from outer region 108 to a spaced apart inner circumferential edge 120 and may be biased to extend generally inwardly, e.g., towards one another and/or generally towards central axis 106. Tabs 116 may be provided in pairs opposite from one another or may be provided otherwise symmetrically or asymmetrically with respect to central axis 106.


Tissue engaging members 112 are separated by intermember spaces 122, which are portions of aperture 104 which are positioned between adjacent tissue engaging members 112. For example, tine 114A and tab 116A are separated by intermember space 122A.


Tines and tabs 114, 116 can be combined in any order. For example, tines 114 and tabs 116 can alternate with each other, as in the depicted embodiment. Other combinations can also be used. In addition, clip 100 can employ the same number of tines and tabs 114, 116 or the number of one can be more than the other. In some embodiments, more tines 114 are present than tabs 116, while in other embodiments, more tabs 116 are present.


Clip 100 can be comprised of a biocompatible material. Examples of such materials include stainless steel, titanium, and nickel titanium alloys. In addition, clip 100 can be comprised of a bioabsorbable material. Examples of such materials include PGA and magnesium alloys. Other materials are also possible. By being comprised of a bioabsorbable material, clip 100 may dissolve and become absorbed into the body after the opening in the tissue has been closed. Because clip 100 may be absorbed into the body, the surgeon in future procedures will not be prevented from reaccessing a similar area of the tissue as is the case with many conventional clips.



FIGS. 2A and 2B show alternative embodiments of clips 100′ and 100″ based on clip 100 of FIG. 1. While clip 100 incorporates a mixture of tines and tabs 114, 116, clip 100′ of FIG. 2A includes only tines 114′ with no tabs. Furthermore, while all of tines 114 of clip 100 are substantially the same length, tines 114′ of clip 100′ are of varying lengths. Conversely, clip 100″ of FIG. 2B includes only tabs 116″ with no tines, and the tabs can be of varying sizes, if so desired. Other combinations of sizes and numbers of tines and tabs can alternatively be used. Clips 100′ and 100″ as well as any derivatives thereof, can be comprised of the same types of materials as clip 100, discussed above.


Any of the clips disclosed herein can be substantially planar or have a curvature associated therewith. For example, FIG. 3A shows clip 100 having a top surface 300 and an opposing bottom surface 302 in a substantially planar configuration. Alternatively, FIGS. 3B and 3C show clip 100 in a cup-shaped configuration, with clip 100 being in a convex state in FIG. 3B with respect to the bottom surface 302 that faces the tissue and a concave state in FIG. 3C. Clip 100 can be movable between the two states shown in FIGS. 3B and 3C, as discussed below. For example, in one embodiment, clip 100 is designed to bias towards the convex state shown in FIG. 3B and be moved to and remain in the concave state shown in FIG. 3C when the everted tissue is pulled up and through clip 100.


As shown in FIGS. 3B and 3C, the tines and tabs can be configured to extend inward so as to align with the specific convex and/or concave shape of clip 100. Alternatively, one or more of the tines or tabs can be configured to extend in a different direction so as to not align with the specific convex or concave shape. For example, FIG. 3D shows an alternative embodiment of clip 100 in which an opposing pair of tines 114 extend outward and down from the rest of the clip and are thus not aligned with the convex shape of the clip. This can be advantageous in it can allow the capture of more tissue during the eversion process because the extended tine can contact the tissue earlier and further away from the body of the clip.


The clips of the present invention may be delivered using various apparatuses and methods. Referring now to FIG. 4A, a tissue closure device 400 for closing an opening in a tissue according to one embodiment is depicted. Tissue closure device 400 includes a deployment apparatus 402 with clip 100 being releasably mounted thereon. Deployment apparatus 402 is used to deliver clip 100 to the tissue opening and manipulate the tissue so as to secure the tissue with the clip and thereby close the opening.


Generally, deployment apparatus 402 can include a sheath 404 having a longitudinal axis 406 and a tissue eversion assembly 408 slidably mounted therein. Sheath 404 can include a substantially rigid, semi-rigid, or substantially flexible tubular body 410 having a sidewall 412 extending longitudinally between a proximal end 414 and an opposing distal end 416. Sidewall 412 can bound a lumen 418 that extends along longitudinal axis 406 between the two ends 414, 416. Lumen 418 can have a size for inserting one or more devices therethrough, such as a catheter, guide wire, and the like (not shown). Sheath 404 may also include one or more seals (not shown), such as a hemostatic valve, within lumen 418 at or near proximal end 414 that provides a fluid-tight seal, yet accommodates inserting one or more devices into the lumen 418 without fluid passing proximally from sheath 404.


As particularly shown in FIG. 4B, at distal end 416 of sheath 404, lumen 418 is sized to receive clip 100 and to releasably retain clip 100 until the clip has been positioned over the opening and everted tissue has been received within the clip, as discussed below. When clip 100 is positioned within lumen 418, aperture 104 in the middle of clip 100 aligns with longitudinal axis 406 of lumen 418 so that everted tissue can be pulled up and into aperture 104, as discussed in more detail below.


As shown in the depicted embodiment, sidewall 412 narrows at distal end 416 so as to form an annular taper 438 thereat. As a result, an annular channel 440 is formed at distal end 416 of sheath 404 that has a larger diameter than the portion of lumen 418 proximal of taper 438. As a result, clip 100 can be positioned within channel 440, with taper 438 preventing clip 100 from moving proximally further into lumen 418.


An annular ridge 420 or similar retaining member can extend from sidewall 412 into lumen 418 to releasably retain clip 100 within the lumen. The retaining member 420 can be designed to retain clip 100 within lumen 418 until a distal force of a predetermined strength overcomes the retaining force and dislodges clip 100 from lumen 418. For example, as discussed below, a force caused by everted tissue that has been positioned within clip 100 by a tissue eversion apparatus can provide enough force to dislodge the clip. Other dislodging forces are also possible.


In an alternative embodiment, instead of having sheath 404 tapered at distal end 416 to form channel 440, an inner sheath can be used in conjunction with sheath 404 to prevent clip 100 from moving proximally into lumen 418. For example, FIG. 4C shows an alternative embodiment of a sheath 450 having an inner sheath 452 positioned within lumen 418. Sheath 450 is similar to sheath 404 except that sidewall 412 does not taper at distal end 416. Instead, inner sheath 452 is positioned at distal end 416 adjacent to the proximal side of clip 100. Inner sheath 452 prevents clip 100 from moving proximally further into lumen 418.


In some embodiments, inner sheath 452 can be slidable within lumen 418 so as to be removable therefrom. In these embodiments, unlike sheath 404, sheath 450 can allow clip 100 to be initially inserted into lumen 418 at the proximal end of sheath 450 and slid to its initial position at distal end 416. Inner sheath 452 can thereafter be slid into lumen 418 at the proximal end of sheath 450. A slidable inner sheath 452 can also be used to force clip 100 out of distal end 416 of lumen 418. After tissue has been everted into clip 100, inner sheath 452 can be pushed distally within lumen 418 against the proximal side of clip 100 with enough force to cause clip 100 to overcome the retaining force of retaining member 420 and dislodge clip 100 from lumen 418, thereby ejecting clip 100 from sheath 404.


Returning to FIG. 4A, sheath 404 may optionally include a side port 422 that communicates with lumen 418, for example, to deliver fluids into lumen 418. Alternatively, or in addition, side port 422 may be used to provide a “bleed back” indicator. An exemplary “bleed back” indicator and related methods of use are disclosed in application Ser. No. 09/680,837, filed Oct. 6, 2000 (now U.S. Pat. No. 6,626,918), entitled “Apparatus and Methods for Positioning a Vascular Sheath,” which is assigned to the assignee of the present application. The disclosure of the '837 application and any other references cited therein are fully incorporated by reference herein.


Tissue eversion assembly 408 can include a rigid, semi-rigid, or flexible tubular body 424 (such as an elongate rail) with a longitudinal axis 426. Tubular body 424 can have a proximal end region 428 and a distal end region 430 and can include a predetermined length and a predetermined outer cross-section, both of which can be of any suitable dimension that will slidably fit within lumen 418 of sheath 404. When tissue eversion assembly 408 is positioned within lumen 418, longitudinal axis 426 of tissue tubular body 424 may align with longitudinal axis 406 of sheath 404.


Proximal end region 428 of tissue eversion assembly 408 can include a handle 432 or other actuation device to extend or retract distal end region 430 into or out of distal end 416 of sheath 404. Handle 432 can also include manipulator devices to manipulate a tissue eversion apparatus, as discussed below. Distal end region 430 of tissue eversion assembly 408 can include a substantially rounded, soft, and/or flexible distal end or tip 434 to facilitate advancement and/or retraction of distal end region 430 into a blood vessel or other opening in tissue. As desired, a pigtail or J-tip (not shown) may be provided on tip 434 to further aid atraumatic advancement of distal end region 430.


Tissue eversion assembly 408 can also include a tissue eversion apparatus to facilitate the formation of an everted tissue region by engaging the interior surface of the tissue. For example, in the depicted embodiment, a tissue eversion apparatus 436 is positioned at distal end region 430 of tissue eversion assembly 408.


Turning to FIGS. 5A and 5B, tissue eversion apparatus 436 can comprise a plurality of substantially flexible members 500 selectably controllable between an unexpanded state, as shown in FIG. 5A, and an expanded state, as shown in FIG. 5B. Although four substantially flexible members 500 are depicted, it is appreciated that more or less substantially flexible members can be used.


Each substantially flexible member 500 has an inner surface 502 and an opposing outer surface 504 extending from a proximal end 506 to a spaced apart distal end 508. As shown in FIG. 5A, when tissue eversion apparatus 436 is in the unexpanded state, substantially flexible members 500 are substantially axially aligned with tubular body 424, with outer surfaces 504 facing outward from body 424. This helps to facilitate insertion of tissue eversion apparatus 436 through an opening through tissue, as discussed below.


Conversely, when tissue eversion apparatus 436 is in the expanded state, substantially flexible members 500 are flexed outward, as shown in FIG. 5B. In this expanded state, a portion of each substantially flexible member 500 forms a loop 510 with a portion 512 of the outer surface 504 of loop 510 facing proximally. In the expanded state, tissue eversion apparatus 436 is capable of engaging tissue positioned about an opening after tissue eversion apparatus 436 has been positioned through the opening, as discussed in detail below. Substantially flexible members 500 can be made of a material that allows substantially flexible members 500 to move easily between the unexpanded and expanded states. For example, substantially flexible members 500 can be made of stainless steel, nickel, titanium or the like. Other materials can also be used.


A control member (not shown), such as a rod, wire, or other elongate member, may be moveably disposed within a lumen (not shown) formed by tubular body 424 and extending substantially between proximal end region 428 and distal end region 430. The control member may extend from handle 432 (See FIG. 4A) to a distal end region of the control member coupled with distal end region 430 of body 424 and/or the movable end regions of substantially flexible members 500. By moving tubular body 424 axially relative to the control member, distal end region 430 and/or substantially flexible members 500, can be selectively transitioned between the unexpanded and expanded states. An exemplary control member and related methods of use are disclosed in copending U.S. application Ser. No. 12/135,858 filed on Jun. 9, 2008 and entitled “Antimicrobial Closure Element and Closure Element Applier,” which is assigned to the assignee of the present application. The disclosures of the '858 application and any references cited therein are expressly incorporated herein by reference.


One or more tissue engaging members can be integrally formed with or otherwise attached to each substantially flexible member 500 so as to engage the tissue when tissue eversion apparatus 436 comes into contact with the tissue while in the expanded state, as discussed below. For example, in the depicted embodiment, the tissue engaging members comprise one or more barbs 520 extending from the outer surface 504 of each substantially flexible member 500. Barbs 520 can be positioned on the portion 512 of outer surface 504 that faces proximally in the expanded state, as shown in FIG. 5B. Barbs 520 can be made of metal, plastic, or other suitable rigid or semi-rigid material. Alternatively, barbs 520 can be integrally formed with flexible member 500 and thus made of the same material. Any desired number of barbs 520 can be included on each substantially flexible member 500. Other types of tissue engaging members can also be used, such as needles, hooks, anchors, temporary adhesives or the like.



FIG. 6 shows an alternative embodiment 600 of a tissue eversion apparatus. Tissue eversion apparatus 600 is similar to tissue eversion apparatus 436 except that instead of tissue engaging members 520 being positioned on outer surface 504 of loop 510 of each substantially flexible member 500, the tissue engaging members 520 of tissue eversion apparatus 600 extend from the inner surface 502 of loop 510. To facilitate tissue engaging members 500 engaging the tissue, a window 602 is formed in the substantially flexible member for the tissue engaging members to extend through.


As shown in FIG. 6, tissue engaging members 520 are formed with or otherwise attached to the proximal facing portion of inner surface 502 of each loop 510 formed on substantially flexible members 500 when the tissue eversion apparatus 600 is in the expanded state. Window 602 is formed on the portion of loop 510 opposing tissue engaging members 520 so that tissue engaging members 520 can project through window 602 when tissue eversion apparatus 600 is in the expanded state. To facilitate this, tissue engaging members 520 are typically longer than the width of substantially flexible member 500 so that tissue engaging members 520 can extend beyond window 602 and engage tissue.


Because tissue engaging members 500 are disposed on inner surface 502 of substantially flexible members 500, tissue engaging members 520 face inward (i.e., toward longitudinal axis 426) when substantially flexible member 500 is in the unexpanded state. This can help to prevent tissue engaging members 520 from inadvertently snagging or otherwise contacting the tissue while tissue eversion apparatus 600 is passed through an opening in the tissue while in the unexpanded state.


Turning to FIGS. 7A-7H, a method of sealing and/or closing a passage through tissue, such as an opening 700 communicating with a blood vessel or other body lumen 702 through a wall 704 thereof, using tissue closure device 400 will now be discussed. Applicant notes that all of the disclosed methods herein are exemplary only and that other methods of sealing and/or closing a passage through tissue using tissue closure device 400 can also be performed.


Initially, tissue closure device 400 is assembled. To do this, clip 100 is removably secured within lumen 418 at distal end 416 of sheath 404, as discussed above, so as to be positioned as shown in FIG. 7A. In the depicted embodiment, a cup-shaped clip is used, although a substantially planar clip, such as that shown in FIG. 3A, can alternatively be used. Clip 100 is positioned within lumen 418 to be convex with respect to the tissue in the biased position of the clip. In this position, ridge 420 (see FIG. 4B) secures clip 100 within lumen 418, as discussed above.


To complete the assembly of tissue closure device 400, distal end region 430 of tissue eversion assembly 408 is slidably received within lumen 418 of sheath 404 at proximal end 414 (see FIG. 4A). Tissue eversion assembly 408 is then slid toward distal end 416 of sheath 404 so as to be positioned within lumen 418 as shown in FIG. 7A. Substantially flexible members 500 are in the unexpanded state as tissue closure device is assembled. Tissue eversion assembly 408 can be positioned within lumen 418 before or after clip 100 has been positioned within lumen 418. When both tissue eversion assembly 408 and clip 100 have been positioned within lumen 418, distal end region 430 of tissue eversion assembly 408 (including tip 434, if used) is disposed adjacent clip 100 at distal end 416 of sheath 404, as shown in FIG. 7A.


Tissue closure device 400 is inserted into the body so that distal end 416 of sheath 404 abuts the outer surface 706 of vessel wall 704 and is positioned directly over opening 700 as shown in FIG. 7A. This can be done either before or after tissue eversion assembly 408 has been inserted into lumen 418. A guide wire can be used to aid in positioning tissue closure device, as is known in the art, either by receiving the guide wire within lumen 418 or a lumen formed in tissue eversion assembly 408. A bleed back lumen or other indicating method or apparatus known in the art can also be used to indicate when tissue closure device 400 is in position.


As shown in FIG. 7B, once tissue closure device 400 is in position above opening 700, an external deploying force, denoted by arrow 708, is then applied to tissue eversion assembly 408 by pushing distally on handle 432 (See FIG. 4A) or other actuating device. The deploying force 708 causes distal end region 430 of tissue eversion assembly 408 to extend through opening 700 and into vessel lumen 702.


Once distal end region 430 of tissue eversion assembly 408 has been extended into body lumen 702, the control member and/or tubular body 424 are axially moved relative to each other so as to cause substantially flexible members 500 to transition to the expanded state, as shown in FIG. 7C. Tissue engaging members 520 in the form of barbs are positioned on outer surface 504 of each substantially flexible member 500 so as to face proximally (i.e., toward vessel wall 704 adjacent to opening 700) when substantially flexible members 500 are in the expanded state.


An external retracting force, denoted by arrow 710 in FIG. 7D, is then applied to tissue eversion assembly 408 by pulling proximally on handle 432 (See FIG. 4A) or other actuating device. This causes the expanded substantially flexible members 500 to move proximally toward opening 700 in vessel wall 704. Substantially flexible members 500 continue moving proximally until outer surfaces 504 thereof contact the inner surface 712 of vessel wall 704 surrounding opening 700, as shown in FIG. 7D. As substantially flexible members 500 move toward vessel wall 704, barbs 520 engage inner surface 712 of vessel wall 704 and extend into the wall.


As external retracting force 710 is maintained on tissue eversion assembly 408, substantially flexible members 500 continue moving proximally. As they do so, vessel wall 704 surrounding opening 700 begin to evert and form an everted tissue region 714 as a result of the engagement with barbs 520, as shown in FIG. 7E. As a result, the engaged tissue may begin to exert a resistive force on substantially flexible members 500, causing substantially flexible members 500 to begin to bend distally. As a result, loops 510 begin to move inward, thereby causing the everted tissue region 714 to also be pulled inward, as shown in FIG. 7E.


As external retracting force 710 continues, everted tissue region 714 is pulled proximally and inward into lumen 418 and through clip 100 by substantially flexible members 500, as shown in FIG. 7F. As everted tissue region 714 is pulled proximally through clip 100, the everted tissue begins to contact and exert a proximal force on tines 114 and/or tabs 116 (see FIG. 1) of clip 100. This proximal force causes clip 100 to transition or invert from the convex shape to a concave shape with respect to vessel wall 704, as shown in FIG. 7F. The tines and/or tabs also cause the edges of the everted tissue region 714 to constrict inward so as to begin to press tightly together.


At some point, because of the retaining force of the clip the force exerted by clip 100 on the tissue eversion region 714 causes the tissue in the tissue eversion region 714 to pull away and disengage from barbs 520, as shown in FIG. 7G. Once this occurs, substantially flexible members 500 are pulled proximally away from everted tissue region 714. With substantially flexible members 500 no longer engaged to the inner surface of everted tissue region 714, the everted tissue presses tightly together due to the tines and/or tabs of clip 100, thereby completely closing opening 700. Everted tissue region 714 is now secured within clip 100, thereby keeping opening 700 closed. Furthermore, the constricted everted tissue region 714 disposed between the tines and/or tabs prevents clip 100 from reverting back to the original convex shape.


Once barbs 520 have disengaged from the everted tissue, tissue eversion assembly 408 and sheath 404 can be removed from the body. As sheath 404 is removed, a retaining force is exerted on clip 100 by its engagement with tissue eversion region 714. This force is larger than the retaining force caused by the ridge 420 (see FIG. 4B) within lumen. As such, as sheath 404 is removed from the body, clip 100 remains within the body, secured to vessel wall 704 as shown in FIG. 7H. Because clip 100 is biased toward the convex shape, the tines and/or tabs of clip 100 will continue to exert a distal force when clip 100 is in the concave shape to attempt to cause clip 100 to return to the convex shape. However, as noted above, as a result of the constricted everted tissue 714 disposed through clip 100, clip 100 will remain in the concave shape. Because of this, an added closing force is continuously exerted on everted tissue region 714 by the tines and/or tabs of clip 100 as the tines and/or tabs attempt to return clip 100 to the convex shape. This added force helps to maintain the secure nature of the closure of opening 700.


If clip 100 is made of a bioabsorbable material, clip 100 will dissolve and be absorbed into the body after the tissue has grown together over opening 700. This can aid the surgeon in future procedures by allowing the surgeon to reaccess a similar area of the tissue without having to remove or avoid the clip.


As noted above, a planar tissue engaging device can be used instead of an inverting curved tissue engaging device. If a planar tissue engaging device is used, such as clip 100 shown in FIG. 3A, the same method of sealing and/or closing a passage through tissue can be used as discussed above with reference to FIGS. 7A-7H. However, unlike the inverting clip, as the everted tissue region is pulled through the planar clip by the barbs, the clip will not invert from a convex shape to a concave shape. Instead, the planar clip may remain planar during the sealing/closing method. As a result, when the sheath has been removed, the tines and/or tabs of the planar clip may not impose an added closing force. Alternatively, the everted tissue region may cause the tines and/or tabs of the planar clip to rise above the plane of the clip due to the force of the everted tissue.



FIGS. 8A and 8B show an alternative embodiment 800 of a tissue eversion apparatus. Tissue eversion apparatus 800 comprises a plurality of resilient arms 802 that are movable between an unexpanded state, shown in FIG. 8A, and an expanded state, shown in FIG. 8B. Although four resilient arms 802 are depicted, it is appreciated that more or less resilient arms 802 can be used.


Each resilient arm 802 extends from a proximal end 804 that is attached to or otherwise formed at distal end region 430 of tubular body 424 to a distal end 806. One or more barbs 520 or other tissue engaging members similar to those discussed previously can be integrally formed with or otherwise attached to distal end 806 of each resilient arm 802 so as to engage tissue when tissue eversion apparatus 800 comes into contact with the tissue while in the expanded state. When tissue eversion apparatus 800 is in the unexpanded state, resilient arms 802 extend substantially longitudinally from tubular body 424 so as to abut each other in a retracted position as shown in FIG. 8A. Conversely, when tissue eversion apparatus 800 is in the expanded state, resilient arms 802 extend laterally from tubular body 424 so as to be spread apart from each other in a deployed position, as shown in FIG. 8B.


Resilient arms 802 can be designed to be biased toward the deployed position. That is, when resilient arms 802 are not in the deployed position, a resilient force can act on resilient arms 802 to force distal ends 806 of resilient arms 802 to spread apart and thereby move to the deployed position. This can be accomplished by using a shape-memory type of material for the resilient arms, such as a nickel-titanium alloy (e.g., Nitinol), or other known shape-memory type of material.


A control sheath 808 having a bore 810 can be used with tissue eversion apparatus 800 to control when resilient arms 802 move between the retracted and deployed positions. When proximal ends 804 of resilient arms 802 are positioned within bore 810, control sheath 808 keeps resilient arms 802 together in the retracted position as shown in FIG. 8A and prevents resilient arms 802 from moving to the deployed position. Conversely, when proximal ends 804 of resilient arms 802 extend out of distal end 812 of bore 810, the resilient force causes resilient arms 802 to remain in the deployed position, as shown in FIG. 8B. Accordingly, control sheath 808 can be used to cause resilient arms 802 to move between the two positions.


For example, when tissue eversion apparatus 800 is in the unexpanded state of FIG. 8A, resilient arms 802 are in the retracted position abutting each other. An external force can be used to move resilient arms 802 distally with respect to control sheath 808. This can be accomplished, e.g., by applying a distal force to tubular body 424 or a proximal force to control sheath 808. Resilient arms 802 can continue to move distally with respect to control sheath 808 until the proximal ends 804 of resilient arms 802 move out of distal end 812 of control sheath bore 810. Once outside of bore 810, resilient arms 802 can spring out to the deployed position by virtue of the resilient force, thereby causing tissue eversion apparatus 800 to be in the expanded state shown in FIG. 8B.


In a similar but opposite manner, when tissue eversion apparatus 800 is in the expanded state of FIG. 8B, resilient arms 802 can be moved proximally with respect to control sheath 808. This causes resilient arms 802 to retract back into the control sheath bore 810. As proximal ends 804 of resilient arms 802 move into bore 810, the bore wall at distal end 812 exerts an inward force on resilient arms 802, overcoming the resilient force and causing distal ends 806 of resilient arms 802 to move inward. As resilient arms 802 retreat further into bore 810, resilient arms 802 move inward until the arms abut each other in the retracted position, thereby causing tissue eversion apparatus 800 to be in the unexpanded state shown in FIG. 8A.


Turning to FIGS. 9A-9F, a method of sealing and/or closing a passage through tissue using tissue eversion apparatus 800 will now be discussed. The method of sealing and/or closing using tissue eversion apparatus 800 is similar to the method discussed above using tissue eversion apparatus 436 with some variations. For example, similar to the previously described method, tissue eversion apparatus 800 is positioned within lumen 418 of sheath 404. However, as shown in FIG. 9A, control sheath 808 is also received within lumen 418 and tissue eversion apparatus 800 is positioned within control sheath 808 so as to be in the unexpanded state, as discussed above. Tissue eversion apparatus 800 can be positioned within control sheath 808 either before or after control sheath 808 has been received within lumen 418. Furthermore, control sheath 808 can be positioned within lumen 418 before or after clip 100 has been positioned within lumen 418. When control sheath 808 and clip 100 have been positioned within lumen 418, distal end 806 of tissue eversion apparatus 800 is disposed adjacent clip 100 at distal end 416 of sheath 404, as shown in FIG. 9A.


Similar to the previously discussed method, once clip 100 has been positioned above opening 700, external deploying force 708 is applied to tubular body 424 which causes the distal end 806 of tissue eversion apparatus 800 to extend through opening 700 and into vessel lumen 702. The same or similar deploying force 900 is simultaneously applied to control sheath 808 so that control sheath 808 moves distally with tissue eversion apparatus 800 to also extend through opening 700 and into vessel lumen 702, as shown in FIG. 9B. Because resilient arms 802 remain within control sheath 808, tissue eversion apparatus 800 remains in the unexpanded state.


The external deploying force 708 continues to be applied to tubular body 424 while the deploying force 900 applied to the control sheath 808 is removed. As a result, tissue eversion apparatus 800 further extends into vessel lumen 702 while control sheath 808 does not. Consequently, resilient arms 802 move out of bore 810 at distal end 812 of control sheath 808. Once outside of bore 810, resilient arms 802 spring out to the deployed position as shown in FIG. 9C and as discussed above. The positioning of distal end 812 of control sheath 808 prevents resilient arms 802 from springing out to the deployed position too soon; without control sheath 808, resilient arms 802 could spring out too soon, causing barbs 520 to snag on the tissue surrounding vessel wall opening 700 instead of the inner surface 712 of the tissue wall 704.


As shown in FIG. 9D, once tissue eversion apparatus 800 is in the expanded state, external retracting force 710 is applied to tubular body 410 to cause tissue eversion apparatus 800 to move proximally and contact inner surface 712 of vessel wall 704, similar to the previously discussed method. The same or similar refracting force 902 is simultaneously applied to control sheath 808 so that control sheath 808 will also move proximally with resilient arms 802. As a result, resilient arms 802 remain in the deployed position and barbs 520 engage inner surface 712 of vessel wall 704.


Similar to the previously discussed method, retracting force 710 is maintained on tubular body 424 to pull everted tissue region 714 upward through clip 100, as shown in FIG. 9E. Retracting force 902 is also maintained so that control sheath 808 moves proximally with resilient arms 802. At a predefined point, retracting force 902 is removed from control sheath 808, so that retracting force 710 on tubular body 424 causes resilient arms 802 to retract into control sheath 808. As resilient arms 802 retract into control sheath 808, resilient arms 802 move inward to the retracted position as discussed above and shown in FIG. 9E. As a result, the everted tissue 714 comes together through clip 100.


Similar to the previously discussed method, once a desired amount of everted tissue has been pulled proximally through clip 100, barbs 520 disengage from the everted tissue as shown in FIG. 9F. Tissue eversion apparatus 800, control sheath 808, and sheath 404 can then be removed from the body and clip 100 will remain secured to the vessel wall 704 in a similar manner as discussed previously.



FIGS. 10A and 10B show another alternative embodiment 1000 of a tissue eversion apparatus. Tissue eversion apparatus 1000 comprises a balloon 1002 that is inflatable between an unexpanded state, shown in FIG. 10A, and an expanded state, shown in FIG. 10B.


Balloon 1002 extends distally from distal end region 430 of tubular body 424. Balloon 1002 comprises a thin wall 1004 having an inner surface 1006 and an opposing outer surface 1008. Inner surface 1006 bounds an inflatable chamber 1010. Balloon 1002 is made of an expandable material that is capable of being expanded with air or other type of gas or liquid. For example, balloon 1002 can be made of polyvinyl chloride, nylon, or pebax. Other materials can also be used.


A lumen 1012 can extend through body 424 so as to fluidly communicate with chamber 1010 of balloon 1002. When tissue eversion apparatus 1000 is in the unexpanded state, balloon 1002 is deflated such that the balloon extends longitudinally away from tubular body 424, as shown in FIG. 10A, Conversely, when tissue eversion apparatus 1000 is in the expanded state, balloon 1002 is inflated so as to extend laterally from tubular body 424, as shown in FIG. 10B.


One or more barbs 520 or other tissue engaging members similar to those discussed previously can be integrally formed with or otherwise attached to outer surface 1008 of balloon 1002 so as to engage the tissue when balloon 1002 comes into contact with the tissue while in the expanded state.


During use, the deflated balloon 1002 is inserted through the opening in the tissue similar to the other tissue eversion apparatuses previously discussed. Once inserted, balloon 1002 can be inflated by passing air or other inflating component through lumen 1012 within body 424 and into chamber 1010 of balloon 1003. Balloon 1002 is then retracted back through the opening, similar to previously discussed methods, such that barbs 520 contact and evert tissue around the opening. As balloon 1002 retracts back through clip 100, balloon 1002 can be controllably deflated by selectively releasing air from chamber 1010 and through lumen 1012 of body 424. Similar to previously discussed methods, this causes the everted tissue to come together through clip 100.


Similar to previously discussed methods, once a desired amount of everted tissue has been pulled proximally through clip 100, the barbs 520 disengage from the everted tissue and tissue eversion apparatus 1000 and sheath 404 can be removed from the body and clip 100 will remain secured to the vessel wall.


Although the present invention has been described in considerable detail with reference to certain embodiments, it is contemplated that one skilled in the art may make modifications to the device herein without departing from the scope of the invention. Therefore, the scope of the appended claims should not be considered limited to the embodiments described herein

Claims
  • 1. A tissue closure device for closing an opening in a tissue having an interior surface and an opposing exterior surface, the tissue closure device comprising: a deployment apparatus comprising: a sheath having a central longitudinal axis extending between a proximal end and a spaced apart distal end, a lumen extending between the proximal end and the spaced apart distal end, the lumen being bounded by a lumen surface; anda tissue eversion apparatus configured to form an everted tissue region, the tissue eversion apparatus being positioned within the lumen of the sheath and deployable therefrom for engaging the interior surface of the tissue and everting edges of the tissue; anda tissue engaging device operatively coupled to the deployment apparatus and deliverable therefrom, the tissue engaging device comprising an annular-shaped body disposed about a central axis, the annular-shaped body having an aperture extending therethrough for receiving everted edges of the tissue and closing the opening in the tissue, the annular-shaped body being movable between a first position where the annular-shaped body is convex before engagement with the tissue, and a second position where the annular-shaped body is concave when the annular-shaped body is engaged with the tissue,wherein the tissue eversion apparatus includes a plurality of substantially flexible members, each of the plurality of substantially flexible members having a proximal end, a distal end, and a plurality of barbs for everting the tissue and drawing the tissue upward through the aperture of the tissue engaging device such that the everted edges of the tissue extend upward through the aperture when closing the opening in the tissue, the plurality of barbs including a first barb located proximally from the distal end of each of the plurality of substantially flexible members and a second barb located proximally from the first barb, each barb being oriented perpendicular to the plurality of substantially flexible members, andwherein a distal end of the lumen of the sheath of the deployment apparatus includes a retaining member disposed at the distal end of the lumen of the sheath, the retaining member being configured to retain the tissue engaging device in the lumen of the sheath until the tissue is drawn upward through the aperture, wherein a portion of the plurality of substantially flexible members containing the plurality of barbs is planar and perpendicular to the central longitudinal axis of the sheath in a deployed configuration.
  • 2. The tissue closure device according to claim 1, wherein the plurality of barbs are aligned relative to one another on each of the plurality of substantially flexible members.
  • 3. The tissue closure device according to claim 2, wherein the plurality of barbs form a first array and a second array, and wherein the first array of barbs and the second array of barbs are laterally offset from one another and are parallel to each other.
  • 4. The tissue closure device according to claim 1, wherein the portion of the plurality of substantially flexible members containing the plurality of barbs is flat.
  • 5. The tissue closure device according to claim 1, wherein the tissue engaging device is bioabsorbable.
  • 6. The tissue closure device according to claim 1, wherein the tissue eversion apparatus is configured to position the everted edges of the tissue within the tissue engaging device.
  • 7. The tissue closure device according to claim 1, wherein the tissue eversion apparatus also includes an adhesive coating for everting the tissue.
  • 8. The tissue closure device according to claim 1, wherein the aperture of the body of the tissue engaging device is aligned with the lumen of the deployment apparatus so that the tissue eversion apparatus passes through the aperture when deployed from the lumen.
  • 9. The tissue closure device according to claim 1, wherein the tissue eversion apparatus is movable between an unexpanded state in which the tissue eversion apparatus is configured to not contact the tissue, and an expanded state in which the tissue eversion apparatus is configured to contact and evert the tissue.
  • 10. The tissue closure device according to claim 9, wherein the tissue eversion apparatus is configured such that the barbs contact and evert the tissue when the tissue eversion apparatus is in the expanded state.
  • 11. The tissue closure device according to claim 10, wherein each of the plurality of substantially flexible members has an outer surface and wherein the barbs extend outwardly from the outer surface.
  • 12. A tissue closure device for closing an opening in a tissue having an interior surface and an opposing exterior surface, the tissue closure device comprising: a deployment apparatus comprising: a sheath having a central longitudinal axis extending between a proximal end and a spaced apart distal end, a lumen extending between the proximal end and the spaced apart distal end, the lumen being bounded by a lumen surface; anda tissue eversion apparatus configured to form an everted tissue region, the tissue eversion apparatus being positioned within the lumen of the sheath and deployable therefrom for engaging the interior surface of the tissue and everting edges of the tissue; anda tissue engaging device operatively coupled to the deployment apparatus and deliverable therefrom, the tissue engaging device comprising an annular-shaped body disposed about a central axis, the annular-shaped body having an aperture extending therethrough for receiving everted edges of the tissue and closing the opening in the tissue, the annular-shaped body having a plurality protruding members extending into the aperture and separated by corresponding intermember spaces, wherein at least one of the plurality protruding members comprises a tine and wherein at least one of the plurality protruding members comprises a tab;the tissue eversion apparatus including a plurality of substantially flexible members, each of the plurality of substantially flexible members having a proximal end, a distal end, and a plurality of barbs for everting the tissue and drawing the tissue upward through the aperture of the tissue engaging device such that everted edges of the tissue extend upward through the aperture when closing the opening in the tissue, the plurality of barbs including a first barb located proximally from the distal end of each of the plurality of substantially flexible members and a second barb located proximally from the first barb, each barb being oriented perpendicular to the plurality of substantially flexible members,wherein the annular-shaped body of the tissue engaging device is movable between a first position where the annular-shaped body is convex before engagement with the tissue, and a second position where the annular-shaped body is concave when the annular-shaped body is engaged with the tissue so as to draw additional tissue upward through the aperture of the tissue engaging device when closing the opening in the tissue, andwherein a distal end of the lumen of the sheath of the deployment apparatus includes a retaining member disposed at the distal end of the lumen of the sheath, the retaining member being configured to retain the tissue engaging device in the lumen of the sheath until the tissue is drawn upward through the aperture, andwherein a portion of the plurality of substantially flexible members containing the plurality of barbs is planar and perpendicular to the central longitudinal axis of the sheath in a deployed configuration.
  • 13. The tissue closure device according to claim 12, wherein the tissue engaging device is bioabsorbable.
  • 14. The tissue closure device according to claim 12, wherein the aperture of the annular-shaped body of the tissue engaging device is aligned with the lumen of the deployment apparatus so that the tissue eversion apparatus passes through the aperture when deployed from the lumen.
  • 15. The tissue closure device according to claim 12, wherein the tissue eversion apparatus is movable between an unexpanded state in which the tissue eversion apparatus is configured to not contact the tissue, and an expanded state in which the tissue eversion apparatus is configured to contact and evert the tissue.
  • 16. The tissue closure device according to claim 15, wherein the tissue eversion apparatus is configured such that the barbs contact and evert the tissue when the tissue eversion apparatus is in the expanded state.
  • 17. The tissue closure device according to claim 10, wherein each of the plurality of substantially flexible members has an outer surface and wherein the barbs extend outwardly from the outer surface.
  • 18. A method of closing an opening in a body tissue, the method comprising: providing a tissue closure device for closing the opening in the body tissue having an interior surface and an opposing exterior surface, the tissue closure device comprising:a deployment apparatus comprising: a sheath having a central longitudinal axis extending between a proximal end and a spaced apart distal end, a lumen extending between the proximal end and the spaced apart distal end, the lumen being bounded by a lumen surface; anda tissue eversion apparatus configured to form an everted tissue region, the tissue eversion apparatus being positioned within the lumen of the sheath and deployable therefrom for engaging the interior surface of the body tissue and everting edges of the body tissue; anda tissue engaging device operatively coupled to the deployment apparatus and deliverable therefrom, the tissue engaging device comprising an annular-shaped body disposed about a central axis, the annular-shaped body having an aperture extending therethrough for receiving everted edges of the body tissue and closing the opening in the body tissue, the annular-shaped body being movable between a first position where the annular-shaped body is convex before engagement with the body tissue and a second position where the annular-shaped body is concave when the annular-shaped body is engaged with the body tissue,wherein the tissue eversion apparatus includes a plurality of substantially flexible members, each substantially flexible member having a proximal end, a distal end, and a plurality of barbs for everting the body tissue and drawing the body tissue upward through the aperture of the tissue engaging device such that the everted edges of the body tissue extend upward through the aperture when closing the opening in the body tissue, the plurality of barbs including a first barb located proximally from the distal end of each of the plurality of substantially flexible members and a second barb located proximally from the first barb, each barb being oriented perpendicular to the plurality of substantially flexible members, andwherein a distal end of the lumen of the sheath of the deployment apparatus includes a retaining member disposed at the distal end of the lumen of the sheath, the retaining member being configured to retain the tissue engaging device in the lumen of the sheath until the body tissue is drawn upward through the aperture, wherein a portion of the plurality of substantially flexible members containing the plurality of barbs is planar and perpendicular to the central longitudinal axis of the sheath in a deployed configuration;positioning the tissue engaging device over the opening in the body tissue;forming an everted tissue region around the opening in the body tissue; andpassing the everted tissue region through the aperture in the tissue engaging device, thereby causing the tissue engaging device to become substantially concave with respect to the body tissue to secure the everted tissue region within the aperture and close the opening.
  • 19. A method of closing an opening extending between an interior surface and an opposing exterior surface of a body tissue, the method comprising: positioning a deployment apparatus adjacent the opposing exterior surface and over the opening in the body tissue, the deployment apparatus comprising: a sheath having a central longitudinal axis extending between a proximal end and a spaced apart distal end, a lumen extending between the proximal end and the spaced apart distal end, the lumen being bounded by a lumen surface; anda tissue eversion apparatus configured to form an everted tissue region, the tissue eversion apparatus being positioned within the lumen of the sheath and deployable therefrom for engaging the interior surface of the body tissue and everting edges of the body tissue; anda tissue engaging device operatively coupled to the deployment apparatus and deliverable therefrom, the tissue engaging device comprising an annular-shaped body disposed about a central axis, the annular-shaped body having an aperture extending therethrough for receiving everted edges of the body tissue and closing the opening in the body tissue, the annular-shaped body being movable between a first position where the annular-shaped body is convex before engagement with the body tissue and a second position where the annular-shaped body is concave when the annular-shaped body is engaged with the body tissue,wherein the tissue eversion apparatus includes a plurality of substantially flexible members, each substantially flexible member having a proximal end, a distal end, and a plurality of barbs for everting the body tissue and drawing the body tissue upward through the aperture of the tissue engaging device such that the everted edges of the body tissue extend upward through the aperture when closing the opening in the body tissue, the plurality of barbs including a first barb located proximally from the distal end of each of the plurality of substantially flexible members and a second barb located proximally from the first barb, each barb being oriented perpendicular to the plurality of substantially flexible members, and wherein a distal end of the lumen of the sheath of the deployment apparatus includes a retaining member disposed at the distal end of the lumen of the sheath, the retaining member being configured to retain the tissue engaging device in the lumen of the sheath until the body tissue is drawn upward through the aperture, wherein a portion of the plurality of substantially flexible members containing the plurality of barbs is planar and perpendicular to the central longitudinal axis of the sheath in a deployed configuration;deploying the tissue eversion apparatus from the sheath through the opening of the body tissue so that the tissue eversion apparatus engages the interior surface of the body tissue;retracting the tissue eversion apparatus back into the sheath, the engagement of the tissue eversion apparatus with the interior surface of the body tissue causing an everted tissue region to be formed around the opening as the tissue eversion apparatus is retracted, the everted tissue region being passed through the aperture in the tissue engaging device as the tissue eversion apparatus is retracted, thereby causing the tissue engaging device to become substantially concave with respect to the body tissue to secure the everted tissue region within the aperture and close the opening; anddisengaging the tissue eversion apparatus from the everted tissue region, the everted tissue region remaining secured within the tissue engaging device to close the opening, and the tissue engaging device remaining substantially concave with respect to the body tissue.
  • 20. The method according to claim 19, wherein deploying the tissue eversion apparatus comprises extending the plurality of substantially flexible members such that the barbs disposed on an outer surface of the plurality of substantially flexible members extend through the opening of the body tissue in an unexpanded state and expanding the substantially flexible members such that the tissue engaging members engage the interior surface of the body tissue.
US Referenced Citations (1047)
Number Name Date Kind
287046 Norton Oct 1883 A
438400 Brennen Oct 1890 A
556082 Boeddinghaus Mar 1896 A
1088393 Backus Feb 1914 A
1242139 Callahan Oct 1917 A
1331401 Summers Feb 1920 A
1480935 Gleason Jan 1924 A
1596004 De Bengoa Aug 1926 A
1647958 Ciarlante Nov 1927 A
1880569 Weis Oct 1932 A
2087074 Tucker Jul 1937 A
2108206 Meeker Feb 1938 A
2210061 Caminez Aug 1940 A
2254620 Miller Sep 1941 A
2316297 Southerland et al. Apr 1943 A
2371978 Perham Mar 1945 A
2453227 James Nov 1948 A
2583625 Bergan Jan 1952 A
2610631 Calicchio Sep 1952 A
2684070 Kelsey Jul 1954 A
2755699 Forster Jul 1956 A
2910067 White Oct 1959 A
2944311 Schneckenberger Jul 1960 A
2951482 Sullivan Sep 1960 A
2969887 Darmstadt et al. Jan 1961 A
3015403 Fuller Jan 1962 A
3113379 Frank Dec 1963 A
3120230 Skold Feb 1964 A
3142878 Santora Aug 1964 A
3209754 Brown Oct 1965 A
3348595 Stevens, Jr. Oct 1967 A
3357070 Soloan Dec 1967 A
3482428 Kapitanov et al. Dec 1969 A
3494533 Green et al. Feb 1970 A
3510923 Blake May 1970 A
3523351 Filia Aug 1970 A
3586002 Wood Jun 1971 A
3604425 Le Roy Sep 1971 A
3618447 Goins Nov 1971 A
3677243 Nerz Jul 1972 A
3682180 McFarlane Aug 1972 A
3757629 Schneider Sep 1973 A
3760810 Van Hoorn Sep 1973 A
3805337 Branstetter Apr 1974 A
3814104 Irnich et al. Jun 1974 A
3823719 Cummings Jul 1974 A
3828791 Santos Aug 1974 A
3856016 Davis Dec 1974 A
3856018 Perisse et al. Dec 1974 A
3874388 King et al. Apr 1975 A
3908662 Razgulov et al. Sep 1975 A
3926194 Greenberg et al. Dec 1975 A
3939820 Grayzel Feb 1976 A
3944114 Coppens Mar 1976 A
3960147 Murray Jun 1976 A
3985138 Jarvik Oct 1976 A
4007743 Blake Feb 1977 A
4011872 Komiya Mar 1977 A
4014492 Rothfuss Mar 1977 A
4018228 Goosen Apr 1977 A
4018229 Komiya Apr 1977 A
4047533 Perciaccante et al. Sep 1977 A
4064881 Meredith Dec 1977 A
4112944 Williams Sep 1978 A
4153321 Pombrol May 1979 A
4162673 Patel Jul 1979 A
4169476 Hiltebrandt Oct 1979 A
4189808 Brown Feb 1980 A
4192315 Hilzinger et al. Mar 1980 A
4201215 Crossett et al. May 1980 A
4204541 Kapitanov May 1980 A
4207870 Eldridge Jun 1980 A
4214587 Sakura, Jr. Jul 1980 A
4215699 Patel Aug 1980 A
4217902 March Aug 1980 A
4267995 McMillan May 1981 A
4273129 Boebel Jun 1981 A
4274415 Kanamoto et al. Jun 1981 A
4278091 Borzone Jul 1981 A
4317445 Robinson Mar 1982 A
4317451 Cerwin et al. Mar 1982 A
4318401 Zimmerman Mar 1982 A
4327485 Rix May 1982 A
4345606 Littleford Aug 1982 A
4359052 Staub Nov 1982 A
4368736 Kaster Jan 1983 A
4396139 Hall et al. Aug 1983 A
4407286 Noiles et al. Oct 1983 A
4411654 Boarini et al. Oct 1983 A
4412832 Kling et al. Nov 1983 A
4428376 Mericle Jan 1984 A
4440170 Golden et al. Apr 1984 A
4449531 Cerwin et al. May 1984 A
4475544 Reis Oct 1984 A
4480356 Martin Nov 1984 A
4485816 Krumme Dec 1984 A
4501276 Lombardi Feb 1985 A
RE31855 Osborne Mar 1985 E
4505273 Braun et al. Mar 1985 A
4505274 Speelman Mar 1985 A
4523591 Kaplan et al. Jun 1985 A
4523695 Braun et al. Jun 1985 A
4525157 Vaillancourt Jun 1985 A
4526174 Froehlich Jul 1985 A
4586503 Kirsch et al. May 1986 A
4592498 Braun et al. Jun 1986 A
4596559 Fleischhacker Jun 1986 A
4607638 Crainich Aug 1986 A
4610251 Kumar Sep 1986 A
4610252 Catalano Sep 1986 A
4635634 Santos Jan 1987 A
4651737 Deniega Mar 1987 A
4664305 Blake, III et al. May 1987 A
4665906 Jervis May 1987 A
4687469 Osypka Aug 1987 A
4693249 Schenck et al. Sep 1987 A
4697312 Freyer Oct 1987 A
4719917 Barrows et al. Jan 1988 A
4724840 McVay et al. Feb 1988 A
4738658 Magro et al. Apr 1988 A
4744364 Kensey May 1988 A
4747407 Liu et al. May 1988 A
4759364 Boebel Jul 1988 A
4771782 Millar Sep 1988 A
4772266 Groshong Sep 1988 A
4777950 Kees, Jr. Oct 1988 A
4789090 Blake, III Dec 1988 A
4830002 Semm May 1989 A
4832688 Sagae et al. May 1989 A
4836204 Landymore et al. Jun 1989 A
4852568 Kensey Aug 1989 A
4860746 Yoon Aug 1989 A
4865026 Barrett Sep 1989 A
4874122 Froelich et al. Oct 1989 A
4878915 Brantigan Nov 1989 A
4885003 Hillstead Dec 1989 A
4886067 Palermo Dec 1989 A
4887601 Richards Dec 1989 A
4890612 Kensey Jan 1990 A
4902508 Badylak et al. Feb 1990 A
4917087 Walsh et al. Apr 1990 A
4917089 Sideris Apr 1990 A
4929240 Kirsch et al. May 1990 A
4934364 Green Jun 1990 A
4950258 Kawai et al. Aug 1990 A
4957499 Lipatov et al. Sep 1990 A
4961729 Vaillancourt Oct 1990 A
4967949 Sandhaus Nov 1990 A
4976721 Blasnik et al. Dec 1990 A
4983176 Cushman et al. Jan 1991 A
4997436 Oberlander Mar 1991 A
4997439 Chen Mar 1991 A
5002562 Oberlander Mar 1991 A
5007921 Brown Apr 1991 A
5015247 Michelson May 1991 A
5021059 Kensey et al. Jun 1991 A
5026390 Brown Jun 1991 A
5030226 Green et al. Jul 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5041129 Hayhurst et al. Aug 1991 A
5047047 Yoon Sep 1991 A
5053008 Bajaj Oct 1991 A
5059201 Asnis Oct 1991 A
5061274 Kensey Oct 1991 A
5078731 Hayhurst Jan 1992 A
5092941 Miura Mar 1992 A
5100418 Yoon et al. Mar 1992 A
5100422 Berguer et al. Mar 1992 A
5108420 Marks Apr 1992 A
5108421 Fowler Apr 1992 A
5114032 Laidlaw May 1992 A
5114065 Storace May 1992 A
5116349 Aranyi May 1992 A
5122122 Allgood Jun 1992 A
5122156 Granger et al. Jun 1992 A
5131379 Sewell, Jr. Jul 1992 A
5133360 Spears Jul 1992 A
5141520 Goble et al. Aug 1992 A
5147381 Heimerl et al. Sep 1992 A
5156609 Nakao et al. Oct 1992 A
5163343 Gish Nov 1992 A
5167634 Corrigan, Jr. et al. Dec 1992 A
5167643 Lynn Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171250 Yoon Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5176691 Pierce Jan 1993 A
5192287 Fournier et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5192300 Fowler Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5192602 Spencer et al. Mar 1993 A
5193533 Body et al. Mar 1993 A
5197971 Bonutti Mar 1993 A
5207697 Carusillo et al. May 1993 A
5209756 Seedhorm et al. May 1993 A
5217024 Dorsey et al. Jun 1993 A
5217471 Burkhart Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5226908 Yoon Jul 1993 A
5236435 Sewell, Jr. Aug 1993 A
5237996 Waldman et al. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5242459 Buelna Sep 1993 A
5243857 Velez Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5250058 Miller et al. Oct 1993 A
5254105 Haaga Oct 1993 A
5255679 Imran Oct 1993 A
5269792 Kovac et al. Dec 1993 A
5275616 Fowler Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5282808 Kovac et al. Feb 1994 A
5282827 Kensey et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290243 Chodorow et al. Mar 1994 A
5290284 Adair Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292309 Van Tassel et al. Mar 1994 A
5292332 Lee Mar 1994 A
5300078 Buelna Apr 1994 A
5304183 Gourlay et al. Apr 1994 A
5304184 Hathaway et al. Apr 1994 A
5304204 Bregen Apr 1994 A
5306254 Nash et al. Apr 1994 A
5309927 Welch May 1994 A
5318542 Hirsch et al. Jun 1994 A
5320639 Rudnick Jun 1994 A
5327908 Gerry Jul 1994 A
5330445 Haaga Jul 1994 A
5330503 Yoon Jul 1994 A
5334216 Vidal et al. Aug 1994 A
5334217 Das Aug 1994 A
5335680 Moore Aug 1994 A
5336231 Adair Aug 1994 A
5340360 Stefanchik Aug 1994 A
5342393 Stack Aug 1994 A
5344439 Otten Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5354279 Hofling Oct 1994 A
5364406 Sewell, Jr. Nov 1994 A
5364408 Gordon Nov 1994 A
5366458 Korthoff et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5383896 Gershony et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5383905 Golds et al. Jan 1995 A
RE34866 Kensey et al. Feb 1995 E
5392978 Velez et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403330 Tuason Apr 1995 A
5403331 Chesterfield et al. Apr 1995 A
5404621 Heinke Apr 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5413584 Schulze May 1995 A
5416584 Kay May 1995 A
5417699 Klein et al. May 1995 A
5419765 Weldon et al. May 1995 A
5419777 Hofling May 1995 A
5421832 Lefebvre Jun 1995 A
5423857 Rosenman et al. Jun 1995 A
5425489 Shichman et al. Jun 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5431639 Shaw Jul 1995 A
5431667 Thompson et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437631 Janzen Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5443477 Marin et al. Aug 1995 A
5443481 Lee Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5449359 Groiso Sep 1995 A
5451235 Lock et al. Sep 1995 A
5456400 Shichman et al. Oct 1995 A
5462561 Voda Oct 1995 A
5464413 Siska, Jr. et al. Nov 1995 A
5466241 Leroy et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474557 Mai Dec 1995 A
5474569 Zinreich et al. Dec 1995 A
5476505 Limon Dec 1995 A
5478352 Fowler Dec 1995 A
5478353 Yoon Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5486186 Yoon Jan 1996 A
5486195 Myers et al. Jan 1996 A
5489288 Buelna Feb 1996 A
5492119 Abrams Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5507744 Tay et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5522840 Krajicek Jun 1996 A
5527322 Klein et al. Jun 1996 A
5536251 Evard et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540712 Kleshinski et al. Jul 1996 A
5540716 Hlavacek Jul 1996 A
5544802 Crainich Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562684 Kammerer Oct 1996 A
5571120 Yoon Nov 1996 A
5573540 Yoon Nov 1996 A
5573784 Badylak et al. Nov 1996 A
5575771 Walinsky Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5584879 Reimold et al. Dec 1996 A
5591205 Fowler Jan 1997 A
5593412 Martinez et al. Jan 1997 A
5601602 Fowler Feb 1997 A
5609597 Lehrer Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5613975 Christy Mar 1997 A
5618291 Thompson et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626614 Hart May 1997 A
5634936 Linden et al. Jun 1997 A
5643318 Tsukernik et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5645566 Brenneman et al. Jul 1997 A
5645567 Crainich Jul 1997 A
5647372 Tovey et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
D383539 Croley Sep 1997 S
5669935 Rosenman et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5674231 Green et al. Oct 1997 A
5676689 Kensey et al. Oct 1997 A
5676974 Valdes et al. Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681334 Evans et al. Oct 1997 A
5683405 Yacoubian et al. Nov 1997 A
5690674 Diaz Nov 1997 A
5693061 Pierce et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5700273 Buelna et al. Dec 1997 A
5709224 Behl et al. Jan 1998 A
5713899 Marnay et al. Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5716375 Fowler Feb 1998 A
5720755 Dakov Feb 1998 A
5725498 Janzen et al. Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5728116 Rosenman Mar 1998 A
5728122 Leschinsky et al. Mar 1998 A
5728132 Van Tassel et al. Mar 1998 A
5728133 Kontos Mar 1998 A
5728143 Gough et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735736 Volk Apr 1998 A
5735873 MacLean Apr 1998 A
5749826 Faulkner May 1998 A
5749898 Schulze et al. May 1998 A
5752966 Chang May 1998 A
5755726 Pratt et al. May 1998 A
5755778 Kleshinski May 1998 A
5759189 Ferragamo et al. Jun 1998 A
5766217 Christy Jun 1998 A
5766246 Mulhauser et al. Jun 1998 A
5769870 Salahieh et al. Jun 1998 A
5776147 Dolendo Jul 1998 A
5779707 Bertholet et al. Jul 1998 A
5780807 Saunders Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5792151 Heck et al. Aug 1998 A
5795958 Rao et al. Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5797931 Bito et al. Aug 1998 A
5797933 Snow et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5810776 Bacich et al. Sep 1998 A
5810845 Yoon Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810851 Yoon Sep 1998 A
5814052 Nakao et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5827298 Hart et al. Oct 1998 A
5830125 Scribner et al. Nov 1998 A
5830221 Stein et al. Nov 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5843167 Dwyer et al. Dec 1998 A
5845657 Carberry et al. Dec 1998 A
5853421 Leschinsky et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855312 Toledano Jan 1999 A
5855576 LeVeen et al. Jan 1999 A
5858082 Cruz et al. Jan 1999 A
5860991 Klein et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5861043 Carn Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868755 Kanner et al. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5868763 Spence et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5871501 Leschinsky et al. Feb 1999 A
5871525 Edwards et al. Feb 1999 A
5873876 Christy Feb 1999 A
5873891 Sohn Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5891088 Thompson et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5902310 Foerster et al. May 1999 A
5904697 Gifford, III et al. May 1999 A
5906620 Nakao et al. May 1999 A
5906631 Imran May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5910155 Ratcliff et al. Jun 1999 A
5919207 Taheri Jul 1999 A
5922009 Epstein et al. Jul 1999 A
5928231 Klein et al. Jul 1999 A
5928251 Aranyi et al. Jul 1999 A
5935147 Kensey et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944728 Bates Aug 1999 A
5947999 Groiso Sep 1999 A
5948001 Larsen Sep 1999 A
5951518 Licata et al. Sep 1999 A
5951547 Gough et al. Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5951589 Epstein et al. Sep 1999 A
5957900 Ouchi Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5957940 Tanner et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972009 Fortier et al. Oct 1999 A
5972034 Hofmann et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5976174 Ruiz Nov 1999 A
5980517 Gough Nov 1999 A
5984934 Ashby et al. Nov 1999 A
5984948 Hasson Nov 1999 A
5984949 Levin Nov 1999 A
5984950 Cragg et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993468 Rygaard Nov 1999 A
5993476 Groiso Nov 1999 A
6001110 Adams Dec 1999 A
6004341 Zhu et al. Dec 1999 A
6007563 Nash et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010517 Baccaro Jan 2000 A
6013084 Ken et al. Jan 2000 A
6015815 Mollison Jan 2000 A
6019779 Thorud et al. Feb 2000 A
6022372 Kontos Feb 2000 A
6024747 Kontos Feb 2000 A
6024750 Mastri Feb 2000 A
6024756 Huebsch et al. Feb 2000 A
6030364 Durgin et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6033427 Lee Mar 2000 A
6036703 Evans et al. Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6045570 Epstein et al. Apr 2000 A
6048358 Barak Apr 2000 A
6056744 Edwards May 2000 A
6056768 Cates et al. May 2000 A
6056769 Epstein et al. May 2000 A
6056770 Epstein et al. May 2000 A
6059719 Yamamoto et al. May 2000 A
6059800 Hart et al. May 2000 A
6059825 Hobbs et al. May 2000 A
6063085 Tay et al. May 2000 A
6063114 Nash et al. May 2000 A
6068603 Suzuki May 2000 A
6071300 Brenneman et al. Jun 2000 A
6077281 Das Jun 2000 A
6077291 Das Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6080183 Tsugita et al. Jun 2000 A
6083242 Cook Jul 2000 A
6090130 Nash et al. Jul 2000 A
6095155 Criscuolo Aug 2000 A
6102271 Longo et al. Aug 2000 A
6110184 Weadock Aug 2000 A
6113610 Poncet Sep 2000 A
6113612 Swanson et al. Sep 2000 A
6117125 Rothbarth et al. Sep 2000 A
6117148 Ravo Sep 2000 A
6117157 Tekulve Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6120513 Bailey et al. Sep 2000 A
6120524 Taheri Sep 2000 A
6126675 Shchervinsky et al. Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6143004 Davis et al. Nov 2000 A
6146385 Torrie et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6152936 Christy et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6161263 Anderson Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6171277 Ponzi Jan 2001 B1
6171329 Shaw et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6178355 Williams et al. Jan 2001 B1
6179849 Yencho et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6193708 Ken et al. Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6200329 Fung et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6206895 Levinson Mar 2001 B1
6206913 Yencho et al. Mar 2001 B1
6206931 Cook et al. Mar 2001 B1
6210407 Webster Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6221084 Fleenor Apr 2001 B1
6221102 Baker et al. Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6254617 Spence et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6267773 Gadberry et al. Jul 2001 B1
6273903 Wilk Aug 2001 B1
6277140 Ginn et al. Aug 2001 B2
6280460 Bolduc et al. Aug 2001 B1
6287322 Zhu et al. Sep 2001 B1
6296657 Brucker Oct 2001 B1
6302898 Edwards et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306081 Ishikawa et al. Oct 2001 B1
6309416 Swanson et al. Oct 2001 B1
6315782 Chu et al. Nov 2001 B1
6319258 McAllen, III et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6329386 Mollison Dec 2001 B1
6334865 Redmond et al. Jan 2002 B1
6348064 Kanner Feb 2002 B1
6355052 Neuss et al. Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6375671 Kobayashi et al. Apr 2002 B1
D457958 Dycus May 2002 S
6383208 Sancoff et al. May 2002 B1
6391048 Ginn et al. May 2002 B1
6395015 Borst et al. May 2002 B1
6397110 Kuzma May 2002 B1
6398752 Sweezer et al. Jun 2002 B1
6402765 Monassevitch et al. Jun 2002 B1
6409739 Nobles et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6421899 Zitnay Jul 2002 B1
6423054 Ouchi Jul 2002 B1
6425911 Akerfeldt et al. Jul 2002 B1
6428472 Haas Aug 2002 B1
6428548 Durgin et al. Aug 2002 B1
6443158 Lafontaine et al. Sep 2002 B1
6443963 Baldwin et al. Sep 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6450391 Kayan et al. Sep 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461364 Ginn et al. Oct 2002 B1
6461366 Seguin Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6488692 Spence et al. Dec 2002 B1
6500115 Krattiger et al. Dec 2002 B2
6506209 Ouchi Jan 2003 B2
6506210 Kanner Jan 2003 B1
6508828 Akerfeldt et al. Jan 2003 B1
6514280 Gilson Feb 2003 B1
6517498 Burbank et al. Feb 2003 B1
6517555 Caro Feb 2003 B1
6517569 Mikus et al. Feb 2003 B2
6527737 Kaneshige Mar 2003 B2
6533762 Kanner et al. Mar 2003 B2
6533812 Swanson et al. Mar 2003 B2
6537288 Vargas et al. Mar 2003 B2
6547806 Ding Apr 2003 B1
6551319 Lieberman Apr 2003 B2
6558349 Kirkman May 2003 B1
6569159 Edwards et al. May 2003 B1
6569173 Blatter et al. May 2003 B1
6569185 Ungs May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6578585 Stachowski et al. Jun 2003 B1
6582452 Coleman et al. Jun 2003 B2
6582482 Gillman et al. Jun 2003 B2
6596012 Akerfeldt et al. Jul 2003 B2
6599303 Peterson et al. Jul 2003 B1
6599311 Biggs et al. Jul 2003 B1
6602263 Swanson et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6613060 Adams et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6620165 Wellisz Sep 2003 B2
6623509 Ginn Sep 2003 B2
6623510 Carley et al. Sep 2003 B2
6626918 Ginn et al. Sep 2003 B1
6626919 Swanstrom Sep 2003 B1
6626920 Whayne Sep 2003 B2
6632197 Lyon Oct 2003 B2
6632238 Ginn et al. Oct 2003 B2
6634537 Chen Oct 2003 B2
6645205 Ginn Nov 2003 B2
6645225 Atkinson Nov 2003 B1
6652538 Kayan et al. Nov 2003 B2
6652556 VanTassel et al. Nov 2003 B1
6663633 Pierson, III Dec 2003 B1
6663655 Ginn et al. Dec 2003 B2
6669714 Coleman et al. Dec 2003 B2
6673083 Kayan et al. Jan 2004 B1
6676671 Robertson et al. Jan 2004 B2
6676685 Pedros et al. Jan 2004 B2
6679904 Gleeson et al. Jan 2004 B2
6685707 Roman et al. Feb 2004 B2
6689051 Nakada et al. Feb 2004 B2
6689147 Koster, Jr. Feb 2004 B1
6695867 Ginn et al. Feb 2004 B2
6699256 Logan et al. Mar 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6712837 Akerfeldt et al. Mar 2004 B2
6719777 Ginn et al. Apr 2004 B2
6726704 Loshakove et al. Apr 2004 B1
6736822 McClellan et al. May 2004 B2
6743195 Zucker Jun 2004 B2
6743243 Roy et al. Jun 2004 B1
6743259 Ginn Jun 2004 B2
6745079 King Jun 2004 B2
6746457 Dana et al. Jun 2004 B2
6746472 Frazier et al. Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6749622 McGuckin, Jr. et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755842 Kanner et al. Jun 2004 B2
6767356 Kanner et al. Jul 2004 B2
6776785 Yencho et al. Aug 2004 B1
6780197 Roe et al. Aug 2004 B2
6786915 Akerfeldt et al. Sep 2004 B2
6790218 Jayaraman Sep 2004 B2
6790220 Morris et al. Sep 2004 B2
6837893 Miller Jan 2005 B2
6837906 Ginn Jan 2005 B2
6846319 Ginn et al. Jan 2005 B2
6849078 Durgin et al. Feb 2005 B2
6860895 Akerfeldt et al. Mar 2005 B1
6890343 Ginn et al. May 2005 B2
6896687 Dakov May 2005 B2
6896692 Ginn et al. May 2005 B2
6904647 Byers, Jr. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6926731 Coleman et al. Aug 2005 B2
6929634 Dorros et al. Aug 2005 B2
6942641 Seddon Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6942691 Chuter Sep 2005 B1
6964668 Modesitt et al. Nov 2005 B2
6969397 Ginn Nov 2005 B2
6984238 Gifford et al. Jan 2006 B2
6989003 Wing et al. Jan 2006 B2
6989016 Tallarida et al. Jan 2006 B2
7001398 Carley et al. Feb 2006 B2
7001400 Modesitt et al. Feb 2006 B1
7008435 Cummins Mar 2006 B2
7008439 Janzen et al. Mar 2006 B1
7025776 Houser et al. Apr 2006 B1
7033379 Peterson Apr 2006 B2
7048747 Arcia et al. May 2006 B2
7060084 Loshakove et al. Jun 2006 B1
7063661 Okada Jun 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7074232 Kanner et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083635 Ginn Aug 2006 B2
7087064 Hyde Aug 2006 B1
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7112225 Ginn Sep 2006 B2
7122002 Okada Oct 2006 B2
7144411 Ginn et al. Dec 2006 B2
7147646 Dana et al. Dec 2006 B2
7163551 Anthony et al. Jan 2007 B2
7169158 Sniffin et al. Jan 2007 B2
7169164 Borillo et al. Jan 2007 B2
7211101 Carley et May 2007 B2
7229452 Kayan Jun 2007 B2
7261716 Strobel et al. Aug 2007 B2
7270672 Singer Sep 2007 B1
7306614 Weller et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7316704 Bagaoisan et al. Jan 2008 B2
7316706 Bloom et al. Jan 2008 B2
7322995 Buckman et al. Jan 2008 B2
7326230 Ravikumar Feb 2008 B2
7331979 Khosravi et al. Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7338514 Wahr et al. Mar 2008 B2
D566272 Walburg et al. Apr 2008 S
7361178 Hearn et al. Apr 2008 B2
7361183 Ginn Apr 2008 B2
7361185 O'Malley et al. Apr 2008 B2
7393363 Ginn Jul 2008 B2
7396359 Derowe et al. Jul 2008 B1
7431727 Cole et al. Oct 2008 B2
7431729 Chanduszko Oct 2008 B2
7465286 Patterson et al. Dec 2008 B2
7507200 Okada Mar 2009 B2
7533790 Knodel et al. May 2009 B1
7582103 Young et al. Sep 2009 B2
7582104 Corcoran et al. Sep 2009 B2
7597706 Kanner et al. Oct 2009 B2
7618427 Ortiz et al. Nov 2009 B2
7622628 Bergin et al. Nov 2009 B2
7645285 Cosgrove et al. Jan 2010 B2
7648493 Forsberg et al. Jan 2010 B2
D611144 Reynolds Mar 2010 S
7678135 Maahs et al. Mar 2010 B2
7727249 Rahmani Jun 2010 B2
7731655 Smith et al. Jun 2010 B2
7749249 Gelbart et al. Jul 2010 B2
7780696 Daniel et al. Aug 2010 B2
7799042 Williamson et al. Sep 2010 B2
7806904 Carley et al. Oct 2010 B2
7819895 Ginn et al. Oct 2010 B2
7841502 Walberg et al. Nov 2010 B2
7842068 Ginn Nov 2010 B2
7850709 Cummins et al. Dec 2010 B2
7850797 Carley et al. Dec 2010 B2
7854810 Carley et al. Dec 2010 B2
7857828 Jabba et al. Dec 2010 B2
7867249 Palermo et al. Jan 2011 B2
7879071 Carley et al. Feb 2011 B2
7887555 Carley et al. Feb 2011 B2
7887563 Cummins et al. Feb 2011 B2
7901428 Ginn et al. Mar 2011 B2
7905900 Palermo Mar 2011 B2
7918873 Cummins et al. Apr 2011 B2
7931669 Ginn et al. Apr 2011 B2
7931671 Tenerz Apr 2011 B2
7967842 Bakos Jun 2011 B2
8007504 Zenati et al. Aug 2011 B2
8007512 Ginn et al. Aug 2011 B2
8083768 Ginn et al. Dec 2011 B2
8103327 Harlev et al. Jan 2012 B2
8105352 Egnelöv Jan 2012 B2
8128644 Carley et al. Mar 2012 B2
8182497 Carley et al. May 2012 B2
8192459 Cummins et al. Jun 2012 B2
8202283 Carley et al. Jun 2012 B2
8202293 Ellingwood et al. Jun 2012 B2
8202294 Jabba et al. Jun 2012 B2
8226666 Zarbatany et al. Jul 2012 B2
8226681 Clark et al. Jul 2012 B2
8236026 Carley et al. Aug 2012 B2
8257390 Carley et al. Sep 2012 B2
8303624 Fortson Nov 2012 B2
8323312 Clark Dec 2012 B2
8398656 Palermo et al. Mar 2013 B2
8398676 Roorda et al. Mar 2013 B2
8469969 Kear et al. Jun 2013 B2
8469995 Cummins et al. Jun 2013 B2
8480687 Ducharme et al. Jul 2013 B2
8486092 Carley et al. Jul 2013 B2
8486108 Carley et al. Jul 2013 B2
20010007077 Ginn et al. Jul 2001 A1
20010031972 Robertson et al. Oct 2001 A1
20010031973 Nobles et al. Oct 2001 A1
20010044639 Levinson Nov 2001 A1
20010046518 Sawhney Nov 2001 A1
20010047180 Grudem et al. Nov 2001 A1
20010053909 Nakada et al. Dec 2001 A1
20020022822 Cragg et al. Feb 2002 A1
20020026215 Redmond et al. Feb 2002 A1
20020026216 Grimes Feb 2002 A1
20020029050 Gifford, III et al. Mar 2002 A1
20020038127 Blatter et al. Mar 2002 A1
20020042622 Vargas et al. Apr 2002 A1
20020049427 Wiener et al. Apr 2002 A1
20020058960 Hudson et al. May 2002 A1
20020062104 Ashby et al. May 2002 A1
20020077657 Ginn et al. Jun 2002 A1
20020082641 Ginn et al. Jun 2002 A1
20020095181 Beyar Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020106409 Sawhney et al. Aug 2002 A1
20020107542 Kanner et al. Aug 2002 A1
20020151921 Kanner et al. Oct 2002 A1
20020151963 Brown et al. Oct 2002 A1
20020183786 Girton Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020188275 McGuckin, Jr. Dec 2002 A1
20020198562 Akerfeldt et al. Dec 2002 A1
20020198589 Leong Dec 2002 A1
20030004543 Gleeson et al. Jan 2003 A1
20030009180 Hinchliffe et al. Jan 2003 A1
20030018358 Saadat Jan 2003 A1
20030023248 Parodi Jan 2003 A1
20030032981 Kanner et al. Feb 2003 A1
20030033006 Phillips et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030055455 Yang et al. Mar 2003 A1
20030060846 Egnelov et al. Mar 2003 A1
20030065358 Frecker et al. Apr 2003 A1
20030083679 Grudem et al. May 2003 A1
20030093096 McGuckin et al. May 2003 A1
20030093108 Avellanet et al. May 2003 A1
20030097140 Kanner May 2003 A1
20030109890 Kanner et al. Jun 2003 A1
20030125766 Ding Jul 2003 A1
20030139819 Beer et al. Jul 2003 A1
20030144695 McGuckin, Jr. et al. Jul 2003 A1
20030158577 Pantages et al. Aug 2003 A1
20030158578 Pantages et al. Aug 2003 A1
20030187457 Weber Oct 2003 A1
20030195504 Tallarida et al. Oct 2003 A1
20030208211 Kortenbach Nov 2003 A1
20030233095 Urbanski et al. Dec 2003 A1
20040009205 Sawhney Jan 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040059376 Breuniger Mar 2004 A1
20040068273 Fariss et al. Apr 2004 A1
20040078053 Berg et al. Apr 2004 A1
20040082906 Tallarida et al. Apr 2004 A1
20040087985 Loshakove et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040092964 Modesitt et al. May 2004 A1
20040092968 Caro et al. May 2004 A1
20040092973 Chanduszko et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040093027 Fabisiak et al. May 2004 A1
20040097978 Modesitt et al. May 2004 A1
20040098044 Van de Moer et al. May 2004 A1
20040106980 Solovay et al. Jun 2004 A1
20040116943 Brandt et al. Jun 2004 A1
20040122349 Lafontaine et al. Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040143290 Brightbill Jul 2004 A1
20040143291 Corcoran et al. Jul 2004 A1
20040158127 Okada Aug 2004 A1
20040158287 Cragg et al. Aug 2004 A1
20040158309 Wachter et al. Aug 2004 A1
20040167511 Buehlmann et al. Aug 2004 A1
20040167570 Pantages Aug 2004 A1
20040191277 Sawhney et al. Sep 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040225194 Smith et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040243216 Gregorich Dec 2004 A1
20040249412 Snow et al. Dec 2004 A1
20040254591 Kanner et al. Dec 2004 A1
20040267193 Bagaoisan et al. Dec 2004 A1
20040267308 Bagaoisan et al. Dec 2004 A1
20040267312 Kanner et al. Dec 2004 A1
20050010248 Lafontaine Jan 2005 A1
20050033359 Dycus Feb 2005 A1
20050038460 Jayaraman Feb 2005 A1
20050038500 Boylan et al. Feb 2005 A1
20050059982 Zung et al. Mar 2005 A1
20050075654 Kelleher Apr 2005 A1
20050075665 Brenzel et al. Apr 2005 A1
20050085851 Fiehler et al. Apr 2005 A1
20050085854 Ginn Apr 2005 A1
20050085855 Forsberg Apr 2005 A1
20050090859 Ravlkumar Apr 2005 A1
20050119695 Carley et al. Jun 2005 A1
20050121042 Belhe et al. Jun 2005 A1
20050149065 Modesitt Jul 2005 A1
20050149117 Khosravi et al. Jul 2005 A1
20050152949 Hotchkiss et al. Jul 2005 A1
20050154401 Weldon et al. Jul 2005 A1
20050165357 McGuckin et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050177189 Ginn et al. Aug 2005 A1
20050187564 Jayaraman Aug 2005 A1
20050203552 Laufer et al. Sep 2005 A1
20050216057 Coleman et al. Sep 2005 A1
20050222614 Ginn et al. Oct 2005 A1
20050228443 Yassinzadeh Oct 2005 A1
20050234396 Forsberg et al. Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050256532 Nayak et al. Nov 2005 A1
20050261708 Pasricha et al. Nov 2005 A1
20050267528 Ginn et al. Dec 2005 A1
20050273136 Belef et al. Dec 2005 A1
20050273137 Ginn Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060030867 Zadno Feb 2006 A1
20060034930 Khosravi et al. Feb 2006 A1
20060047313 Khanna et al. Mar 2006 A1
20060058844 White et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060089635 Young et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060100664 Pai et al. May 2006 A1
20060106420 Dolan et al. May 2006 A1
20060142784 Kontos Jun 2006 A1
20060190014 Ginn et al. Aug 2006 A1
20060190036 Wendel et al. Aug 2006 A1
20060190037 Ginn et al. Aug 2006 A1
20060195123 Ginn et al. Aug 2006 A1
20060195124 Ginn et al. Aug 2006 A1
20060206146 Tenerz Sep 2006 A1
20060253037 Ginn et al. Nov 2006 A1
20060253072 Pai et al. Nov 2006 A1
20060259049 Harada et al. Nov 2006 A1
20060287674 Ginn et al. Dec 2006 A1
20060293698 Douk Dec 2006 A1
20070005093 Cox Jan 2007 A1
20070010853 Ginn et al. Jan 2007 A1
20070021778 Carly Jan 2007 A1
20070027525 Ben-Muvhar Feb 2007 A1
20070049967 Sibbitt, Jr. et al. Mar 2007 A1
20070049968 Sibbitt et al. Mar 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070060895 Sibbitt, Jr. et al. Mar 2007 A1
20070060950 Khosravi et al. Mar 2007 A1
20070060951 Shannon Mar 2007 A1
20070083230 Javois Apr 2007 A1
20070083231 Lee Apr 2007 A1
20070112304 Voss May 2007 A1
20070112365 Hilal et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070123816 Zhu et al. May 2007 A1
20070123817 Khosravi et al. May 2007 A1
20070123936 Goldin et al. May 2007 A1
20070172430 Brito et al. Jul 2007 A1
20070179527 Eskuri et al. Aug 2007 A1
20070185530 Chin-Chen et al. Aug 2007 A1
20070198058 Gelbart et al. Aug 2007 A1
20070203506 Sibbitt, Jr. et al. Aug 2007 A1
20070203507 McLaughlin et al. Aug 2007 A1
20070213747 Monassevitch et al. Sep 2007 A1
20070225755 Preinitz et al. Sep 2007 A1
20070225756 Preinitz et al. Sep 2007 A1
20070225757 Preinitz et al. Sep 2007 A1
20070225758 Preinitz et al. Sep 2007 A1
20070239209 Fallman Oct 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070270904 Ginn Nov 2007 A1
20070275036 Green, III et al. Nov 2007 A1
20070276488 Wachter et al. Nov 2007 A1
20070282352 Carley et al. Dec 2007 A1
20070282373 Ashby et al. Dec 2007 A1
20080004636 Walberg et al. Jan 2008 A1
20080004640 Ellingwood Jan 2008 A1
20080009794 Bagaoisan et al. Jan 2008 A1
20080033459 Shafi et al. Feb 2008 A1
20080045979 Ma Feb 2008 A1
20080058839 Nobles et al. Mar 2008 A1
20080065151 Ginn Mar 2008 A1
20080065152 Carley Mar 2008 A1
20080086075 Isik et al. Apr 2008 A1
20080093414 Bender et al. Apr 2008 A1
20080114378 Matsushita May 2008 A1
20080114395 Mathisen et al. May 2008 A1
20080177288 Carlson Jul 2008 A1
20080210737 Ginn et al. Sep 2008 A1
20080221616 Ginn et al. Sep 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243182 Bates et al. Oct 2008 A1
20080269801 Coleman et al. Oct 2008 A1
20080269802 Coleman et al. Oct 2008 A1
20080272173 Coleman et al. Nov 2008 A1
20080287967 Andreas et al. Nov 2008 A1
20080287988 Smith et al. Nov 2008 A1
20080300628 Ellingwood Dec 2008 A1
20080312686 Ellingwood Dec 2008 A1
20080312740 Wachter et al. Dec 2008 A1
20090054912 Heanue et al. Feb 2009 A1
20090088794 LaFontaine Apr 2009 A1
20090105728 Noda et al. Apr 2009 A1
20090112306 Bonsignore et al. Apr 2009 A1
20090137900 Bonner et al. May 2009 A1
20090157101 Reyes et al. Jun 2009 A1
20090157102 Reynolds et al. Jun 2009 A1
20090171388 Dave et al. Jul 2009 A1
20090187215 Mackiewicz et al. Jul 2009 A1
20090216267 Willard et al. Aug 2009 A1
20090227938 Fasching et al. Sep 2009 A1
20090230168 Coleman et al. Sep 2009 A1
20090254119 Sibbitt, Jr. et al. Oct 2009 A1
20090287244 Kokish Nov 2009 A1
20090306681 Del Nido et al. Dec 2009 A1
20090312789 Kassab et al. Dec 2009 A1
20100042144 Bennett Feb 2010 A1
20100114156 Mehl May 2010 A1
20100130965 Sibbitt et al. May 2010 A1
20100168790 Clark Jul 2010 A1
20100179567 Voss et al. Jul 2010 A1
20100179571 Voss Jul 2010 A1
20100179572 Voss et al. Jul 2010 A1
20100179589 Roorda et al. Jul 2010 A1
20100179590 Fortson et al. Jul 2010 A1
20100185234 Fortson et al. Jul 2010 A1
20100217132 Ellingwood et al. Aug 2010 A1
20100234884 Lafontaine et al. Sep 2010 A1
20100249828 Mavani et al. Sep 2010 A1
20110054492 Clark Mar 2011 A1
20110066163 Cho et al. Mar 2011 A1
20110066164 Walberg et al. Mar 2011 A1
20110071565 Ginn Mar 2011 A1
20110106148 Ginn et al. May 2011 A1
20110137340 Cummins Jun 2011 A1
20110144691 Cummins Jun 2011 A1
20110166584 Palermo et al. Jul 2011 A1
20110178548 Tenerz Jul 2011 A1
20110218568 Voss Sep 2011 A1
20110238089 Reyes et al. Sep 2011 A1
20110270282 Lemke Nov 2011 A1
20110288563 Gianotti et al. Nov 2011 A1
20110313452 Carley et al. Dec 2011 A1
20120029555 Fortson et al. Feb 2012 A1
20120035630 Roorda Feb 2012 A1
20120143216 Voss Jun 2012 A1
20120209317 Oepen Aug 2012 A1
20120245623 Kariniemi et al. Sep 2012 A1
20120245626 Ellingwood et al. Sep 2012 A1
20120255655 Carley et al. Oct 2012 A1
20120296372 Ziobro Nov 2012 A1
20120296374 Ziobro et al. Nov 2012 A1
20130006274 Walberg et al. Jan 2013 A1
20130138144 Yibarren May 2013 A1
Foreign Referenced Citations (147)
Number Date Country
2003297432 Jul 2004 AU
2 339 060 Feb 2000 CA
197 11 288 Oct 1998 DE
29723736 Apr 1999 DE
19859952 Feb 2000 DE
102006056283 Jun 2008 DE
0 386 361 Sep 1990 EP
0 534 696 Mar 1993 EP
0 621 032 Oct 1994 EP
0 756 851 Feb 1997 EP
0 774 237 May 1997 EP
0 858 776 Aug 1998 EP
0 941 697 Sep 1999 EP
1 867 287 Dec 2007 EP
2 443 238 Jul 1980 FR
2 715 290 Jul 1995 FR
2 722 975 Feb 1996 FR
2 768 324 Mar 1999 FR
2768324 Mar 1999 FR
1 358 466 Jul 1974 GB
2 075 144 Nov 1981 GB
2 397 240 Jul 2004 GB
S20000722 Oct 2001 IE
S20000724 Oct 2001 IE
S20010547 Jul 2002 IE
S20010815 Jul 2002 IE
S20010748 Aug 2002 IE
S20010749 Aug 2002 IE
S20020452 Dec 2002 IE
S20020664 Feb 2003 IE
S20020665 Feb 2003 IE
S20020451 Jul 2003 IE
S20020552 Jul 2003 IE
S20030424 Dec 2003 IE
S20030490 Jan 2004 IE
S20040368 Nov 2005 IE
S20050342 Nov 2005 IE
58-181006 Dec 1983 JP
12 74750 Nov 1989 JP
11500642 Aug 1997 JP
2000014634 Jan 2000 JP
2000102546 Apr 2000 JP
2005218868 Aug 2005 JP
9302140 Jul 1995 NL
171425 Apr 1997 PL
2086192 Aug 1997 RU
495067 Dec 1975 SU
912155 Mar 1982 SU
1243708 Jul 1986 SU
1324650 Jul 1987 SU
1405828 Jun 1988 SU
1456109 Feb 1989 SU
1560133 Apr 1990 SU
WO 9624291 Aug 1996 WO
WO 9640356 Dec 1996 WO
WO 9707741 Mar 1997 WO
WO 9720505 Jun 1997 WO
WO 9727897 Aug 1997 WO
WO 9806346 Feb 1998 WO
WO 9806448 Feb 1998 WO
WO 9816161 Apr 1998 WO
WO 9817179 Apr 1998 WO
WO 9818389 May 1998 WO
WO 9824374 Jun 1998 WO
WO 9825508 Jun 1998 WO
WO 9858591 Dec 1998 WO
WO 9921491 May 1999 WO
WO 9940849 Aug 1999 WO
WO 9960941 Dec 1999 WO
WO 9962408 Dec 1999 WO
WO 9962415 Dec 1999 WO
WO 0006029 Feb 2000 WO
WO 0007505 Feb 2000 WO
WO 0007640 Feb 2000 WO
WO 0027311 May 2000 WO
WO 0027313 May 2000 WO
WO 0056223 Sep 2000 WO
WO 0056226 Sep 2000 WO
WO 0056227 Sep 2000 WO
WO 0056228 Sep 2000 WO
WO 0071032 Nov 2000 WO
WO 0121058 Mar 2001 WO
WO 0135832 May 2001 WO
WO 0147594 Jul 2001 WO
WO 0149186 Jul 2001 WO
WO 0191628 Dec 2001 WO
WO 0219915 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219922 Mar 2002 WO
WO 0219924 Mar 2002 WO
WO 0228286 Apr 2002 WO
WO 0238055 May 2002 WO
WO 0245593 Jun 2002 WO
WO 0245594 Jun 2002 WO
WO 02062234 Aug 2002 WO
WO 02098302 Dec 2002 WO
WO 03013363 Feb 2003 WO
WO 03013364 Feb 2003 WO
WO 03047434 Jun 2003 WO
WO 03071955 Sep 2003 WO
WO 03071956 Sep 2003 WO
WO 03071957 Sep 2003 WO
WO 03094748 Nov 2003 WO
WO 03101310 Dec 2003 WO
WO 2004004578 Jan 2004 WO
WO 2004012602 Feb 2004 WO
WO 2004060169 Jul 2004 WO
WO 2004069054 Aug 2004 WO
WO 2005000126 Jan 2005 WO
WO 2005006990 Jan 2005 WO
WO 2005041782 May 2005 WO
WO 2005063129 Jul 2005 WO
WO 2005082256 Sep 2005 WO
WO 2005092204 Oct 2005 WO
WO 2005110240 Nov 2005 WO
WO 2005112782 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005115521 Dec 2005 WO
WO 2006000514 Jan 2006 WO
WO 2006026116 Mar 2006 WO
WO 2006052611 May 2006 WO
WO 2006052612 May 2006 WO
WO 2006078578 Jul 2006 WO
WO 2006083889 Aug 2006 WO
WO 2006115901 Nov 2006 WO
WO 2006115904 Nov 2006 WO
WO 2006118877 Nov 2006 WO
WO 2007005585 Jan 2007 WO
WO 2007025014 Mar 2007 WO
WO 2007025017 Mar 2007 WO
WO 2007025018 Mar 2007 WO
WO 2007025019 Mar 2007 WO
WO 2007081836 Jul 2007 WO
WO 2007088069 Aug 2007 WO
WO 2008031102 Mar 2008 WO
WO 2008036384 Mar 2008 WO
WO 2008074027 Jun 2008 WO
WO 2008150915 Dec 2008 WO
WO 2009079091 Jun 2009 WO
WO 2010031050 Mar 2010 WO
WO 2010062693 Jun 2010 WO
WO 2010081101 Jul 2010 WO
WO 2010081102 Jul 2010 WO
WO 2010081103 Jul 2010 WO
WO 2010081106 Jul 2010 WO
200100527 Jan 2001 ZA
200100528 Jan 2001 ZA
Non-Patent Literature Citations (542)
Entry
U.S. Appl. No. 09/610,128, filed Jul. 5, 2000, Kerievsky.
U.S. Appl. No. 09/866,551, filed May 25, 2001, Ginn.
U.S. Appl. No. 12/113,092, filed Apr. 30, 2008, Ginn et al.
U.S. Appl. No. 13/017,636, filed Jan. 31, 2011, Carley et al.
U.S. Appl. No. 13/791,829, filed Mar. 8, 2013, Roorda et al.
U.S. Appl. No. 13/791,846, filed Mar. 8, 2013, Palermo.
U.S. Appl. No. 13/898,202, filed May 20, 2013, Walberg et al.
U.S. Appl. No. 60/693,531, filed Jun. 24, 2005, Carly.
U.S. Appl. No. 60/696,069, filed Jul. 1, 2005, Pantages et al.
U.S. Appl. No. 60/793,444, filed Apr. 20, 2006, Jones et al.
U.S. Appl. No. 60/946,026, filed Jun. 25, 2007, Ellingwood.
U.S. Appl. No. 60/946,030, filed Jun. 25, 2007, Voss et al.
U.S. Appl. No. 60/946,042, filed Jun. 25, 2007, Ellingwood et al.
U.S. Appl. No. 61/015,144, filed Dec. 19, 2007, Mackiewicz et al.
U.S. Appl. No. 61/109,822, filed Oct. 30, 2008, Mehl et al.
U.S. Appl. No. 61/139,995, filed Dec. 22, 2008, Clark.
U.S. Appl. No. 61/141,597, filed Dec. 30, 2008, Clark.
U.S. Appl. No. 61/143,748, filed Jan. 9, 2009, Mehl et al.
U.S. Appl. No. 61/143,751, filed Jan. 9, 2009, Voss et al.
U.S. Appl. No. 61/145,468, filed Jan. 16, 2009, Fortson, et al.
“Hand tool for forming telephone connections—comprises pliers with reciprocably driven ram crimping clip around conductors against anvil”, Derwent-ACC-No. 1978-B8090A. (Jan. 10, 1978).
Database WPI; Section PQ, Week 200120; Derwent Publications Ltd., London GB; AN 2001-203165; XP002199926 & ZA 200 100 528 A (Anthony T), Feb. 28, 2001 abstract.
Deepak Mital et al, Renal Transplantation Without Sutures Using the Vascular Clipping System for Renal Artery and Vein Anastomosis—A New Technique, Transplantation Issue, Oct. 1996, pp. 1171-1173, vol. 62—No. 8, Section of Transplantation Surgery, Department of General Surgery, Rush-Presbyterian/St. Luke's Medical Center, Chigago, IL.
DL Wessel et al, Outpatient closure of the patent ductus arteriosus, Circulation, May 1988, pp. 1068-1071, vol. 77—No. 5, Department of Anesthesia, Children's Hospital, Boston, MA.
E Pikoulis et al, Arterial reconstruction with vascular clips is safe and quicker than sutured repair, Cardiovascular Surgery, Dec. 1998, pp. 573-578(6), vol. 6—No. 6, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD.
G Gershony et al, Novel vascular sealing device for closure of percutaneous vascular access sites, Cathet. Cardiovasc. Diagn., Jan. 1998, pp. 82-88, vol. 45.
H De Swart et al, A new hemostatic puncture closure device for the immediate sealing of arterial puncture sites, American journal of cardiology, Aug. 1993, pp. 445-449, vol. 72—No. 5, Department of Cardiology, Academic Hospital Maastricht, The Netherlands.
Harrith M. Hasson M.D. , Laparoscopic Cannula Cone with Means for Cannula Stabilization and Wound Closure, The Journal of the American Association of Gynecologic Laparoscopists, May 1998, pp. 183-185, vol. 5—No. 2, Division of Obstetrics and Gynecology, University of Chicago, Chigago, IL.
J. Findlay et al, Carotid Arteriotomy Closure Using a Vascular Clip System, Neurosurgery, Mar. 1998, pp. 550-554, vol. 42—No. 3, Division of Neurosurgery, University of Alberta, Edmonton, Canada.
Jeremy L Gilbert Phd, Wound Closure Biomaterials and Devices, Shock., Mar. 1999, p. 226, vol. 11—No. 3, Institution Northwestern University (editorial review).
Jochen T. Cremer, MD, et al, Different approaches for minimally invasive closure of atrial septal defects, Ann. Thorac. Surg., Nov. 1998, pp. 1648-1652, vol. 67, a Division of Thoracic and Cardiovascular Surgery, Surgical Center, Hannover Medical School. Hannover, Germany.
K Narayanan et al, Simultaneous primary closure of four fasciotomy wounds in a single setting using the Sure-Closure device, Injury, Jul. 1996, pp. 449-451, vol. 27—No. 6, Department of Surgery, Mercy Hospital of Pittsburgh, PA.
Marshall A.C., Lock J.E., Structural and Compliant Anatomy of the Patent Foramen Ovale in Patients Undergoing Transcatheter Closure, Am Heart J Aug. 2000; 140(2); pp. 303-307.
MD Gonze et al, Complications associated with percutaneous closure devices, Conference: Annual Meeting of the Society for Clinical Vascular Surgery, The American journal of surgery, Mar. 1999, pp. 209-211, vol. 178, No. 3, Department of Surgery, Section of Vascular Surgery, Ochsner Medical Institutions, New Orleans, LA.
MD Hellinger et al, Effective peritoneal and fascial closure of abdominal trocar sites utilizing the Endo-Judge, J Laparoendosc Surg., Oct. 1996, pp. 329-332, vol. 6—No. 5, Orlando Regional Medical Center, FL.
Michael Gianturco, A Play on Catheterization, Forbes, Dec. 1996, p. 146, vol. 158—No. 15.
Inlet Medical Inc. Brochure, pp. 1-2, referencing OM Elashry et al, Comparative clinical study of port-closure techniques following laparoscopic surgery, Department of Surgery, Mallickrodt Institute of Radiography, J Am Coll Surg., Oct. 1996, pp. 335-344, vol. 183—No. 4.
P M N Werker, et al, Review of facilitated approaches to vascular anastomosis surgery, Conference: Utrecht MICBAG Workshop 2, The Annals of thoracic surgery, Apr. 1996, pp. S122-S127, vol. 63—No. 6, Department of Plastic, Reconstructive and Hand surgery, University Hospital Utrecht Netherlands Departments of Cardiology and Cardiopulmonary Surgery, Heart Lung Institute, Utrecht Netherlands.; Utrect University Hospital Utrecht Netherlands.
Peter Rhee MD et al, Use of Titanium Vascular Staples in Trauma, Journal of Trauma-Injury Infection & Critical Care, Dec. 1998, pp. 1097-1099, vol. 45—No. 6, Institution from the Department of Surgery, Washington Hospital Center, Washington DC, and Uniformed Services University of the Health Sciences, Bethesda, Maryland.
ProstarXL—Percutaneous Vascular Surgical Device, www.Archive.org, Jun. 1998, Original Publisher: http://prostar.com, may also be found at http://web.archive.org/web/19980630040429/www.perclose.com/html/prstrxl.html.
SA Beyer-Enke et al, Immediate sealing of arterial puncture site following femoropopliteal angioplasty: A prospective randomized trial, Cardiovascular and Interventional Radiology 1996, Nov.-Dec. 996, pp. 406-410, vol. 19—No. 6, Gen Hosp North, Dept Dianost & Intervent Radiol, Nurnberg, Germany (Reprint).
Scott Hensley, Closing Wounds. New Devices seal arterial punctures in double time, Modern Healthcare (United States), Mar. 23, 2008, p. 48.
Sigmund Silber et al, A novel vascular device for closure of percutaneous arterial access sites, The American Journal of Cardiology, Apr. 1999, pp. 1248-1252, vol. 83—No. 8.
Simonetta Blengino et al, A Randomized Study of the 8 French Hemostatic Puncture Closure Device vs Manual Compression After Coronary Interventions, Journal of the American College of Cardiology, Feb. 1995, p. 262A, vol. 25.—No. 2, Supplement 1.
Stretch Comb by Scunci, retrieved via internet at www.scunci.com/productdetail by examiner on Oct. 9, 2007, publication date unavailable.
Swee Lian Tan, MD, PhD, FACS, Explanation of Infected Hemostatic Puncture Closure Devices—A Case Report, Vascular and Endovascular Surgery, 1999, pp. 507-510, vol. 33—No. 5, Parkland Medical Center, Derry, New Hampshire.
SY Nakada et al, Comparison of newer laparoscopic port closure techniques in the porcine model, J Endourol, Oct. 1995, pp. 397-401, vol. 9—No. 5, Department of Surgery/Urology, University of Wisconsin Medical School, Madison.
Taber's Cyclopedic Medical Dictionary, 18th Ed. 1997, pp. 747 and 1420.
Thomas P. Baum RPA-C et al, Delayed Primary Closure Using Silastic Vessel Loops and Skin Staples: Description of the Technique and Case Reports, Annals of Plastic Surgery, Mar. 1999, pp. 337-340, vol. 42—No. 3, Institution Department of Plastic and Reconstructive Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
Tomoaki Hinohara, Percutaneous vascular surgery (Prostar® Plus and Techstar® for femoral artery site closure), Interventional Cardiology Newsletter, May-Jul. 1997, pp. 19-22, pp. 24-28, vol. 5—No. 3-4.
UT Aker et al, Immediate arterial hemostasis after cardiac catheterization: initial experience with a new puncture closure device, Cathet Cardiovasc Diagn, Mar. 1994, pp. 228-232, vol. 33—No. 3, Missouri Baptist Medical Center, St. Louis.
Wei Qu et al, An absorbable pinned-ring device for microvascular anastomosis of vein grafts: Experimental studies, Microsurgery 1999, Mar. 1999, pp. 128-134, vol. 19—No. 3, Department of Orthopaedic Surgery, Hiroshima University School of Medicine, Hiroshima, Japan.
William G. Kussmaul III MD, et al., Rapid arterial hemostasis and decreased access site complications after cardiac catheterization and angioplasty: Results of a randomized trial of a novel hemostatic device, Journal of the American College of Cardiology, Jun. 1995, pp. 1685-1692, vol. 25—No. 7.
U.S. Appl. No. 09/478,179, Nov. 6, 2000, Notice of Allowance.
U.S. Appl. No. 09/546,998, May 6, 2002, Notice of Allowance.
U.S. Appl. No. 09/610,238, Mar. 26, 2001, Notice of Allowance.
U.S. Appl. No. 09/610,238, Sep. 5, 2001, Office Action.
U.S. Appl. No. 09/610,238, Feb. 11, 2002, Notice of Allowance.
U.S. Appl. No. 09/680,837, Jul. 9, 2002, Office Action.
U.S. Appl. No. 09/680,837, Nov. 6, 2002, Office Action.
U.S. Appl. No. 09/680,837, Mar. 25, 2003, Office Action.
U.S. Appl. No. 09/680,837, Jun. 16, 2003, Notice of Allowance.
U.S. Appl. No. 09/732,178, Aug. 1, 2002, Office Action.
U.S. Appl. No. 09/732,178, Dec. 24, 2002, Office Action.
U.S. Appl. No. 09/732,178, Jun. 10, 2003, Office Action.
U.S. Appl. No. 09/732,178, Jul. 3, 2003, Office Action.
U.S. Appl. No. 09/732,178, Nov. 17, 2003, Notice of Allowance.
U.S. Appl. No. 09/732,835, Sep. 11, 2003, Office Action.
U.S. Appl. No. 09/732,835, Feb. 9, 2004, Office Action.
U.S. Appl. No. 09/732,835, Mar. 17, 2004, Notice of Allowance.
U.S. Appl. No. 09/764,813, Mar. 26, 2001, Office Action.
U.S. Appl. No. 09/764,813, Jun. 4, 2001, Notice of Allowance.
U.S. Appl. No. 09/933,299, Feb. 26, 2003, Office Action.
U.S. Appl. No. 09/933,299, Jun. 16, 2003, Notice of Allowance.
U.S. Appl. No. 09/948,813, Jan. 31, 2003, Notice of Allowance.
U.S. Appl. No. 09/949,398, Mar. 4, 2003, Office Action.
U.S. Appl. No. 09/949,398, Jul. 28, 2003, Notice of Allowance.
U.S. Appl. No. 09/949,438, Dec. 17, 2002, Office Action.
U.S. Appl. No. 09/949,438, Apr. 21, 2003, Notice of Allowance.
U.S. Appl. No. 10/006,400, Aug. 27, 2004, Office Action.
U.S. Appl. No. 10/006,400, Feb. 23, 2005, Office Action.
U.S. Appl. No. 10/006,400, Apr. 11, 2005, Office Action.
U.S. Appl. No. 10/006,400, Jul. 27, 2005, Office Action.
U.S. Appl. No. 10/006,400, Mar. 6, 2006, Office Action.
U.S. Appl. No. 10/006,400, May 24, 2006, Office Action.
U.S. Appl. No. 10/006,400, Oct. 26, 2006, Office Action.
U.S. Appl. No. 10/006,400, Apr. 19, 2007, Office Action.
U.S. Appl. No. 10/006,400, Apr. 2, 2008, Office Action.
U.S. Appl. No. 10/006,400, Jan. 2, 2009, Office Action.
U.S. Appl. No. 10/006,400, Jul. 9, 2009, Notice of Allowance.
U.S. Appl. No. 10/006,400, Jan. 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/006,400, Apr. 27, 2010, Notice of Allowance.
U.S. Appl. No. 10/006,400, Aug. 2, 2010, Notice of Allowance.
U.S. Appl. No. 10/081,717, Sep. 29, 2003, Notice of Allowance.
U.S. Appl. No. 10/081,723, Sep. 29, 2004, Office Action.
U.S. Appl. No. 10/081,723, May 13, 2005, Notice of Allowance.
U.S. Appl. No. 10/081,725, Feb. 9, 2004, Notice of Allowance.
U.S. Appl. No. 10/081,725, Apr. 13, 2004, Office Action.
U.S. Appl. No. 10/081,726, Apr. 11, 2003, Notice of Allowance.
U.S. Appl. No. 10/081,726, Jun. 9, 2003, Notice of Allowance.
U.S. Appl. No. 10/147,774, Nov. 4, 2004, Office Action.
U.S. Appl. No. 10/147,774, May 4, 2005, Office Action.
U.S. Appl. No. 10/147,774, Oct. 18, 2005, Office Action.
U.S. Appl. No. 10/147,774, Apr. 18, 2007, Notice of Allowance.
U.S. Appl. No. 10/147,774, Sep. 27, 2007, Notice of Allowance.
U.S. Appl. No. 10/147,774, Feb. 4, 2008, Notice of Allowance.
U.S. Appl. No. 10/147,774, Jun. 30, 2008, Office Action.
U.S. Appl. No. 10/147,774, Mar. 18, 2009, Office Action.
U.S. Appl. No. 10/147,774, Oct. 26, 2009, Office Action.
U.S. Appl. No. 10/147,774, Jun. 8, 2010, Office Action.
U.S. Appl. No. 10/147,774, Dec. 2, 2010, Notice of Allowance.
U.S. Appl. No. 10/240,183, Jul. 27, 2004, Office Action.
U.S. Appl. No. 10/240,183, Dec. 17, 2004, Office Action.
U.S. Appl. No. 10/240,183, Mar. 9, 2005, Notice of Allowance.
U.S. Appl. No. 10/240,183, Aug. 11, 2006, Office Action.
U.S. Appl. No. 10/264,306, Feb. 9, 2005, Office Action.
U.S. Appl. No. 10/264,306, Oct. 4, 2005, Office Action.
U.S. Appl. No. 10/264,306, May 10, 2006, Notice of Allowance.
U.S. Appl. No. 10/264,306, Jul. 2, 2007, Notice of Allowance.
U.S. Appl. No. 10/264,306, Feb. 4, 2008, Notice of Allowance.
U.S. Appl. No. 10/264,306, Jun. 27, 2008, Office Action.
U.S. Appl. No. 10/264,306, Feb. 26, 2009, Office Action.
U.S. Appl. No. 10/264,306, Aug. 13, 2009, Office Action.
U.S. Appl. No. 10/264,306, Jan. 27, 2010, Office Action.
U.S. Appl. No. 10/264,306, Jun. 15, 2010, Office Action.
U.S. Appl. No. 10/264,306, Oct. 29, 2010, Notice of Allowance.
U.S. Appl. No. 10/335,075, Aug. 10, 2005, Office Action.
U.S. Appl. No. 10/335,075, Dec. 19, 2005, Office Action.
U.S. Appl. No. 10/335,075, Apr. 21, 2006, Office Action.
U.S. Appl. No. 10/335,075, Dec. 27, 2006, Notice of Allowance.
U.S. Appl. No. 10/356,214, Nov. 30, 2005, Office Action.
U.S. Appl. No. 10/356,214, Aug. 23, 2006, Office Action.
U.S. Appl. No. 10/356,214, Feb. 13, 2007, Office Action.
U.S. Appl. No. 10/356,214, Sep. 12, 2007, Office Action.
U.S. Appl. No. 10/356,214, Mar. 6, 2008, Office Action.
U.S. Appl. No. 10/356,214, Nov. 4, 2008, Office Action.
U.S. Appl. No. 10/356,214, Apr. 29, 2009, Office Action.
U.S. Appl. No. 10/356,214, Jan. 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/356,214, May 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/356,214, Sep. 3, 2010, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jun. 10, 2004, Office Action.
U.S. Appl. No. 10/435,104, Sep. 21, 2004, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jan. 3, 2006, Office Action.
U.S. Appl. No. 10/435,104, May 16, 2006, Office Action.
U.S. Appl. No. 10/435,104, Dec. 28, 2006, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jul. 10, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Aug. 2, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Oct. 26, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Nov. 14, 2007, Notice of Allowance.
U.S. Appl. No. 10/435,104, Apr. 4, 2008, Notice of Allowance.
U.S. Appl. No. 10/435,104, Sep. 26, 2008, Notice of Allowance.
U.S. Appl. No. 10/435,104, Dec. 22, 2008, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jul. 23, 2009, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jan. 20, 2010, Notice of Allowance.
U.S. Appl. No. 10/435,104, Jun. 2, 2010, Office Action.
U.S. Appl. No. 10/435,104, Oct. 5, 2010, Notice of Allowance.
U.S. Appl. No. 10/455,768, Nov. 16, 2004, Office Action.
U.S. Appl. No. 10/455,768, Apr. 6, 2005, Notice of Allowance.
U.S. Appl. No. 10/486,067, Jan. 10, 2006, Office Action.
U.S. Appl. No. 10/486,067, Sep. 20, 2006, Notice of Allowance.
U.S. Appl. No. 10/486,070, Apr. 20, 2005, Office Action.
U.S. Appl. No. 10/486,070, Aug. 10, 2005, Office Action.
U.S. Appl. No. 10/486,070, Oct. 18, 2005, Notice of Allowance.
U.S. Appl. No. 10/517,004, Aug. 13, 2007, Office Action.
U.S. Appl. No. 10/517,004, Jan. 30, 2008, Office Action.
U.S. Appl. No. 10/517,004, Aug. 13, 2008, Notice of Allowance.
U.S. Appl. No. 10/517,004, Feb. 10, 2009, Notice of Allowance.
U.S. Appl. No. 10/517,004, Mar. 24, 2009, Notice of Allowance.
U.S. Appl. No. 10/517,004, Jun. 26, 2009, Notice of Allowance.
U.S. Appl. No. 10/517,004, Jan. 11, 2010, Notice of Allowance.
U.S. Appl. No. 10/517,004, Apr. 23, 2010, Notice of Allowance.
U.S. Appl. No. 10/517,004, Aug. 3, 2010, Notice of Allowance.
U.S. Appl. No. 10/519,778, Feb. 23, 2006, Office Action.
U.S. Appl. No. 10/519,778, May 31, 2006, Notice of Allowance.
U.S. Appl. No. 10/541,083, Oct. 16, 2007, Office Action.
U.S. Appl. No. 10/541,083, Oct. 31, 2007, Office Action.
U.S. Appl. No. 10/541,083, May 5, 2008, Office Action.
U.S. Appl. No. 10/541,083, Sep. 19, 2008, Notice of Allowance.
U.S. Appl. No. 10/541,083, Dec. 29, 2008, Notice of Allowance.
U.S. Appl. No. 10/541,083, Apr. 16, 2009, Notice of Allowance.
U.S. Appl. No. 10/541,083, Sep. 30, 2009, Notice of Allowance.
U.S. Appl. No. 10/541,083, Feb. 5, 2010, Notice of Allowance.
U.S. Appl. No. 10/541,083, May 10, 2010, Notice of Allowance.
U.S. Appl. No. 10/541,083, Aug. 17, 2010, Notice of Allowance.
U.S. Appl. No. 10/616,832, Jun. 30, 2006, Office Action.
U.S. Appl. No. 10/616,832, Oct. 20, 2006, Office Action.
U.S. Appl. No. 10/616,832, May 29, 2007, Office Action.
U.S. Appl. No. 10/616,832, Jan. 22, 2008, Office Action.
U.S. Appl. No. 10/616,832, Sep. 17, 2008, Office Action.
U.S. Appl. No. 10/616,832, Jul. 21, 2009, Office Action.
U.S. Appl. No. 10/616,832, Jan. 11, 2010, Notice of Allowance.
U.S. Appl. No. 10/616,832, May 12, 2010, Notice of Allowance.
U.S. Appl. No. 10/616,832, Sep. 20, 2010, Notice of Allowance.
U.S. Appl. No. 10/617,090, Mar. 22, 2005, Office Action.
U.S. Appl. No. 10/617,090, Jul. 6, 2005, Notice of Allowance.
U.S. Appl. No. 10/617,090, Oct. 5, 2005, Notice of Allowance.
U.S. Appl. No. 10/638,115, Sep. 22, 2006, Restriction Requirement.
U.S. Appl. No. 10/638,115, Jan. 31, 2007, Office Action.
U.S. Appl. No. 10/638,115, Sep. 18, 2007, Office Action.
U.S. Appl. No. 10/638,115, Feb. 7, 2008, Office Action.
U.S. Appl. No. 10/638,115, Oct. 29, 2008, Office Action.
U.S. Appl. No. 10/638,115, May 7, 2009, Notice of Allowance.
U.S. Appl. No. 10/638,115, Dec. 1, 2009, Notice of Allowance.
U.S. Appl. No. 10/638,115, Apr. 2, 2010, Notice of Allowance.
U.S. Appl. No. 10/638,115, Aug. 13, 2010, Notice of Allowance.
U.S. Appl. No. 10/667,144, Sep. 19, 2006, Office Action.
U.S. Appl. No. 10/667,144, May 2, 2007, Office Action.
U.S. Appl. No. 10/667,144, Nov. 19, 2007, Office Action.
U.S. Appl. No. 10/667,144, Dec. 5, 2007, Office Action.
U.S. Appl. No. 10/667,144, May 12, 2008, Office Action.
U.S. Appl. No. 10/667,144, Mar. 24, 2009, Office Action.
U.S. Appl. No. 10/667,144, Nov. 23, 2009, Office Action.
U.S. Appl. No. 10/667,144, Jun. 22, 2010, Office Action.
U.S. Appl. No. 10/667,144, Jun. 6, 2011, Office Action.
U.S. Appl. No. 10/667,144, Oct. 28, 2011, Notice of Allowance.
U.S. Appl. No. 10/669,313, Oct. 31, 2005, Office Action.
U.S. Appl. No. 10/669,313, Jan. 11, 2006, Notice of Allowance.
U.S. Appl. No. 10/669,313, Jun. 28, 2006, Notice of Allowance.
U.S. Appl. No. 10/682,459, Sep. 15, 2006, Office Action.
U.S. Appl. No. 10/682,459, Apr. 18, 2007, Office Action.
U.S. Appl. No. 10/682,459, Apr. 2, 2008, Office Action.
U.S. Appl. No. 10/682,459, Dec. 4, 2008, Office Action.
U.S. Appl. No. 10/682,459, Jun. 10, 2009, Office Action.
U.S. Appl. No. 10/682,459, Dec. 23, 2009, Office Action.
U.S. Appl. No. 10/682,459, Apr. 28, 2010, Office Action.
U.S. Appl. No. 10/682,459, Oct. 12, 2010, Office Action.
U.S. Appl. No. 10/682,459, Apr. 1, 2011, Notice of Allowance.
U.S. Appl. No. 10/786,444, Oct. 30, 2006, Office Action.
U.S. Appl. No. 10/786,444, Apr. 17, 2007, Office Action.
U.S. Appl. No. 10/786,444, Aug. 31, 2007, Office Action.
U.S. Appl. No. 10/786,444, Apr. 24, 2008, Office Action.
U.S. Appl. No. 10/786,444, Oct. 17, 2008, Office Action.
U.S. Appl. No. 10/786,444, Jun. 18, 2009, Office Action.
U.S. Appl. No. 10/786,444, Jan. 14, 2010, Office Action.
U.S. Appl. No. 10/786,444, Jul. 11, 2013, Notice of Allowance.
U.S. Appl. No. 10/787,073, Nov. 30, 2006, Office Action.
U.S. Appl. No. 10/787,073, Sep. 5, 2007, Office Action.
U.S. Appl. No. 10/787,073, Feb. 22, 2008, Office Action.
U.S. Appl. No. 10/787,073, Nov. 12, 2008, Office Action.
U.S. Appl. No. 10/787,073, Aug. 13, 2009, Office Action.
U.S. Appl. No. 10/787,073, Feb. 17, 2010, Notice of Allowance.
U.S. Appl. No. 10/787,073, Aug. 25, 2010, Notice of Allowance.
U.S. Appl. No. 10/908,721, Oct. 19, 2006, Office Action.
U.S. Appl. No. 10/908,721, Aug. 10, 2007, Office Action.
U.S. Appl. No. 10/908,721, Jan. 25, 2008, Office Action.
U.S. Appl. No. 10/908,721, Nov. 25, 2008, Office Action.
U.S. Appl. No. 10/908,721, Jun. 23, 2009, Office Action.
U.S. Appl. No. 10/908,721, Feb. 2, 2010, Office Action.
U.S. Appl. No. 11/048,503, Mar. 13, 2009, Office Action.
U.S. Appl. No. 11/048,503, Jun. 26, 2009, Office Action.
U.S. Appl. No. 11/048,503, Jan. 11, 2010, Notice of Allowance.
U.S. Appl. No. 11/048,503, Apr. 26, 2010, Notice of Allowance.
U.S. Appl. No. 11/048,503, Jul. 30, 2010, Notice of Allowance.
U.S. Appl. No. 11/113,549, Feb. 6, 2007, Office Action.
U.S. Appl. No. 11/113,549, May 30, 2007, Office Action.
U.S. Appl. No. 11/113,549, Nov. 9, 2007, Office Action.
U.S. Appl. No. 11/113,549, Apr. 16, 2008, Office Action.
U.S. Appl. No. 11/113,549, Jul. 21, 2009, Office Action.
U.S. Appl. No. 11/113,549, Jul. 6, 2010, Office Action.
U.S. Appl. No. 11/113,549, Jan. 4, 2011, Office Action.
U.S. Appl. No. 11/152,562, May 13, 2008, Office Action.
U.S. Appl. No. 11/152,562, Feb. 13, 2009, Office Action.
U.S. Appl. No. 11/152,562, Jul. 6, 2009, Office Action.
U.S. Appl. No. 11/152,562, Mar. 31, 2010, Office Action.
U.S. Appl. No. 11/152,562, Sep. 16, 2010, Notice of Allowance.
U.S. Appl. No. 11/198,811, Aug. 26, 2008, Office Action.
U.S. Appl. No. 11/198,811, Apr. 6, 2009, Office Action.
U.S. Appl. No. 11/198,811, Sep. 22, 2009, Office Action.
U.S. Appl. No. 11/198,811, Jun. 29, 2010, Notice of Allowance.
U.S. Appl. No. 11/344,793, Jan. 22, 2009, Office Action.
U.S. Appl. No. 11/344,868, Mar. 25, 2009, Office Action.
U.S. Appl. No. 11/344,891, Apr. 29, 2008, Office Action.
U.S. Appl. No. 11/344,891, Dec. 8, 2008, Office Action.
U.S. Appl. No. 11/344,891, Feb. 26, 2009, Office Action.
U.S. Appl. No. 11/344,891, Oct. 7, 2009, Office Action.
U.S. Appl. No. 11/344,891, May 7, 2010, Office Action.
U.S. Appl. No. 11/344,891, Jan. 22, 2013, Notice of Allowance.
U.S. Appl. No. 11/390,586, Jun. 24, 2009, Office Action.
U.S. Appl. No. 11/390,586, Jul. 6, 2010, Office Action.
U.S. Appl. No. 11/390,586, May 3, 2012, Notice of Allowance.
U.S. Appl. No. 11/396,141, May 22, 2009, Restriction Requirement.
U.S. Appl. No. 11/396,141, Aug. 26, 2009, Office Action.
U.S. Appl. No. 11/396,141, May 4, 2010, Office Action.
U.S. Appl. No. 11/396,141, Apr. 30, 2013, Office Action.
U.S. Appl. No. 11/396,731, Feb. 13, 2009, Office Action.
U.S. Appl. No. 11/396,731, May 22, 2009, Office Action.
U.S. Appl. No. 11/396,731, Jun. 29, 2010, Office Action.
U.S. Appl. No. 11/396,731, Mar. 22, 2011, Office Action.
U.S. Appl. No. 11/396,731, Sep. 1, 2011, Office Action.
U.S. Appl. No. 11/406,203, May 14, 2007, Office Action.
U.S. Appl. No. 11/406,203, Jan. 29, 2008, Notice of Allowance.
U.S. Appl. No. 11/406,203, May 23, 2008, Notice of Allowance.
U.S. Appl. No. 11/406,203, Sep. 22, 2008, Notice of Allowance.
U.S. Appl. No. 11/406,203, Mar. 3, 2009, Office Action.
U.S. Appl. No. 11/406,203, Sep. 16, 2009, Office Action.
U.S. Appl. No. 11/406,203, Jun. 18, 2010, Notice of Allowance.
U.S. Appl. No. 11/411,925, Jun. 6, 2007, Office Action.
U.S. Appl. No. 11/411,925, Feb. 5, 2008, Office Action.
U.S. Appl. No. 11/411,925, Jan. 12, 2009, Office Action.
U.S. Appl. No. 11/411,925, Sep. 10, 2009, Office Action.
U.S. Appl. No. 11/427,297, Jan. 30, 2009, Office Action.
U.S. Appl. No. 11/427,297, Sep. 15, 2009, Office Action.
U.S. Appl. No. 11/427,297, Sep. 15, 2010, Office Action.
U.S. Appl. No. 11/427,297, Mar. 21, 2011, Office Action.
U.S. Appl. No. 11/427,297, Jun. 26, 2012, Notice of Allowance.
U.S. Appl. No. 11/427,309, May 28, 2008, Restriction Requirement.
U.S. Appl. No. 11/427,309, Jan. 2, 2009, Office Action.
U.S. Appl. No. 11/427,309, Apr. 20, 2009, Office Action.
U.S. Appl. No. 11/427,309, Nov. 6, 2009, Office Action.
U.S. Appl. No. 11/427,309, Apr. 26, 2010, Office Action.
U.S. Appl. No. 11/427,309, Nov. 15, 2010, Office Action.
U.S. Appl. No. 11/427,309, Jun. 7, 2013, Notice of Allowance.
U.S. Appl. No. 11/455,993, Feb. 17, 2009, Office Action.
U.S. Appl. No. 11/455,993, Dec. 16, 2009, Office Action.
U.S. Appl. No. 11/532,325, Feb. 23, 2009, Office Action.
U.S. Appl. No. 11/532,325, Jun. 17, 2009, Office Action.
U.S. Appl. No. 11/532,325, Jan. 5, 2010, Office Action.
U.S. Appl. No. 11/532,325, Jul. 17, 2013, Office Action.
U.S. Appl. No. 11/532,576, Mar. 1, 2010, Restriction Requirement.
U.S. Appl. No. 11/532,576, Apr. 23, 2010, Office Action.
U.S. Appl. No. 11/532,576, Oct. 13, 2010, Notice of Allowance.
U.S. Appl. No. 11/674,930, Jan. 8, 2009, Office Action.
U.S. Appl. No. 11/674,930, Jun. 4, 2009, Office Action.
U.S. Appl. No. 11/674,930, Jan. 8, 2010, Office Action.
U.S. Appl. No. 11/675,462, Dec. 10, 2009, Office Action.
U.S. Appl. No. 11/675,462, Aug. 31, 2010, Office Action.
U.S. Appl. No. 11/675,462, Aug. 3, 2011, Office Action.
U.S. Appl. No. 11/675,462, Dec. 22, 2011, Notice of Allowance.
U.S. Appl. No. 11/744,089, Nov. 26, 2008, Office Action.
U.S. Appl. No. 11/744,089, Aug. 14, 2009, Office Action.
U.S. Appl. No. 11/744,089, Aug. 8, 2012, Office Action.
U.S. Appl. No. 11/744,089, Apr. 15, 2013, Office Action.
U.S. Appl. No. 11/757,108, Nov. 25, 2009, Restriction Requirement.
U.S. Appl. No. 11/767,818, Dec. 24, 2009, Restriction Requirement.
U.S. Appl. No. 11/767,818, Mar. 22, 2010, Office Action.
U.S. Appl. No. 11/767,818, Sep. 30, 2010, Office Action.
U.S. Appl. No. 11/767,818, Feb. 16, 2011, Office Action.
U.S. Appl. No. 11/767,818, Feb. 3, 2012, Notice of Allowance.
U.S. Appl. No. 11/852,190, Jun. 24, 2010, Restriction Requirement.
U.S. Appl. No. 11/852,190, Nov. 1, 2010, Office Action.
U.S. Appl. No. 11/852,190, Mar. 2, 2011, Office Action.
U.S. Appl. No. 11/852,190, Apr. 24, 2013, Office Action.
U.S. Appl. No. 11/958,281, Sep. 2, 2010, Restriction Requirement.
U.S. Appl. No. 11/958,281, Oct. 8, 2010, Office Action.
U.S. Appl. No. 11/958,281, Mar. 10, 2011, Office Action.
U.S. Appl. No. 11/958,295, Aug. 27, 2009, Office Action.
U.S. Appl. No. 11/958,295, May 25, 2010, Office Action.
U.S. Appl. No. 11/959,334, Aug. 19, 2009, Office Action.
U.S. Appl. No. 11/959,334, Jan. 12, 2010, Notice of Allowance.
U.S. Appl. No. 11/959,334, Apr. 14, 2010, Notice of Allowance.
U.S. Appl. No. 11/959,334, Jul. 23, 2010, Notice of Allowance.
U.S. Appl. No. 12/106,928, Jan. 23, 2009, Office Action.
U.S. Appl. No. 12/106,928, Oct. 5, 2009, Office Action.
U.S. Appl. No. 12/106,928, May 10, 2010, Office Action.
U.S. Appl. No. 12/106,928, Oct. 25, 2010, Office Action.
U.S. Appl. No. 12/106,928, Jun. 28, 2013, Office Action.
U.S. Appl. No. 12/106,937, Mar. 30, 2009, Office Action.
U.S. Appl. No. 12/106,937, Nov. 18, 2009, Office Action.
U.S. Appl. No. 12/106,937, Jun. 28, 2013, Office Action.
U.S. Appl. No. 12/113,851, Apr. 27, 2010, Restriction Requirement.
U.S. Appl. No. 12/113,851, Jun. 24, 2010, Office Action.
U.S. Appl. No. 12/113,851, Dec. 16, 2010, Office Action.
U.S. Appl. No. 12/113,851, Apr. 27, 2011, Office Action.
U.S. Appl. No. 12/113,851, Mar. 29, 2012, Office Action.
U.S. Appl. No. 12/114,031, Oct. 5, 2010, Restriction Requirement.
U.S. Appl. No. 12/114,031, Nov. 22, 2010, Office Action.
U.S. Appl. No. 12/114,031, May 11, 2011, Office Action.
U.S. Appl. No. 12/114,031, Aug. 2, 2011, Office Action.
U.S. Appl. No. 12/114,031, Mar. 6, 2012, Office Action.
U.S. Appl. No. 12/114,091, Oct. 27, 2010, Restriction Requirement.
U.S. Appl. No. 12/114,091, Dec. 17, 2010, Office Action.
U.S. Appl. No. 12/114,091, Jul. 7, 2011, Office Action.
U.S. Appl. No. 12/114,091, Apr. 5, 2012, Office Action.
U.S. Appl. No. 12/114,091, Nov. 8, 2012, Office Action.
U.S. Appl. No. 12/122,603, Mar. 3, 2011, Office Action.
U.S. Appl. No. 12/122,603, Apr. 22, 2011, Office Action.
U.S. Appl. No. 12/122,603, Sep. 23, 2011, Office Action.
U.S. Appl. No. 12/135,858, Jul. 13, 2011, Office Action.
U.S. Appl. No. 12/135,858, Feb. 16, 2012, Office Action.
U.S. Appl. No. 12/143,020, May 11, 2011, Restriction Requirement.
U.S. Appl. No. 12/143,020, Aug. 31, 2011, Office Action.
U.S. Appl. No. 12/143,020, Feb. 23, 2012, Notice of Allowance.
U.S. Appl. No. 12/338,977, Jan. 19, 2012, Office Action.
U.S. Appl. No. 12/338,977, Jul. 11, 2012, Office Action.
U.S. Appl. No. 12/338,977, Nov. 28, 2012, Office Action.
U.S. Appl. No. 12/338,977, Jun. 19, 2013, Office Action.
U.S. Appl. No. 12/393,877, Sep. 29, 2011, Office Action.
U.S. Appl. No. 12/393,877, Dec. 13, 2011, Office Action.
U.S. Appl. No. 12/393,877, May 21, 2012, Office Action.
U.S. Appl. No. 12/402,398, Mar. 9, 2010, Restriction Requirement.
U.S. Appl. No. 12/402,398, May 20, 2010, Office Action.
U.S. Appl. No. 12/402,398, Jan. 24, 2011, Office Action.
U.S. Appl. No. 12/402,398, Sep. 20, 2012, Office Action.
U.S. Appl. No. 12/402,398, Mar. 13, 2013, Notice of Allowance.
U.S. Appl. No. 12/403,256, Dec. 16, 2009, Restriction Requirement.
U.S. Appl. No. 12/403,256, Mar. 30, 2010, Office Action.
U.S. Appl. No. 12/403,256, Aug. 19, 2010, Notice of Allowance.
U.S. Appl. No. 12/403,277, Jul. 8, 2010, Restriction Requirement.
U.S. Appl. No. 12/403,277, Oct. 12, 2010, Office Action.
U.S. Appl. No. 12/403,277, Mar. 31, 2011, Office Action.
U.S. Appl. No. 12/403,277, Apr. 3, 2012, Office Action.
U.S. Appl. No. 12/403,277, Nov. 5, 2012, Office Action.
U.S. Appl. No. 12/481,377, Apr. 28, 2011, Restriction Requirement.
U.S. Appl. No. 12/481,377, Jun. 21, 2011, Office Action.
U.S. Appl. No. 12/481,377, Jan. 3, 2012, Office Action.
U.S. Appl. No. 12/481,377, Aug. 10, 2012, Notice of Allowance.
U.S. Appl. No. 12/548,274, Dec. 28, 2011, Restriction Requirement.
U.S. Appl. No. 12/548,274, Mar. 2, 2012, Office Action.
U.S. Appl. No. 12/548,274, Sep. 10, 2012, Office Action.
U.S. Appl. No. 12/608,769, Feb. 10, 2012, Office Action.
U.S. Appl. No. 12/608,769, Aug. 22, 2012, Office Action.
U.S. Appl. No. 12/608,769, Nov. 5, 2012, Notice of Allowance.
U.S. Appl. No. 12/608,773, Jun. 7, 2012, Restriction Requirement.
U.S. Appl. No. 12/608,773, Jul. 20, 2012, Office Action.
U.S. Appl. No. 12/608,773, Jan. 7, 2013, Office Action.
U.S. Appl. No. 12/642,319, Feb. 27, 2012, Restriction Requirement.
U.S. Appl. No. 12/642,319, Aug. 28, 2012, Office Action.
U.S. Appl. No. 12/684,400, Feb. 13, 2012, Restriction Requirement.
U.S. Appl. No. 12/684,400, May 9, 2012, Office Action.
U.S. Appl. No. 12/684,400, Oct. 16, 2012, Office Action.
U.S. Appl. No. 12/684,470, Dec. 20, 2011, Restriction Requirement.
U.S. Appl. No. 12/684,470, Mar. 23, 2012, Office Action.
U.S. Appl. No. 12/684,470, Aug. 30, 2012, Office Action.
U.S. Appl. No. 12/684,542, Jan. 30, 2012, Restriction Requirement.
U.S. Appl. No. 12/684,542, Apr. 16, 2012, Office Action.
U.S. Appl. No. 12/684,542, Sep. 13, 2012, Office Action.
U.S. Appl. No. 12/684,562, Dec. 28, 2011, Restriction Requirement.
U.S. Appl. No. 12/684,562, Feb. 16, 2012, Office Action.
U.S. Appl. No. 12/684,562, Aug. 21, 2012, Office Action.
U.S. Appl. No. 12/684,569, Dec. 20, 2011, Restriction Requirement.
U.S. Appl. No. 12/684,569, Jan. 27, 2012, Office Action.
U.S. Appl. No. 12/684,569, Jul. 30, 2012, Office Action.
U.S. Appl. No. 12/688,065, Mar. 13, 2012, Restriction Requirement.
U.S. Appl. No. 12/688,065, Apr. 26, 2012, Office Action.
U.S. Appl. No. 12/688,065, Oct. 12, 2012, Office Action.
U.S. Appl. No. 12/848,642, Sep. 20, 2012, Restriction Requirement.
U.S. Appl. No. 12/848,642, Nov. 9, 2012, Office Action.
U.S. Appl. No. 12/848,642, Apr. 26, 2013, Office Action.
U.S. Appl. No. 12/850,242, Aug. 6, 2012, Restriction Requirement.
U.S. Appl. No. 12/850,242, Oct. 17, 2012, Office Action.
U.S. Appl. No. 12/850,242, Apr. 18, 2013, Office Action.
U.S. Appl. No. 12/897,358, Aug. 22, 2011, Office Action.
U.S. Appl. No. 12/897,358, Jan. 12, 2012, Notice of Allowance.
U.S. Appl. No. 12/897,358, Mar. 5, 2012, Notice of Allowance.
U.S. Appl. No. 12/941,809, Dec. 13, 2011, Restriction Requirement.
U.S. Appl. No. 12/941,809, Jan. 30, 2012, Office Action.
U.S. Appl. No. 12/941,809, Jun. 1, 2012, Office Action.
U.S. Appl. No. 12/941,809, Jul. 3, 2013, Office Action.
U.S. Appl. No. 12/945,646, Jan. 20, 2011, Office Action.
U.S. Appl. No. 12/945,646, Jul. 6, 2011, Office Action.
U.S. Appl. No. 12/945,646, Oct. 26, 2011, Office Action.
U.S. Appl. No. 12/945,646, Feb. 21, 2012, Notice of Allowance.
U.S. Appl. No. 12/955,859, May 26, 2011, Restriction Requirement.
U.S. Appl. No. 12/955,859, Jul. 21, 2011, Office Action.
U.S. Appl. No. 12/955,859, Dec. 15, 2011, Office Action.
U.S. Appl. No. 12/955,859, Aug. 6, 2012, Office Action.
U.S. Appl. No. 12/955,859, May 16, 2013, Office Action.
U.S. Appl. No. 12/961,331, Dec. 4, 2012, Restriction Requirement.
U.S. Appl. No. 12/961,331, Feb. 1, 2013, Office Action.
U.S. Appl. No. 12/961,331, Jul. 3, 2013, Office Action.
U.S. Appl. No. 12/966,923, Feb. 3, 2012, Notice of Allowance.
U.S. Appl. No. 12/973,204, Mar. 7, 2012, Notice of Allowance.
U.S. Appl. No. 12/987,792, Mar. 13, 2012, Office Action.
U.S. Appl. No. 12/987,792, Sep. 17, 2012, Office Action.
U.S. Appl. No. 13/026,989, Sep. 16, 2011, Office Action.
U.S. Appl. No. 13/026,989, Jun. 8, 2012, Office Action.
U.S. Appl. No. 13/028,041, Jan. 4, 2013, Restriction Requirement.
U.S. Appl. No. 13/028,041, Feb. 26, 2013, Office Action.
U.S. Appl. No. 13/030,922, Dec. 18, 2012, Office Action.
U.S. Appl. No. 13/030,922, Jan. 31, 2013, Office Action.
U.S. Appl. No. 13/030,922, Jul. 18, 2013, Office Action.
U.S. Appl. No. 13/039,087, Jul. 17, 2012, Office Action.
U.S. Appl. No. 13/039,087, Nov. 6, 2012, Notice of Allowance.
U.S. Appl. No. 13/112,618, Mar. 29, 2013, Restriction Requirement.
U.S. Appl. No. 13/112,618, Jun. 7, 2013, Office Action.
U.S. Appl. No. 13/112,631, Mar. 29, 2013, Restriction Requirement.
U.S. Appl. No. 13/112,631, Jun. 26, 2013, Office Action.
U.S. Appl. No. 13/153,594, Jan. 29, 2013, Office Action.
U.S. Appl. No. 13/153,594, May 29, 2013, Office Action.
U.S. Appl. No. 13/308,227, Apr. 10, 2013, Office Action.
U.S. Appl. No. 13/488,233, Feb. 5, 2013, Notice of Allowance.
U.S. Appl. No. 13/490,143, Jan. 4, 2013, Restriction Requirement.
U.S. Appl. No. 13/490,143, Apr. 29, 2013, Notice of Allowance.
U.S. Appl. No. 13/525,839, Apr. 1, 2013, Office Action.
U.S. Appl. No. 13/525,839, Jul. 15, 2013, Notice of Allowance.
U.S. Appl. No. 13/615,547, Jan. 18, 2013, Office Action.
U.S. Appl. No. 13/615,547, Apr. 12, 2013, Notice of Allowance.
U.S. Appl. No. 13/615,547, Jul. 10, 2013, Issue Notification.
U.S. Appl. No. 13/791,829, May 29, 2013, Office Action.
U.S. Appl. No. 10/908,721, Jul. 18, 2013, Notice of Allowance.
U.S. Appl. No. 11/744,089, Aug. 8, 2013, Notice of Allowance.
U.S. Appl. No. 12/850,242, Aug. 6, 2013, Notice of Allowance.
U.S. Appl. No. 12/955,859, Aug. 1, 2013, Notice of Allowance.
U.S. Appl. No. 13/615,547, Aug. 7, 2013, Issue Notification.
U.S. Appl. No. 11/396,141, Aug. 21, 2013, Office Action.
U.S. Appl. No. 13/026,989, Aug. 23, 2013, Office Action.
U.S. Appl. No. 13/490,143, Aug. 21, 2013, Issue Notification.
U.S. Appl. No. 14/017,039, filed Sep. 3, 2013, Ellingwood et al.
U.S. Appl. No. 14/023,428, filed Sep. 10, 2013, Ellingwood.
U.S. Appl. No. 10/786,444, Oct. 23, 2013, Issue Notification.
U.S. Appl. No. 11/39,6141, Nov. 4, 2013, Notice of Allowance.
U.S. Appl. No. 11/411,925, Oct. 1, 2013, Office Action.
U.S. Appl. No. 11/508,662, Dec. 28, 2009, Office Action.
U.S. Appl. No. 11/508,662, Apr. 14, 2010, Office Action.
U.S. Appl. No. 11/508,662, Oct. 26, 2010, Office Action.
U.S. Appl. No. 12/688,065, Oct. 18, 2013, Office Action.
U.S. Appl. No. 12/961,331, Sep. 20, 2013, Advisory Action.
U.S. Appl. No. 13/111,403, Sep. 5, 2013, Office Action.
U.S. Appl. No. 13/153,594, Oct. 16, 2013, Notice of Allowance.
U.S. Appl. No. 13/308,227, Sep. 11, 2013, Office Action.
U.S. Appl. No. 13/525,839, Oct. 31, 2013, Issue Notification.
U.S. Appl. No. 13/791,829, Oct. 8, 2013, Notice of Allowance.
U.S. Appl. No. 60/711,279, filed Aug. 24, 2005, Sibbitt, Jr. et al.
U.S. Appl. No. 60/726,985, filed Oct. 14, 2005, Sibbitt Jr. et al.
U.S. Appl. No. 61/097,072, filed Sep. 15, 2008, Sibbitt Jr. et al.
U.S. Appl. No. 11/316,775, Apr. 16, 2008, Office Action.
U.S. Appl. No. 11/316,775, Aug. 6, 2008, Office Action.
U.S. Appl. No. 11/508,656, Dec. 9, 2009, Restriction Requirement.
U.S. Appl. No. 11/508,656, Mar. 25, 2010, Office Action.
U.S. Appl. No. 11/508,656, Aug. 30, 2010, Office Action.
U.S. Appl. No. 11/508,656, Feb. 10, 2014, Notice of Allowance.
U.S. Appl. No. 11/508,662, Dec. 28, 2009, Restriction Requirement.
U.S. Appl. No. 11/508,662, Apr. 14, 2010, Office Action
U.S. Appl. No. 11/508,662, Mar. 24, 2014, Office Action.
U.S. Appl. No. 11/508,715, Jan. 6, 2010, Restriction Requirement.
U.S. Appl. No. 11/508,715, Apr. 26, 2010, Office Action.
U.S. Appl. No. 11/508,715, Oct. 18, 2010, Office Action.
U.S. Appl. No. 11/508,715, Mar. 27, 2014, Office Action.
U.S. Appl. No. 12/365,397, Sep. 13, 2010, Restriction Requirement.
U.S. Appl. No. 12/365,397, Dec. 17, 2010, Office Action.
U.S. Appl. No. 12/365,397, Jun. 21, 2011, Notice of Allowance.
U.S. Appl. No. 12/559,377, Dec. 14, 2011, Restriction Requirement.
U.S. Appl. No. 12/559,377, Feb. 27, 2012, Office Action.
U.S. Appl. No. 12/559,377, Aug. 3, 2012, Office Action.
U.S. Appl. No. 13/111,403, Jun. 28, 2013, Restriction Requirement.
U.S. Appl. No. 13/111,403, Dec. 24, 2013, Office Action.
U.S. Appl. No. 14/532,537, filed Nov. 4, 2014, Sibbitt, Jr. et al.
U.S. Appl. No. 11/508,662, Jul. 25, 2014, Notice of Allowance.
U.S. Appl. No. 11/508,662, Dec. 10, 2014, Issue Notification.
U.S. Appl. No. 11/508,715, Aug. 15, 2014, Office Action.
U.S. Appl. No. 12/559,377, Jul. 30, 2014, Notice of Allowance.
U.S. Appl. No. 13/111,403, Nov. 20, 2014, Office Action.
Related Publications (1)
Number Date Country
20120245603 A1 Sep 2012 US